
OMG Unified Modeling Language
Specification

Version 1.3, June 1999

y
h a
 of

users are

epresent

, non-
pecial
ecifica-
rmis-
rposes
sold or
his lim-
ination,

if and
cifica-
re was
 In the
 specifi-
Copyright © 1997, 1998, 1999 Object Management Group, Inc.
Copyright © 1997, 1998, 1999 Hewlett-Packard Company
Copyright © 1997, 1998, 1999 IBM Corporation
Copyright © 1997, 1998, 1999 ICON Computing
Copyright © 1997, 1998, 1999 i-Logix
Copyright © 1997, 1998, 1999 IntelliCorp
Copyright © 1997, 1998, 1999 Electronic Data Services Corporation
Copyright © 1997, 1998, 1999 Microsoft Corporation
Copyright © 1997, 1998, 1999 ObjecTime Limited
Copyright © 1997, 1998, 1999 Oracle Corporation
Copyright © 1997, 1998, 1999 Platinum Technology, Inc.
Copyright © 1997, 1998, 1999 Ptech Inc.
Copyright © 1997, 1998, 1999 Rational Software Corporation
Copyright © 1997, 1998, 1999 Reich Technologies
Copyright © 1997, 1998, 1999 Softeam
Copyright © 1997, 1998, 1999 Sterling Software
Copyright © 1997, 1998, 1999 Taskon A/S
Copyright © 1997, 1998, 1999 Unisys Corporation

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whic
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective
responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group, Inc. specification. This document does not r
a commitment to implement any portion of this specification in any companies' products.

GENERAL USE RESTRICTIONS

The owners of the copyright in the UML specifications version 1.3 hereby grant you a fully-paid up, non-exclusive
transferable, perpetual, worldwide license (without the right to sublicense), to create and distribute software and s
purpose specifications which are based upon the UML specifications, and to use, copy, and distribute the UML sp
tions as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this pe
sion notice appear on any copies of the UML specifications; (2) the use of the specifications is for informational pu
and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise re
transferred for commercial purposes; and (3) no modifications are made to the UML specifications themselves. T
ited permission automatically terminates without notice if you breach any of these terms or conditions. Upon term
you will destroy immediately any copies of the specifications in your possession or control.

Software developed under the terms of this license may claim compliance or conformance with UML version 1.3
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the spe
tions. Software developed only partially matching the applicable compliance points may claim only that the softwa
based on the UML specifications, but may not claim compliance or conformance with any particular UML version.
event that testing suites are implemented by Object Management Group, Inc., software developed using the UML

 the

s regu-

r-
ssential

ragraph
graph
cified in
 Federal
ration,

Framing-

 readers
 at
cations may claim compliance or conformance with the specifications only if the software satisfactorily completes
testing suites.

Any unauthorized use of the UML specifications may violate copyright laws, trademark laws, and communication
lations and statutes.

DISCLAIMER OF WARRANTY

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE UML SPECIFICA-
TIONS ARE PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE SPECIFICATIONS ARE
PROVIDED FREE OF CHARGE OR AT A NOMINAL COST, AND ACCORDINGLY ARE PROVIDED ON AN "AS
IS" BASIS, WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO
EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR INCI-
DENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR
USE OF THIS MATERIAL, EVEN IF ADVISED OF SUCH DAMAGES. The entire risk as to the quality and perfo
mance of software developed using the specifications is borne by you. This disclaimer of warranty constitutes an e
part of this Agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government subcontractor is subject to the restrictions set forth in subpa
(c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subpara
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as spe
48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Acquisition Regulations and its successors, as applicable. The specification owners are Rational Software Corpo
18880 Homestead Road, Cupertino, CA 95014, and Object Management Group, Inc., 492 Old Connecticut Path,
ham, MA 01701.

TRADEMARKS

OMG OBJECT MANAGEMENT GROUP, CORBA, CORBA ACADEMY, CORBA ACADEMY & DESIGN, THE
INFORMATION BROKERAGE, OBJECT REQUEST BROKER, OMG IDL, CORBAFACILITIES,
CORBASERVICES, CORBANET, CORBAMED, CORBADOMAINS, GIOP, IIOP, OMA, CORBA THE GEEK,
UNIFIED MODELING LANGUAGE, UML, and UML CUBE LOGO are registered trademarks or trademarks of the
Object Management Group, Inc.

