UNIFIED
MODELING
LANGUAGE

W

UML Summary

version 1.0.1
19 March1997



RATIONAL

SOFTWARECORPORATION
2800 San Tomas Expressway

Santa Clara, CA 95051-0951
http://www.rational.com

Copyright © 1997 Rational Software Corporation.

Photocopying, electronic distribution, or foreign-language translation of this document is
permitted, provided this document is reproduced in its entirety and accompanied with this
entire notice, including the following statement:

The most recent updates on the Unified Modeling Language are available via the
worldwide web: http://www.rational.com/uml.

UML Summary



Contents

1. PREFACE
1.1 INTENDED AUDIENCE
1.2 ADDITIONAL INFORMATION AND UPDATES

2. MOTIVATION

3. UML PAST, PRESENT, AND FUTURE
3.1UML 0.8-0.91
3.2UML 1.0 wWiTH THE UML PARTNERS
3.3 UML PRESENT
3.4 UML FUTURE

4. SCOPE OF THE UML
4.1 PRIMARY ARTIFACTSOF THE UML
4.2 OUTSIDE THE SCOPE OF THE UML
4.3 COMPARING UML TO MODELING LANGUAGES OF BoocH, OMT, OOSE, AND OTHER METHODS
4.4 NEW FEATURES OF THE UML

5. ACKNOWLEDGMENTS
6. REFERENCES

UML Summary

=
ROoO~N OO0OBRNN N RPPERBF

12
13

13
15



UML Summary



1. PREFACE

This series of documents describes the Unified Modeling Language (UML), alanguage
for specifying, visualizing, and constructing the artifacts of software systems, aswell as
for business modeling. The UML represents a collection of “best engineering practices’
that have proven successful in the modeling of large and complex systems.

The UML definition consists of the following documents:

UML Summary - Thisisthe document you are reading. It serves as an introduction to
the UML aswell as aroad map to the other documents.

UML Semantics - This document describes the formal metamodel that is the foundation
for the UML’s semantics. The UML metamodel is presented in UML notation and
concise natural language. A UML Glossary isincluded as an appendix.

UML Notation Guide - This document describes the UML notation and provides
examples.

UML Process-Specific Extensions - This describes the process-specific extensions to the
UML, in terms of its extension mechanisms and process-specific diagram icons.

These documents are available on Rational Software’ s web site, http://www.rational.com.
Additional documents are associated with the proposal of the UML to the Object
Management Group (OMG) and are available to OMG members as documents ad/97-01-
01 through ad/97-01-14. See http://www.omg.org for OMG information.

1.1 INTENDED AUDIENCE

This document set isintended primarily as a precise and self-consistent definition of the
UML'’s semantic and notation constructs. The primary audience of this document set
consists of the OMG, other standards organizations, book authors, trainers, and tool
builders. The authors assume familiarity with object-oriented analysis and design
methods, and the writing style is conceptually intense, often emphasizing precision over
understandability. These documents are therefore not written as an introductory text on
building object models for complex systems, athough they could be used in conjunction
with other materials or instruction. This set of documents will become more
approachable to a broader audience as additional books, training courses, and tools that
apply the UML become available.

1.2 ADDITIONAL INFORMATION AND UPDATES

Additional information, as well as any updates to the UML will appear on Rational
Software’ s web site, http://www.rational.com/uml.

UML Summary 1



3.

MOTIVATION

This section discusses the importance of modeling in the face of increasingly complex
system requirements.

Why Modeling Languages are Needed

We build models of complex systems because we cannot comprehend any such system in
itsentirety. Asthe complexity of systemsincrease, so does the importance of good
modeling techniques. There are many additional factors of a project’s success, but having
arigorous modeling language standard is one essential factor. A modeling language must
include:

- Model elements— fundamental modeling concepts and semantics
- Notation — visual rendering of model elements
- Guidelines — idioms of usage within the trade

The Future of Software

As software increases its strategic value the industry looks for techniques to automate the
production of software We look for techniques to improve quality and reduce cost and
time-to-market. These techniques include componentware, visual programming, patterns,
and frameworks. We also seek technigques to manage the complexity of systems as they
increase in scope and scale. In particular, we recognize the need to solve recurring
architectural problems, such as physical distribution, concurrency, replication, security,
load balancing, and fault tolerance.

