Extending SOAP to Adhere to Session-oriented Communication Principles

Mario C. Jeckle
DaimlerChrysler Forschungszentrum Ulm
mario.jeckle@daimlerchrysler.com
mario@jeckle.de
www.jeckle.de
Contents

• Definitions:
 • Context vs. Transaction
• Motivation:
 • Necessity and practical usage of context-aware communication
• Technical Background:
 • Existing Solutions and related work
 • W3C's SOAP v1.2
• The Challenge
• Solution:
 • SOAP's built-in extensibility mechanisms
 • Description Model
 • Execution model
• Deployment scenarios and practical examples
Basic Definitions

- **Transaction**

 Combined treatment of singular processing steps (like database write operations) for integrity's sake. (-> ACID principles)

- **Context (Session)**

 Stateful connection between two parties during which one or more communications take place.
Basic Definitions

- Transaction
- Atomicity
- Consistency
- Isolation
- Durability
- Context
- Distribution

(Explicitly taken into account)
Motivation

Necessity and practical usage of context-aware communication...

• Typical communication flows in a technical and/or business environment span multiple singular communications
 • correlation of singular communications has to be explicitly encoded into the data transmitted
 or has to be handled by the communicating application in a proprietary manner
• contexts are used as a mechanism for semantically embracing a number of communications
• Removing context-related information from the payload reduces amount of data to transfer and cleans up cluttered semantics
• Often real transactional behavior (i.e. the ACID principles) is not needed for various reasons

• Application scenarios for deploying session-oriented communication:
 • Shopping basket
 • Login-in, Log-out which are embracing a number of interactive data accesses
 • Partial delegation of incoming service requests
Technical Background

Existing solutions and related work:

- Transaction handling:
 - OASIS Business Transaction Protocol (BTP)
 Oriented on classical (distributed) transactional processing (i.e. 2PC).
 - Java Transaction Service (JTS),
 Specifies a Transaction Manager which conforms to the Java Transaction API.
 In essence: a Java Mapping of CORBA's Object Transaction Service
 - XML Transaction Authority Markup Language (XAML)
 ... no longer under development.
Technical Background

Existing solutions and related work:

- **Context handling:**
 - **HTTP/ 1.1**
 - keep alive just allows it to inform the requesting client about connection's termination.
 - **Cookies (IETF RFC 2109, 2964)**
 - Just small name value pairs which are transmitted solely over HTTP.
 - Optional part of HTTP.
 - **URL enrichment (IETF RFC 1945, 2616; URL Rewrite)**
 - Solely defined for HTTP.
 - Questionable from the standpoint of security.
 - Cannot be used within Web Services since the service endpoint (i.e. the URI) dynamically changes due to rewrite.
Technical Background

W3C's XML Protocol-Standard -- SOAP v1.2:

• Currently under standardization (which is in fact almost finished) by a W3C working group
• Based on the Simple Object Access Protocol proposed by Microsoft, IBM, Lotus, et al.
• Defines an extensible framework for processing XML encoded messages and remote procedure calls transported using protocols of the Internet stack.
• User extensible by the use of SOAP's header elements.
• SOAP nodes (Intermediaries) are full fledged SOAP processors which are allowed to process parts of the transported information along the path between the sender and the ultimate receiver.
• SOAP's most prominent ...
 • ... usage: XML encoded RPCs (SOAP part 2, chap. 4)
 • ... transport protocol: HTTP (SOAP, part 2, chap. 7)
Technical Background

W3C's XMLP/ SOAP Standard

```xml
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
  xmlns:env="http://www.w3.org/2001/09/soap-envelope"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:m="http://example.org/2001/06/quotes">
  <env:Header>
    <m:doSomething>42</m:doSomething>
  </env:Header>
  <env:Body>
    <m:GetLastTradePrice
      env:encodingStyle="http://www.w3.org/2001/12/soap-encoding"
      xmlns:m="http://example.org/2001/06/quotes">
      <m:Symbol>DCX</m:Symbol>
    </m:GetLastTradePrice>
    <m:GetLastTradePrice>
      <m:Symbol>DCX</m:Symbol>
    </m:GetLastTradePrice>
  </env:Body>
</env:Envelope>
```
Technical Background
W3C's XMLP/ SOAP Standard