Rational Software is a trademark of Rational Software Corporation.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.

Table of Contents
v

xi
xi

xii

xii

xiv

xvii

xix

-1
3

3

4

5

7

11

2-1

3

4

8

13
Table of Contents .

Preface .
0.1 About the Unified Modeling Language (UML)

0.2 About the Object Management Group (OMG)

0.3 About This Document .

0.4 Compliance to the UML. .

0.5 Acknowledgements .

0.6 References .

1. UML Summary . 1
1.1 Overview .

1.2 Primary Artifacts of the UML .

1.3 Motivation to Define the UML. .

1.4 Goals of the UML .

1.5 Scope of the UML .

1.6 UML - Past, Present, and Future .

2. UML Semantics .

Part 1 - Background 3

2.1 Introduction .

2.2 Language Architecture .

2.3 Language Formalism .

Part 2 - Foundation 13
2.4 Foundation Package .
UML V1.3 June 1999 v

 Table of Contents

13

65

75

83

83

103

117

129

159

171

-1

5

7

8

8

8

9

10

11

12

12

14

15

17

19

24

27

29
2.5 Core .

2.6 Extension Mechanisms .

2.7 Data Types .

Part 3 - Behavioral Elements 83
2.8 Behavioral Elements Package .

2.9 Common Behavior .

2.10 Collaborations .

2.11 Use Cases .

2.12 State Machines .

2.13 Activity Graphs .

Part 4 - General Mechanisms 171
2.14 Model Management .

Index 185

3. UML Notation Guide . 3

Part 1 - Background 5
3.1 Introduction .

Part 2 - Diagram Elements 7
3.2 Graphs and Their Contents. .

3.3 Drawing Paths .

3.4 Invisible Hyperlinks and the Role of Tools

3.5 Background Information .

3.6 String .

3.7 Name .

3.8 Label .

3.9 Keywords .

3.10 Expression .

3.11 Note .

3.12 Type-Instance Correspondence .

Part 3 - Model Management 17
3.13 Package .

3.14 Subsystem .

3.15 Model .

Part 4 - General Extension Mechanisms 27

3.16 Constraint and Comment .

3.17 Element Properties .
vi UML V1.3 June 1999

 Table of Contents

30

33

34

34

34

36

37

40

42

46

48

49

51

53

53

54

54

55

55

56

58

60

61

61

65

68

70

71

73

74

78

79

83

86

87
3.18 Stereotypes .

Part 5 - Static Structure Diagrams 33
3.19 Class Diagram .

3.20 Object Diagram .

3.21 Classifier .

3.22 Class. .

3.23 Name Compartment .

3.24 List Compartment .

3.25 Attribute .

3.26 Operation .

3.27 Type vs. Implementation Class .

3.28 Interfaces .

3.29 Parameterized Class (Template) .

3.30 Bound Element. .

3.31 Utility .

3.32 Metaclass .

3.33 Enumeration .

3.34 Stereotype .

3.35 Powertype .

3.36 Class Pathnames. .

3.37 Accessing or Importing a Package

3.38 Object .

3.39 Composite Object. .

3.40 Association. .

3.41 Binary Association .

3.42 Association End .

3.43 Multiplicity .

3.44 Qualifier .

3.45 Association Class .

3.46 N-ary Association .

3.47 Composition .

3.48 Link .

3.49 Generalization .

3.50 Dependency .

3.51 Derived Element .

3.52 InstanceOf .
UML V1.3 June 1999 vii

 Table of Contents

89

91

92

92

94

97

98

03

104

105

107

109

111

114

116

117

118

121

122

124

128

131

132

135

137

140

1

142

145

147

149
Part 6 - Use Case Diagrams 89
3.53 Use Case Diagram .

3.54 Use Case .

3.55 Actor .

3.56 Use Case Relationships .

3.57 Actor Relationships .

Part 7 - Sequence Diagrams 97
3.58 Kinds of Interaction Diagrams .