Complexity will vary by application domain and process phase. One of the key
motivations in the minds of the UML developers wasto create a set of semantics and
notation that can adequately address all scales of architectural complexity across al
domains.

Integration of Best Practices

A key motivation behind the development of the UML has been to integrate the best
practices in the industry, encompassing widely varying views based on levels of
abstraction, domains, architectures, life cycle stages, implementation technol ogies, etc.
The specific objectives are covered in the next section.

UML PAST, PRESENT, AND FUTURE

3.1 UML 0.8-0.91

Precursors to UML

| dentifiabl e object-oriented modeling languages began to appear between mid-1970 and
the late 1980s as various methodol ogists experimented with different approaches to
object-oriented analysis and design. The number of identified modeling languages
increased from less than 10 to more than 50 during the period between 1989-1994. Many

UML Summary



users of OO methods had trouble finding complete satisfaction in any one modeling
language, fueling the “method wars.” By the mid-1990s, a new iterations of these
methods began to appear, most notably Booch ’ 93, the continued evolution of OMT, and
Fusion. These methods began to incorporate each other’ s techniques, and afew clearly
prominent methods emerged, including the OOSE, OMT-2, and Booch ’ 93 methods.
Each of these were complete methods, but were recognized as having certain strengths. In
simple terms, OOSE was a use-case oriented approach that provided excellent support
business engineering and requirements analysis. OMT-2 was especially expressive for
analysis and data-intensive information systems. Booch-'93 was particularly expressive
during design and construction phases of projects and popular for engineering-intensive
applications.

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim
Rumbaugh of Rational Software Corporation began their work on unifying the Booch and
OMT (Object Modeling Technique) methods. Given that the Booch and OMT methods
were aready independently growing together and were collectively recognized as leading
object-oriented methods worldwide, Booch and Rumbaugh joined forcesto forge a
complete unification of their work. A draft of the Unified Method (as it was then called),
0.8, wasreleased in October of 1995. Also in the Fall of 1995, Ivar Jacobson joined this
unification effort, merging in the OOSE (Object-Oriented Software Engineering) method.

Asthe primary authors of the Booch, OMT, and OOSE methods, Booch, Rumbaugh, and
Jacobson were motivated to create a unified modeling language for three reasons. First,
these methods were aready evolving toward each other independently. It made sense to
continue that evolution together rather than apart, eliminating the potential for any
unnecessary and gratuitous differences that would further confuse users. Second, by
unifying the semantics and notation, they could bring some stability to the object-oriented
marketplace, allowing projects to settle on one mature modeling language and |etting tool
builders focus on delivering more useful features. Third, they expected that their
collaboration would yield improvementsin all three earlier methods, helping them to
capture lessons learned and to address problems that none of their methods previously
handled well.

Asthey began their unification, they established four goals to bound their efforts:

- Tomodel systems (and not just software) using object-oriented concepts

- To establish an explicit coupling to conceptual as well as executable artifacts
- To address the issues of scale inherent in complex, mission-critical systems

- To create amodeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike designing
aprogramming language. First, one must bound the problem: Should the notation
encompass requirements specification? Should the notation extend to the level of avisual
programming language? Second, one must strike a balance between expressiveness and
simplicity: Too simple anotation will limit the breadth of problems that can be solved;

UML Summary 3



too complex a notation will overwhelm the mortal developer. In the case of unifying
existing methods, one must also be sensitive to the installed base: Make too many
changes, and you will confuse existing users. Resist advancing the notation, and you will
miss the opportunity of engaging a much broader set of users. The UML definition
strives to make the best tradeoffs in each of these aress.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9
and 0.91 documents in June and October of 1996. During 1996, the UML authorsinvited
and received feedback from the general community. They incorporated this feedback, but
it was clear that additional focused attention was still required.