- SOAP-Message
- SOAP-Header
- SOAP-Block
- SOAP-Body
Technical Background

W3C's XMLP/ SOAP Standard

• SOAP Header (SOAP v1.2, part 1, sect. 5.2)
 • ... are basically meta information to the SOAP message
 • ... are user definable
 • ... are located within a XML namespace which is separated form SOAP one's
 • ... could be processed by a SOAP node

• SOAP Node (SOAP v1.2, part 1, sect. 2.1)
 • ... are able to process SOAP messages along their message path,
 • ... may consume SOAP headers
 • ... could be explicitly addressed within a header using a URI
Challenge

Propagating context information needed within Web Services in a way, form or shape which is neutral w.r.t. programming languages as well as technical infrastructures and which additionally relies solely on the SOAP protocol

- Solution's characteristics to achieve:
 - Propagation of context information
 - => no transactionality
 - => Business Transaction Protocol, XML Transaction Authority Markup Language are discharged
 - Programming language independence
 - => Language centric approaches (e.g. Java Transactions) are discharged
 - Infrastructure independence:
 - => HTTP-based approaches (HTTP/1.1, Cookies, URL Enrichment) are discharged
 - (exclusively) based on SOAP
 - => Usage of SOAP's built-in extensibility mechanisms

- Usage of SOAP's header mechanism
to add session orientation to Web Services
Solution

Usage of SOAP's built-in Extensibility Mechanisms

• Description model
 • XML Information Set based model abstracted from concrete syntax
 • XML vocabulary organized in an own namespace
 • Session identification
 • Session expiration
 • Context issuer (optional)

• Execution model
 To be executed by every SOAP node
 (i.e. intermediaries along the message path as well as the ultimate receiver)
 • Session states and transitions
 • Negotiation mechanism (optional)
Solution

Usage of SOAP's built-in Extensibility Mechanisms -- Description Model
Solution
Usage of SOAP's built-in Extensibility Mechanisms -- Description Model

```xml
  xsi:schemaLocation="http://www.w3.org/2001/09/soap-envelope">
  <Header>
    <ctx:Context xmlns:ctx="http://www.example.com/soap-envelope/Context"
      soap:mustUnderstand="true"
      soap:role="http://www.w3.org/2001/12/soap-envelope/role/next"
      keepAlive="true">
      <ctx:ID>9db60798-2c74-46eb-968a-370bfc333c60</ctx:ID>
      <ctx:Expires>2002-08-01T16:00:00:00+01:00</ctx:Expires>
      <ctx:Issuer>http://www.ssgrr.it</ctx:Issuer>
    </ctx:Context>
  </Header>
  <Body>
    <Login xmlns:baz="http://www.ssgrr.it">
      <Username>JohnDoe</Username>
      <EncPassword>o7RSjFyiEKRf58j</EncPassword>
    </Login>
  </Body>
</Envelope>
```
Solution

Usage of SOAP’s built-in Extensibility Mechanisms -- Execution Model

- Issued
- TempIssued
- Rejected
- Fulfilled
- Not Understood
- Preempted
- Expired
- Kept Alive

Flow:
- Issued → TempIssued
- TempIssued → Rejected
- Issued → Fulfilled
- Issued → Not Understood
- Issued → Preempted
- Issued → Expired
- Issued → Kept Alive
- Issued ← Response
- TempIssued ← Issued
- Issued ← TempIssued
- Issued ← Rejected
- Issued ← Fulfilled
- Issued ← Not Understood
- Issued ← Preempted
- Issued ← Expired
- Issued ← Kept Alive