3.59 Sequence Diagram .

3.60 Object Lifeline . 1

3.61 Activation. .

3.62 Message and Stimulus .

3.63 Transition Times .

Part 8 - Collaboration Diagrams 109
3.64 Collaboration .

3.65 Collaboration Diagram. .

3.66 Pattern Structure. .

3.67 Collaboration Contents. .

3.68 Interactions. .

3.69 Collaboration Roles .

3.70 Multiobject .

3.71 Active object .

3.72 Message and Stimulus .

3.73 Creation/Destruction Markers .

Part 9 - Statechart Diagrams 131
3.74 Statechart Diagram. .

3.75 State .

3.76 Composite States .

3.77 Events. .

3.78 Simple Transitions .

3.79 Transitions to and from Concurrent States 14

3.80 Transitions to and from Composite States

3.81 Factored Transition Paths .

3.82 Submachine States .

3.83 Synch States .

Part 10 - Activity Diagrams 151
viii UML V1.3 June 1999

 Table of Contents

51

153

154

154

155

57

159

162

162

163

165

166

168

170

-1

3
3

3

3

5

8

9

9

10

13

3

4

6

7

1

3

3.84 Activity Diagram . 1

3.85 Action state .

3.86 Subactivity state .

3.87 Decisions .

3.88 Swimlanes .

3.89 Action-Object Flow Relationships 1

3.90 Control Icons .

3.91 Synch States .

3.92 Dynamic Invocation .

3.93 Conditional Forks. .

Part 11 - Implementation Diagrams 165
3.94 Component Diagram .

3.95 Deployment Diagram .

3.96 Node. .

3.97 Component .

Index 173

4. UML Standard Profiles . 4

Part 1 - UML Profile for Software Development Processes
4.1 Overview .

4.2 Introduction .

4.3 Summary of Profile .

4.4 Stereotypes and Notation .

4.5 Well-Formedness Rules .

Part 2 - UML Profile for Business Modeling 9

4.6 Introduction .

4.7 Summary of Profile .

4.8 Stereotypes and Notation .

4.9 Well-Formedness Rules .

5. UML CORBAfacility Interface Definition 5-1

5.1 Overview .

5.2 Mapping of UML Semantics to Facility Interfaces

5.3 Facility Implementation Requirements

5.4 IDL Modules .

6. UML XMI DTD Specification. 6-

6.1 Overview .
UML V1.3 June 1999 ix

 Table of Contents

3

3

1
3

4

5

7

11

21

26

27

47

-1

-1
6.2 Physical Metamodel .

6.3 UML XMI DTD . 2

7. Object Constraint Language Specification 7-
7.1 Overview .

7.2 Introduction .

7.3 Connection with the UML Metamodel.

7.4 Basic Values and Types .

7.5 Objects and Properties .

7.6 Collection Operations. .

7.7 The Standard OCL Package .

7.8 Predefined OCL Types .

7.9 Grammar .

A. UML Standard Elements . A

B. OMG Modeling Glossary . B
x UML V1.3 June 1999

Preface
ysis

ly
e
eling

ct

eets

sent
e

sal of

0.1 About the Unified Modeling Language (UML)

The Unified Modeling Language (UML) provides system architects working on object anal
and design with one consistent language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for business modeling.

This specification represents the convergence of best practices in the object-technology
industry. UML is the proper successor to the object modeling languages of three previous
leading object-oriented methods (Booch, OMT, and OOSE). The UML is the union of thes
modeling languages and more, since it includes additional expressiveness to handle mod
problems that these methods did not fully address.

One of the primary goals of UML is to advance the state of the industry by enabling obje
visual modeling tool interoperability. However, in order to enable meaningful exchange of
model information between tools, agreement on semantics and notation is required. UML m
the following requirements:

• Formal definition of a common object analysis and design (OA&D) metamodel to repre
the semantics of OA&D models, which include static models, behavioral models, usag
models, and architectural models.

• IDL specifications for mechanisms for model interchange between OA&D tools. This
document includes a set of IDL interfaces that support dynamic construction and traver
a user model.