3.2 UML 1.0 wiTH THE UML PARTNERS

During 1996, it became clear that several organizations saw UML as strategic to their
business. A UML Partners consortium was established with several organizations willing
to dedicate resources to work toward a strong UML definition. Those contributing most
to the UML 1.0 definition included: Digital Equipment Corp., HP, i-Logix, Intellicorp,
IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle, Rational Software, Tl,
and Unisys. This collaboration produced UML 1.0, amodeling language that is well
defined, expressive and powerful, and generally applicable.

Submission of UML 1.0 to OMG Industrialization

for adoption, Jan "97 <

ey UML 1.0 Standardization

public June "96 & Oct "96 UML 0.9 & 0.91 *

feedback / UML Partners’ S
. Unification
OOPSLA "95 Unified M ethod 0.8 Expertise

// \m< A

Other methods Booch 91 OMT -1 OOSE Fragmentation

The UML Partners contributed a variety of expert perspectives, including, but not limited
to the following: OMG and RM-ODP technology perspectives, business modeling, state
machine semantics, types, interfaces, components, collaborations, refinement,
frameworks, distribution, and meta-metamodel. Thefinal result—UML 1.0—was a

4 UML Summary



collaborative team effort. A list of individuals contributing to the UML isin the
Acknowledgments section.

Focus of UML Cooperation

The UML partners have worked hard as a team to define UML 1.0. While each partner
came in with their own perspective, areas of concern, and primary focus, the overall result
has benefited from each of them and from the diversity of their experience and
viewpoints.

Digital Equipment assisted the team in understanding how UML relates to existing
OMG standards and in the area of an OA&D Facility definition. (See
http://www.dec.com.)

Hewlett-Packard has had a strong interest in the relationship between UML models and
re-use issues and in the use of packages and “facades’ to facilitate the construction of
reusable frameworks. They aso focused on the use of patterns and the relationship to
CORBAservices. (See http://www.hp.com.)

i-Logix has had a strong interest in the definition, semantics, and use of executable
behavior and the use of events and signals within the UML. The UML incorporates Harel
statecharts to provide a hierarchical specification of concurrent behavior. i-Logix also
focused strongly on the relation between object and behavioral modelsin UML. (See
http://lwww.ilogix.com, [Harel 87], [Harel 96a], [Harel 96b].)

ICON Computing - ICON’s primary interest has been precise behavior modeling of
component and framework-based systems, with a clear definition of abstraction and
refinement from business to code. Their primary technical areasin UML 1.0 have been
types, behavior specifications, refinement, collaborations, and composition of reusable
frameworks, adapted from the Catalysis method. (See http://www.iconcomp.com,

[D’ Souza 19974], [D’ Souza 19970].)

MCI Systemhouse has served as a spokesperson for the interests of uses of modeling
languages. MCI Systemhouse has a primary interest in distributed system architectures
and the corresponding demands they place on modeling constructsin UML. They have
played an important role in the meta-metamodel, the glossary, and in matching the OMG
Core Object Model, OMG CORBA Object Model, and RM-ODP to the UML. (See
http://www.systemhouse.mci.com.)

Microsoft is particularly concerned with the issues of building component-based systems,
including modeling components, their interfaces and their distribution. They have also
focused on the relationship between UML and standards like ActiveX and COM. (See
http://www.microsoft.com.)

Oracle has had a strong interest in the definition and support for modeling business
processes and for describing business modelsin UML. They have had specific focus on
support for workflow descriptions and activity diagrams as well as business objects, and

UML Summary 5



have prepared stereotypes for tailoring the UML for business modeling. (See
http://www.oracle.com.)