Actions:
- Error
- ε

M. Jeckle – Extending SOAP to Adhere to Session-oriented Communication Principles
Solution

Usage of SOAP's built-in Extensibility Mechanisms -- Execution Model

Initiation

Receiver-sided

Sender-sided

Load Behavior and Estimation

<table>
<thead>
<tr>
<th></th>
<th>static</th>
<th>dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TmpID</td>
<td>(TmpID, SenderID, expiration)</td>
<td>(UUID, duration)</td>
</tr>
<tr>
<td>SenderID</td>
<td>(UUID, expiration)</td>
<td>(UUID, duration)</td>
</tr>
<tr>
<td>UUID</td>
<td>(UUID, duration)</td>
<td>(UUID, duration)</td>
</tr>
</tbody>
</table>

TmpID: Temporary identification (sender unique)
SenderID: an unique identification of a sender
UUID: Universally Unique Identifier (globally unique)
Expiration: absolute position in a seven-dimensional space
Duration: a duration of time (specified as a point within a six-dimensional space)
Deployment Scenarios and Practical Examples

Message Correlation

- Basic idea: Correlating asynchronously sent messages at the sender as well as the receiver side
- Example: Stock quote inquiry

![Diagram showing message correlation between a client and server with messages GetLastTradePrice(DCX), GetLastTradePrice(VW), GetLastTradePriceResponse(54,29), and GetLastTradePriceResponse(50,21).]
Deployment Scenarios and Practical Examples

Message Correlation

- **Example:**
 Stock quote inquiry

- **Problem:**
 When asynchronous communication mechanisms are used, messages have to be correlated on the basis of contextual information which is not part of the message's informational payload.

```xml
<env:Envelope
  xmlns:env="http://www.w3.org/2001/09/soap-envelope"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <env:Body>
    <m:GetLastTradePrice
      env:encodingStyle="http://www.w3.org/2001/12/soap-encoding"
      xmlns:m="http://example.org/2001/06/quotes">
      <m:Symbol>DCX</m:Symbol>
    </m:GetLastTradePrice>
  </env:Body>
</env:Envelope>

<env:Envelope
  xmlns:env="http://www.w3.org/2001/09/soap-envelope"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <env:Body>
    <m:GetLastTradePriceResponse
      env:encodingStyle="http://www.w3.org/2001/12/soap-encoding"
      xmlns:m="http://example.org/2001/06/quotes">
      <m:Price>50,21</m:Price>
    </m:GetLastTradePriceResponse>
  </env:Body>
</env:Envelope>
```
Deployment Scenarios and Practical Examples

Message Correlation

- **Solution:**
 - Addition of session-related information to the sent message

```xml
<env:Envelope
  xmlns:env="http://www.w3.org/2001/09/soap-envelope"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <ctx:Context xmlns:ctx="http://www.example.com/SOAPContext">
    <ctx:ID>f2f7c5ec-5123-40dc-be64-2b9953e60201</ctx:ID>
    <ctx:Expires>2002-06-28T08:25:00:00Z</ctx:Expires>
    <ctx:Issuer>URN:pin:bs4321234</ctx:Issuer>
  </ctx:Context>

  <env:Body>
    <m:GetLastTradePrice
      env:encodingStyle="http://www.w3.org/2001/12/soap-encoding"
      xmlns:m="http://example.org/2001/06/quotes">
      <m:Symbol>DCX</m:Symbol>
    </m:GetLastTradePrice>
  </env:Body>
</env:Envelope>
```
Deployment Scenarios and Practical Examples

Message Correlation

• Solution:
 • Retain the context information within the response message

```xml
<env:Envelope
    xmlns:env="http://www.w3.org/2001/09/soap-envelope"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <ctx:Context xmlns:ctx="http://www.example.com/SOAPContext">
    <ctx:ID>f2f7c5ec-5123-40dc-be64-2b9953e60201</ctx:ID>
  </ctx:Context>
  <env:Body>
    <m:GetLastTradePriceResponse
        env:encodingStyle="http://www.w3.org/2001/12/soap-encoding"
        xmlns:m="http://example.org/2001/06/quotes">
      <m:Price>50,21</m:Price>
    </m:GetLastTradePriceResponse>
  </env:Body>
</env:Envelope>
```
Deployment Scenarios and Practical Examples

Message Correlation

- Putting it all together