• A human-readable notation for representing OA&D models. This document defines the
UML notation, an elegant graphic syntax for consistently expressing the UML’s rich
semantics. Notation is an essential part of OA&D modeling and the UML.
UML V1.3 June 1999 xi

 Preface

 over
nded
are

 and

ased
s will
rdware

 by
ual

stry
s and

e
g

’s

he
ent is
h it
e

s that
0.2 About the Object Management Group (OMG)

The Object Management Group, Inc. (OMG) is an international organization supported by
800 members, including information system vendors, software developers and users. Fou
in 1989, the OMG promotes the theory and practice of object-oriented technology in softw
development. The organization's charter includes the establishment of industry guidelines
object management specifications to provide a common framework for application
development. Primary goals are the reusability, portability, and interoperability of object-b
software in distributed, heterogeneous environments. Conformance to these specification
make it possible to develop a heterogeneous applications environment across all major ha
platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
establishing the Object Management Architecture (OMA). The OMA provides the concept
infrastructure upon which all OMG specifications are based.

Contact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path

Framingham, MA 01701

USA

Tel: +1-508-820 4300

Fax: +1-508-820 4303

pubs@omg.org

http://www.omg.org

OMG’s adoption of the UML specification reduces the degree of confusion within the indu
surrounding modeling languages. It settles unproductive arguments about method notation
model interchange mechanisms and allows the industry to focus on higher leverage, mor
productive activities. Additionally, it enables semantic interchange between visual modelin
tools.

0.3 About This Document

This document is intended primarily as a precise and self-consistent definition of the UML
semantics and notation. The primary audience of this document consists of the Object
Management Group, standards organizations, book authors, trainers, and tool builders. T
authors assume familiarity with object-oriented analysis and design methods. The docum
not written as an introductory text on building object models for complex systems, althoug
could be used in conjunction with other materials or instruction. The document will becom
more approachable to a broader audience as additional books, training courses, and tool
apply to UML become available.

The Unified Modeling Language specification defines compliance to the UML, covers the
architectural alignment with other technologies, and is comprised of the following topics:
xii UML V1.3 June 1999

0.3 About This Document

d

e
el

s
ld be

or

e
pts

 of

ill
UML Summary (Chapter 1) - provides an introduction to the UML, discussing motivation an
history.

UML Semantics (Chapter 2) - defines the semantics of the Unified Modeling Language. Th
UML is layered architecturally and organized by packages. Within each package, the mod
elements are defined in the following terms:

UML Notation Guide (Chapter 3) - specifies the graphic syntax for expressing the semantic
described by the UML metamodel. Consequently, the UML Notation Guide’s chapter shou
read in conjunction with the UML Semantics chapter.

UML Standard Profiles (Chapter 4) - defines the UML Profile for Software Development
Processes and the UML Profile for Business Modeling.

UML CORBAfacility Interface Definition (Chapter 5) - uses CORBA IDL to specify a
repository that enables the creation, storage and manipulation of UML models.

UML XMI DTD Specification (Chapter 6) - uses XML DTD to define a physical mechanism f
interchanging UML models that conform to the UML metamodel.

Object Constraint Language Specification (Chapter 7) - defines the Object Constraint Languag
(OCL) syntax, semantics, and grammar. All OCL features are described in terms of conce
defined in the UML Semantics.

In addition, there is appendix of Standard Elements that defines standard stereotypes,
constraints and tagged values for UML, and a glossary of terms.

0.3.1 Dependencies Between Chapters

UML Semantics (Chapter 2) can stand on its own, relative to the others, with the exception
the OCL Specification. The semantics depends upon OCL for the specification of its well-
formedness rules.

The UML Notation Guide, UML CORBAfacility Interface Definition and UML XMI DTD
Specification all depend on the UML Semantics. Specifying these as separate standards w
permit their evolution in the most flexible way, even though they are not completely
independent.

The specifications in the UML Standard Profiles depend on both the notation and semantics
chapters.

1. Abstract syntax UML class diagrams are used to present the UML
metamodel, its concepts (metaclasses), relationships, and
constraints. Definitions of the concepts are included.

2. Well-formedness rules The rules and constraints on valid models are defined. The
rules are expressed in English prose and in a precise Object
Constraint Language (OCL). OCL is a specification
language that uses logic for specifying invariant properties
of systems comprising sets and relationships between sets.