Rational Software provided the starting point for the partners work on UML with the
UML 0.8, 0.9, and 0.91 documents that unified the modeling languages of the Booch,
OMT, OOSE, and other methods. They also coordinated and guided the work of the team
throughout the project. (See http://www.rational.com/uml.)

The modeling of components and types has been of primary interest to Texas
Instruments. They have focused on type models and specifications, on business
modeling, and on the relationship of the UML definition to standards. (See
http://www.ti.com/software and www.ti.com/software/cbd.htm.)

Unisys has had a strong interest in the meta-metamodels and their relationship to the
UML, including the formalization of relationships and constraints at the meta-level and
meta-meta-level consistently. Within the UML proposal they have particularly focused on
the integration of the UML, the OMG MOF, and CDIF, aswell as the interfaces to other
OMG facilities. (See http://www.unisys.com.)

3.3 UML PRESENT

The UML is being submitted to the OMG for considered adoption as a standard,
coincident with the publication of this document.

The UML is nonproprietary and open to all. It addresses the needs of user and scientific
communities, as established by experience with the underlying methods on whichiit is
based. Many methodologists, organizations, and tool vendors have committed to use it.
Since the UML builds upon similar semantics and notation from Booch, OMT, OOSE,
and other leading methods and has incorporated input from the UML partners and
feedback from the general public, widespread adoption of the should be straightforward.

There are two aspects of “unified” that the UML achieves: First, it effectively ends many
of the differences, often inconsequential, between the modeling languages of previous
methods. Secondly, and perhaps more importantly, it unifies the perspectives among
many different kinds of systems (business versus software), development phases
(requirements analysis, design, and implementation), and internal concepts.

3.4 UML FUTURE

As of thiswriting, the following milestones are planned:

- The UML Partners will respond to OMG and public feedback during first half of 1997.

- The OMG will decide about adopting UML as a standard in mid-1997.

- The UML methodologists, as well as other authors in the industry will publish
additional collateral and books throughout 1997.

6 UML Summary



Standardization of the UML

Many organizations have already announced support for the UML astheir organization’s
standard, since it is based on the modeling languages of leading OO methods. The UML
isready for widespread use. The UML 1.0 release is a stable and usable version. These
documents are suitable as the primary source for authors writing books and training
materials, as well as developers implementing visual modeling tools. Additional
collateral, such as articles, training courses, examples, and books, will soon make the
UML very approachable for a wide audience.

In January of 1997, the UML version 1.0 documents were submitted, along with others, in
response to the Object Management Group (OMG) Analysis & Design Task Force' s RFP-
1. The OMG will decide about adopting UML as a standard, hopefully by mid- to late-
1997. Aswith all definitions, expect the UML to evolve. The process of preparing for
the submission to the OMG, for example, has and will continue to provide a valuable
source of input.

Discussion Groups and Providing Feedback
There are several electronic discussion forums that are appropriate for general discussion
about the UML, including the internet news group comp.object.

The UML partners will log and consider comments on the UML submitted via e-mail to
uml_feedback@rational.com. Constructive comments that reference specific sectionsin
the UML documents will be more easy to incorporate. Depending on the volume of
comments, we may not be able to respond to each e-mail individually.

Industrialization

Many organizations and vendors have aready embraced the UML. The number of
endorsing organizations is expected to grow significantly over time. These organizations
will continue to encourage the use of the Unified Modeling by making the definition
readily available and by encouraging other methodol ogists, tool vendors, training
organizations, and authors to adopt the UML.

The real measure of the UML’ s success will be its use on successful projects and the
increasing demand for supporting tools, books, training, and mentoring.

4. SCOPE OF THE UML

The Unified Modeling Language (UML) is alanguage for specifying, constructing,
visualizing, and documenting the artifacts of a software-intensive system.

First and foremost, the Unified Modeling L anguage fuses the concepts of Booch, OMT,
and OOSE. Theresult isasingle, common, and widely usable modeling language for
users of these and other methods.

UML Summary 7



Second, the Unified Modeling Language pushes the envel ope of what can be done with
existing methods. In particular, the UML authors targeted the modeling of concurrent,
distributed systems, meaning that UML contains elements that address these domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a
standard process. Although the UML must be applied in the context of a process, it is our
experience that different organizations and problem domains require different processes.
(For example, the a development process for shrink-wrapped software is an interesting
one, but building shrink-wrapped software is vastly different from building hard-real-time
avionics systems upon which lives depend.) Therefore, the efforts concentrated first on a
common metamodel (which unifies semantics) and second on a common notation (which
provides a human rendering of these semantics). The UML authors will not necessarily
standardize a process, although we will continue to promote a development process that is
use-case driven, architecture centric, and iterative and incremental.

4.1 PRIMARY ARTIFACTS OF THE UML

What are the primary artifacts of the UML? This can be answered from two different
perspectives: the UML definition itself and how it is used to produce project artifacts.

4.1.1 UML-Defining Artifacts
To aid the understanding of the artifacts that constitute the Unified Modeling Language
itself (the“inside” view), this document set consists of a UML Summary (which you are
now reading), UML Semantics, UML Notation Guide, and UML Process-Specific
Extensions document. Some context for each of these is described below. In addition to
these documents, books are planned that will focus on understandability, examples, and
common usage idioms.

4.1.1.1 UML Semantics
The UML Semantics document describes the precise model that underlies the UML,
presented both in prose aswell asin the UML notation itself. The UML partners began
with a precise metamodel, using the notation of the UML itself supplemented by English
text. The purpose of the metamodel was to provide a single, common, and definitive
statement of the syntax and semantics of the elements of the UML. The presence of this
metamodel has made it possible for its devel opers to agree on semantics, de-coupled from
the human-factors issues of how those semantics would best be rendered. Additionally,
the metamodel has made it possible for the team to explore ways to make the modeling
language much more simple by, in a sense, unifying the elements of the Unified Modeling
Language. (For example, commonality among the concepts of types, patterns, and use
cases was discovered.) The authors expect select individual s to express this metamodel
even more precisely by describing its semantics using formal techniques.

8 UML Summary



A metamodel is alanguage for specifying a model, in this case an object model.
Metamodel s are important because they can provide a single, common, and unambiguous
statement of the syntax and semantics of amodel. The “level” of metain amodel is
somewhat arbitrary, and the UML devel opers consciously chose a semantically rich level,
because that level is necessary to enable the semantically rich agreement necessary for
tool interchange and design of complex systems.

4.1.1.2 UML Notation Guide
The UML Notation Guide describes the UML notation and provides examples. The
graphical notation and textual syntax are the most visible part of the UML (the “outside”
view), used by humans and tools to model systems. These are representations of a user-
level model, which is semantically an instance of the UML metamodel. The standard
diagram types are listed in section 4.1.2, below.

4.1.1.3 UML Process Extensions
The UML Process Extensions document proposes certain process-specific values of the
UML extension mechanisms (i.e. stereotype, tagged values, and constraints), aswell as
their associated icons, if any.

4.1.2 Development Project Artifacts
The choice of what model projections one creates has a profound influence upon how a
problem is attacked and how a solution is shaped. Abstraction, the focus on relevant
details while ignoring others, is akey to learning and communicating. Because of this:

- Every complex system is best approached through a small set of nearly independent
views of amodel; No single view is sufficient.

- Every model may be expressed at different levels of fidelity.

- The best models are connected to redlity.

In terms of the views of amodel, the UML defines the following graphical diagrams:

- use case diagram
- classdiagram
- behavior diagrams
- state diagram
- activity diagram
- seguence diagram
- collaboration diagram
- implementation diagrams
- component diagram
- deployment diagram

UML Summary 9



10

These diagrams provide multiple perspectives of the system under analysis or
development. The underlying model integrates these perspectives so that a self-consistent
system can be analyzed and built. These diagrams, along with supporting documentation,
are the primary artifacts that a modeler sees, although the UML and supporting tools will
provide for a number of derivative views. These diagrams are further described in the
UML Notation Guide.