3. Semantics The semantics of model usage are described in English
prose.
UML V1.3 June 1999 xiii

 Preface

se
ithout

he
lso
 the

till
ely
 not

ter of
0.4 Compliance to the UML

The UML and corresponding facility interface definition are comprehensive. However, the
specifications are packaged so that subsets of the UML and facility can be implemented w
breaking the integrity of the language. The UML Semantics is packaged as follows:

Figure 0-1 UML Class Diagram Showing Package Structure

This packaging shows the semantic dependencies between the UML model elements in t
different packages. The IDL in the facility is packaged almost identically. The notation is a
“packaged” along the lines of diagram type. Compliance of the UML is thus defined along
lines of semantics, notation, and IDL.

Even if the compliance points are decomposed into more fundamental units, vendors
implementing UML may choose not to fully implement this packaging of definitions, while s
faithfully implementing some of the UML definitions. However, vendors who want to precis
declare their compliance to UML should refer to the precise language defined herein, and
loosely say they are “UML compliant.”

0.4.1 Compliance to the UML Semantics

The basic units of compliance are the packages defined in the UML metamodel. The full
metamodel includes the corresponding semantic rigor defined in the UML Semantics chap
this specification.

F oun d a tio n

B eh a vio ra l E le m e nts

M o d e l M a n a g e m e nt

U s e C a s e s S ta te M a c h ine sC o lla b o r at io n s

C o m m o n B e ha vio r

A c t iv i ty G ra p hs

C o re

D a ta T yp e s

E xte n s io n
M e c ha ni s m s
xiv UML V1.3 June 1999

0.4 Compliance to the UML

e table

tation
antee

or
ypes,
nts and
ust be
 is
nflict

t the

int

.

l test
 used

ts of

The class diagram illustrates the package dependencies, which are also summarized in th
below.

Complying with a package requires complying with the prerequisite package.

The semantics are defined in an implementation language-independent way. An implemen
of the semantics, without consistent interface and implementation choices, does not guar
tool interoperability. See the OA&D CORBAfacility Interface Definition (Chapter 5).

In addition to the above packages, compliance to a given metamodel package must load
know about the predefined UML standard elements (i.e., values for all predefined stereot
tags, and constraints). These are defined throughout the semantics and notation docume
summarized in the UML Standard Elements appendix. The predefined constraint values m
enforced consistent with their definitions. Having tools know about the standard elements
necessary for the full language and to avoid the definition of user-defined elements that co
with the standard UML elements. Compliance to the UML Standard Elements and UML
Standard Profiles is distinct from the UML Semantics, so not all tools need to know abou
UML Standard Elements and UML Standard Profiles.

For any implementation of UML, it is optional that the tool implements the Object Constra
Language. A vendor conforming to OCL support must support the following:

• Validate and store syntactically correct OCL expressions as values for UML data types

• Be able to perform a full type check on the object constraint expression. This check wil
whether all features used in the expression are actually defined in the UML model and
correctly.

All tools conforming to the UML semantics are expected to conform to the following aspec
the semantics:

• abstract syntax (i.e., the concepts, valid relationships, and constraints expressed in the
corresponding class diagrams),

• well-formedness rules, and

• semantics of model usage.

Table 0-1 Metamodel Packages

Package Prerequisite Packages

DataTypes

Core DataTypes, Extension Mechanisms

Extension Mechanisms Core, DataTypes

Common Behavior Foundation

State Machines Common Behavior, Foundation

Activity Graphs State Machines, Foundation

Collaborations Common Behavior, Foundation

Use Cases Common Behavior, Foundation

Model Management Foundation
UML V1.3 June 1999 xv

 Preface

ess

rtain

team
ful

ss,
.

ay

 full

nding

c
n

 the

ic
n
as

isted
However, vendors are expected to apply some discretion on how strictly the well-formedn
rules are enforced. Tools should be able to report on well-formedness violations, but not
necessarily force all models to be well formed. Incomplete models are common during ce
phases of the development lifecycle, so they should be permitted. See the OA&D CORBAfacility
Interface Definition (Chapter 5 of this specification) for its treatment of well-formedness
exception handling, as an example of a technique to report well-formedness violations.