Notation and Semantics History

The UML is an evolution from Booch, OMT, OOSE, most other object-oriented methods,
and many other sources. These various sources incorporated many different elements
from many authors, including non-OO influences. The UML notation is a melding of
graphical syntax from various sources, with a number of symbols removed (because they
were confusing, superfluous, or little-used) and with afew new symbols added. The ideas
in the UML come from the community of ideas developed by many different peoplein
the object-oriented field. The UML developers did not invent most of these ideas; rather
thelir role was to select and integrate ideas from the best OO and computer-science
practices. The actual genealogy of the notation and underlying detailed semanticsis
complicated, so it is discussed here only to provide context, not to represent precise
history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are amelding of OMT, Booch, class diagrams of most other OO
methods. Process-specific extensions (e.g., stereotypes and their corresponding icons)
can be defined for various diagrams to support other modeling styles.

Statechart diagrams are substantially based on the statecharts of David Harel with minor
modifications. The Activity diagram, which shares much of the same underlying
semantics, is similar to the work flow diagrams devel oped by many sources including
many pre-O0 sources.

Sequence diagrams were found in avariety of OO methods under avariety of names
(interaction, message trace, and event trace) and date to pre-OO days. Collaboration
diagrams were adapted from Booch (object diagram), Fusion (object interaction graph),
and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

The implementation diagrams (component and deployment diagrams) are derived from
Booch’s module and process diagrams, but they are now component-centered, rather than
module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the
metamodel. User-defined icons can be associated with given stereotypes for tailoring the
UML to specific processes.

UML Summary



Each of these concepts has further predecessors and many other influences. We realize
that any brief list of influences isincomplete and we recognize that the UML isthe
product of along history of ideasin the computer science and software engineering area.

4.2 OUTSIDE THE SCOPE OF THE UML

The UML 1.0 definition intentionally does not address standards for tools and process,
since these represent fairly separate concerns. Standardizing alanguage is necessarily the
foundation for tools and process.

Tools

The Object Management Group’s RFP (OADTF RFP-1) was a key driver in motivating
the UML definition. The primary goal of the RFP was to enable tool interoperability.
However, tools and their interoperability are very dependent on a solid semantic and
notation definition, such asthe UML provides. Although the UML defines a semantic
metamodel, not atool metamodel, the two should be fairly close to each other, and tool
interchange can be defined consistently with the semantic and notation definitions.

Coincident with the UML submission to the OMG, the UML Partners have also
submitted a UML-compliant tool interface definition, using CDIF/EIA standards asits
bulk transfer encoding and syntax.

The UML documents do include some tips to tool vendors on implementation choices,
but do not address everything needed. For example, they don’t address topics like
diagram layout, coloring, user navigation, animation, or other desirable features.

Process

Many organizations will use the UML as a common language for its project artifacts, but
will use the same UML diagram types in the context of different processes. The UML is
intentionally process independent, and defining a standard process was not a goal of the
UML or OMG’s Request-for-Proposal.

The UML authors do recognize the importance of process. The presence of awell-
defined and well-managed process is a key discriminator between hyperproductive
projects and unsuccessful ones. The reliance upon heroic programming is not a
sustainable business practice. A process 1) provides guidance as to the order of ateam’s
activities, 2) specifies what artifacts should be developed, 3) directs the tasks of
individual developers and the team as awhole, and 4) offers criteria for monitoring and
measuring a project’ s products and activities.

Processes by their very nature must be tailored to the organization, culture, and problem
domain at hand. What works in one context (shrink-wrapped software development, for
example) would be a disaster in another (hard-real-time, human-rated systems, for
example). The selection of a particular process will vary greatly, depending on such
things like problem domain, implementation technology, and skills of the team.

UML Summary 11



Booch, OMT, OOSE, and many other methods have well-defined processes, and the

UML can support most methods. There has been some convergence on development
process practices, but there is not yet enough consensus for standardization. What will
likely result in the industry is general agreement on best practices and potentially the
embracing of a process framework, within which individual processes can be instantiated.
Although the UML does not mandate a process, its devel opers have recognized the value
of ause-case driven, architecture-centric, iterative, and incremental process, so were
careful to enable (but not require) this with the UML.

4.3 COMPARING UML TO MODELING LANGUAGES OF BOOCH, OMT,
OOSE, AND OTHER METHODS

12

It should be made clear that the Unified Modeling Language is not aradical departure
from Booch, OMT, or OOSE, but rather the legitimate successor to all three. This means
that if you are aBooch, OMT, or OOSE user today, your training, experience, and tools
will be preserved, because the Unified Modeling Language is a natural evolutionary step.
The UML will be equally easy to adopt for users of many other methods, but their authors
must decide for themselves whether to embrace the UML concepts and notation
underneath their methods.

The Unified Modeling Language is more expressive yet cleaner and more uniform than
Booch, OMT, OOSE, and other methods. This means that there is value in moving to the
Unified Modeling Language, because it will allow projects to model things they could not
have done before. Users of most other methods and modeling languages will gain value
by moving to the UML, since it removes the unnecessary differences in notation and
terminology that obscure the underlying similarities of most of these approaches.

With respect to other visual modeling languages, including entity-relationship modeling,
BPR flow charts, and state-driven languages, the UML should provide improved
expressiveness and holistic integrity.

Users of existing methods will experience slight changes in notation, but this should not
take much relearning and will bring a clarification of the underlying semantics. If the
unification goals have been achieved, UML will be an obvious choice when beginning
new projects, especialy as the availability of tools, books, and training becomes
widespread. Many visual modeling tools support existing notations, such as Booch,
OMT, OOSE, or others, as views of an underlying model; when these tools add support
for UML (as some aready have) users will enjoy the benefit of switching their current
models to the UML notation without loss of information.

Existing users of any OO method can expect afairly quick learning curve to achieve the
same expressiveness as they previous knew. One can quickly learn and use the basics
productively. More advanced techniques, such as the use of stereotypes and properties,
will require some study, since they enable very expressive and precise models, needed
only when the problem at hand requires them.

UML Summary



4.4 NEW FEATURES OF THE UML

The goals of the unification efforts were to keep it smple, to cast away elements of
existing Booch, OMT, and OOSE that didn’t work in practice, to add elements from other
methods that were more effective, and to invent new only when an existing solution was
not available. Because the UML authors were in effect designing alanguage (albeit a
graphical one), they had to strike a proper balance between minimalism (everything is
text and boxes) and over-engineering (having an icon for every conceivable modeling
element). To that end, they were very careful about adding new things, because they
didn’t want to make the UML unnecessarily complex. Along the way, however, some
things were found that were advantageous to add because they have proven useful in
practice in other modeling.

There are several new concepts that are included in UML, including:

- stereotypes

- responsibilities

- extensibility mechanisms: stereotypes, tagged values, and constraints

- threads and processes

- distribution and concurrency (e.g. for modeling ActiveX/DCOM and CORBA)
- patterns/collaborations

- activity diagrams (for business process reengineering)

- clear separation of type, class, and instance

- refinement (to handle relationships between levels of abstraction)

- interfaces and components

Many of these ideas were present in various individual methods and theories but UML
brings them together into a coherent whole. In addition to these major changes, there are
many other localized improvements to the Booch, OMT, and OOSE semantics and
notation.

5. ACKNOWLEDGMENTS

This section acknowledges the efforts of those who contributed significantly to defining
UML 1.0 and making it successful.

As previously mentioned, please send specific feedback on the UML via e-mail to
uml_feedback@rational.com.