0.4.2 Compliance to the UML Notation

The UML notation is an essential element of the UML to enable communication between
members. Compliance to the notation is optional, but the semantics are not very meaning
without a consistent way of expressing them.

Notation compliance is defined along the lines of the UML Diagrams types: use case, cla
statechart, activity graph, sequence, collaboration, component, and deployment diagrams

If the notation is implemented, a tool must enforce the underlying semantics and maintain
consistency between diagrams if the diagrams share the same underlying model. By this
definition, a simple "drawing tool" cannot be compliant to the UML notation.

There are many optional notation adornments. For example, a richly adorned class icon m
include an embedded stereotype icon, a list of properties (tagged values and metamodel
attributes), constraint expressions, attributes with visibilities indicated, and operations with
signatures. Complying with class diagram support implies the ability to support all of the
associated adornments.

Compliance to the notation in the UML Standard Profiles is described separately.

0.4.3 Compliance to the UML Standard Profiles

Vendors should specify whether they support each of the UML Standard Profiles or not.
Compliance to a profile means knowledge and enforcement of the semantics and correspo
notation.

0.4.4 Compliance to the UML CORBAfacility Interface Definition

The IDL modules defined in the UML CORBAfacility parallel the packages in the semanti
metamodel. The exception to this is that DataTypes and Extension Mechanisms have bee
merged in with the core for the facility. Except for this, a CORBAfacility implementing the
interface modules has the same compliance point options as described in “Compliance to
UML Semantics” listed above.

0.4.5 Compliance to the UML XMI DTD Specification

The DTD defined in the UML XMI DTD Specification parallel the packages in the semant
metamodel. The exception to this is that DataTypes and Extension Mechanisms have bee
merged in with the core for the facility. Except for this, an implementation of the XMI DTD h
the same compliance point options as described in “Compliance to the UML Semantics” l
above.
xvi UML V1.3 June 1999

0.5 Acknowledgements

d
ho
0.4.6 Summary of Compliance Points

0.5 Acknowledgements

The UML was crafted through the dedicated efforts of individuals and companies who fin
UML strategic to their future. This section acknowledges the efforts of these individuals w
contributed to defining UML.

Table 0-2 Summary of Compliance Points

Compliance Point Valid Options

Core no/incomplete, complete, complete including IDL and/or
XMI DTD

Common Behavior no/incomplete, complete, complete including IDL and/or
XMI DTD

State Machines no/incomplete, complete, complete including IDL and/or
XMI DTD

Activity Graphs no/incomplete, complete, complete including IDL and/or
XMI DTD

Collaboration no/incomplete, complete, complete including IDL and/or
XMI DTD

Use Cases no/incomplete, complete, complete including IDL and/or
XMI DTD

Model Management no/incomplete, complete, complete including IDL and/or
XMI DTD

UML Profiles no/incomplete, complete, complete including IDL and/or
XMI DTD

Use Case diagram no/incomplete, complete

Class diagram no/incomplete, complete

Statechart diagram no/incomplete, complete

Activity Graph diagram no/incomplete, complete

Sequence diagram no/incomplete, complete

Collaboration diagram no/incomplete, complete

Component diagram no/incomplete, complete

Deployment diagram no/incomplete, complete

UML Profile for Software
Development Processes

no/incomplete, complete

UML Profile for Business
Modeling

no/incomplete, complete

OCL no/incomplete, complete
UML V1.3 June 1999 xvii

 Preface

l or

y of
r the
ts

y
UML Core Team

The following persons were members of the core development team for the UML proposa
served on the UML Revision Task Force:

Data Access Corporation: Tom Digre

Electronic Data Systems Corporation: Cris Kobryn, Joaquin Miller

Enea Data: Karin Palmkvist

Hewlett-Packard Company: Martin Griss

IBM Corporation: Steve Brodsky, Steve Cook, Jos Warmer

I-Logix: Eran Gery, David Harel

ICON Computing: Desmond D’Souza

IntelliCorp and James Martin & Co.: Conrad Bock, James Odell

OAO Technology Solutions: Ed Seidewitz

ObjecTime Limited: John Hogg, Bran Selic

Oracle Corporation: Guus Ramackers

PLATINUM Technology Inc.: Dilhar DeSilva

Rational Software: Grady Booch, Ed Eykholt, Ivar Jacobson, Gunnar Overgaard, Jim
Rumbaugh