UML Methodologists
- Grady Booch, egb@rational.com
- Ivar Jacobson, ivar@rational.com
- Jim Rumbaugh, rumbaugh@rational.com

UML Summary 13



14

UML 1.0 Core Team
- Digital Equipment
- Paul Patrick, patrick@send.enet.dec.com
- Jim Rye, rye@send.enet.dec.com
- Hewlett-Packard
- Martin Griss, griss@hpl.hp.com
- Reed Letsinger, letsinger@hpl.hp.com
- I-Logix
- Eran Gery, erang@ilogix.co.il
- Prof. David Harel, harel @wisdom.weizmann.ac.il
- ICON Computing
- Desmond D’ Souza, dsouza@iconcomp.com
- James Odell
- James Odell, 71051.1733@compuserve.com
- MCI Systemhouse
- Cris Kobryn, ckobryn@acm.org
- Joaquin Miller, miller@shl.com
- Microsoft
- Philip A. Bernstein, philbe@microsoft.com
- Rick Hargrove, rickha@microsoft.com
- Andy Moss, andymo@microsoft.com
- Oracle
- Guus Ramackers, gramacke@uk.oracle.com
- Rational Software
- Ed Eykholt, eykholt@rational.com
- Grant Larsen, gjl@rational.com
- Dave Tropeano, davet@rational.com
- Texas Instruments
- John Cheesman, j-cheesman@ti.com
- Bob Hodges, bhodges@ti.com
- Glenn Hollowell, glenn@ti.com
- Keith Short, keiths@ti.com
- Unisys
- Sridhar lyengar, Sridhar.lyengar@mv.unisys.com

Other Contributors and Supporters

We appreciate the contributions, influence, and support of the individuals listed below. In
avery few number of cases, individuals mentioned here have not formally endorsed the
UML, but are nonethel ess appreciated for their influence.

Hernan Astudillo, Dave Bernstein, Michael Blaha, Gary Cernosek, Michael Jesse
Chonoles, Magnus Christerson, Dai Clegg, Peter Coad, Derek Coleman, Steve
Cook, Ward Cunningham, Ragj Datta, Mike Devlin, Bruce Douglass, Staffan

UML Summary



Ehnebom, Maria Ericsson, Johannes Ernst, Don Firesmith, Martin Fowler, Eric
Gamma, Dipayan Gangopadhyay, Richard Helm, Michael Hirsch, Y ves Holvoet
Jon Hopkins, John Hsia, Ralph Johnson, GK Khalsa, Philippe Kruchten, Paul
Kyzivat, Martin Lang, Mary Loomis, Robert Martin, Bertrand Meyer, Mike
Meier, Randy Messer, Greg Meyers, Paul Moskowitz, Gunnar Overgaard, Jan
Pachl, Bill Premerlani, Jeff Price, Jerri Pries, Terry Quatrani, Rich Reitman,
Rudolf M. Riess, Kenny Rubin, Danny Sabbah, Ed Seidewitz, Gregson Siu, Jeff
Sutherland, Dan Tasker, Andy Trice, Dan Uhlar, John Vlissides, Paul Ward,
Rebecca Wirfs-Brock, Bryan Wood, Ed Y ourdon, and Steve Zeigler.

6. REFERENCES

[D’ Souza 19974 D. D’Souzaand A. Wills, “Input for the OMG Submission”,
http://www.iconcomp.com/catalysis

[D’ Souza 1997b] D. D’Souzaand A. Wills, “Catalysis: Component and Framework
based development” http://www.iconcomp.com/catalysis

[Harel 87] D. Hardl, “ Statecharts: A Visual Formalism for Complex Systems,”

Science of Computer Programming 8 (1987), 231-274.

[Harel 964 D. Harel and E. Gery, “Executable Object Modeling with
Statecharts,” Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE Press,
March, 1996, pp. 246-257.

[Harel 96b] D. Harel and A. Naamad, “The STATEMATE Semantics of
Statecharts,” ACM Trans. Soft. Eng. Method 5:4 (Oct. 1996).

UML Summary

15