SAP: Oliver Wiegert

SOFTEAM: Philippe Desfray

Sterling Software: John Cheesman, Keith Short

Taskon: Trygve Reenskaug

Unisys Corporation: Sridhar Iyengar, GK Khalsa

UML 1.1 Semantics Task Force

During the final submission phase, a team was formed to focus on improving the formalit
the UML 1.0 semantics, as well as incorporating additional ideas from the partners. Unde
leadership of Cris Kobryn, this team was very instrumental in reconciling diverse viewpoin
into a consistent set of semantics, as expressed in the revised UML Semantics. Other members
of this team were Dilhar DeSilva, Martin Griss, Sridhar Iyengar, Eran Gery, James Odell,
Gunnar Overgaard, Karin Palmkvist, Guus Ramackers, Bran Selic, and Jos Warmer. Grad
Booch, Ivar Jacobson, and Jim Rumbaugh also provided their expertise to the team.
xviii UML V1.3 June 1999

0.6 References

 the

sal.
 This
lts
l

.

ael
,
tta,
nes
,

lph
nt
e
ol,

an,
om

ar,
UML Revision Task Force

After the adoption of the UML 1.1 proposal by the OMG membership in November, 1997,
OMG chartered a revision task force (RTF) to deal with bugs, inconsistencies, and other
problems that could be handled without greatly expanding the scope of the original propo
The RTF accepted public comments submitted to the OMG after adoption of the proposal.
document containing UML version 1.3 is the result of the work of the UML RTF. The resu
have been issued in several preliminary versions with minor changes expected in the fina
version. If you have a preliminary version of the specification, you can obtain an updated
version from the OMG web site at www.omg.org.

Contributors and Supporters

We also acknowledge the contributions, influence, and support of the following individuals

Jim Amsden, Hernan Astudillo, Colin Atkinson, Dave Bernstein, Philip A. Bernstein, Mich
Blaha, Mike Bradley, Ray Buhr, Gary Cernosek, James Cerrato, Michael Jesse Chonoles
Magnus Christerson, Dai Clegg, Peter Coad, Derek Coleman, Ward Cunningham, Raj Da
Mike Devlin, Philippe Desfray, Bruce Douglass, Staffan Ehnebom, Maria Ericsson, Johan
Ernst, Don Firesmith, Martin Fowler, Adam Frankl, Eric Gamma, Dipayan Gangopadhyay
Garth Gullekson, Rick Hargrove, Tim Harrison, Richard Helm, Brian Henderson-Sellers,
Michael Hirsch, Bob Hodges, Glenn Hollowell, Yves Holvoet, Jon Hopkins, John Hsia, Ra
Johnson, Stuart Kent, Anneke Kleppe, Philippe Kruchten, Paul Kyzivat, Martin Lang, Gra
Larsen, Reed Letsinger, Mary Loomis, Jeff MacKay, Bev Macmaster, Robert Martin, Terri
McDaniel, Jim McGee, Bertrand Meyer, Mike Meier, Randy Messer, Greg Meyers, Fred M
Luis Montero, Paul Moskowitz, Andy Moss, Jan Pachl, Paul Patrick, Woody Pidcock, Bill
Premerlani, Jeff Price, Jerri Pries, Terry Quatrani, Mats Rahm, George Reich, Rich Reitm
Rudolf M. Riess, Erick Rivas, Kenny Rubin, Bernhard Rumpe, Jim Rye, Danny Sabbah, T
Schultz, Gregson Siu, Jeff Sutherland, Dan Tasker, Dave Tropeano, Andy Trice, Dan Uhl
John Vlissides, Larry Wall, Paul Ward, Oliver Wiegert, Alan Wills, Rebecca Wirfs-Brock,
Bryan Wood, Ed Yourdon, and Steve Zeigler.

0.6 References

[Bock/Odell 94] C. Bock and J. Odell, “A Foundation For Composition,” Journal of
Object-Oriented Programming, October 1994.

[Booch et al. 99] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified
Modeling Language User Guide, Addison Wesley, 1999.

[Cook 94] S. Cook and J. Daniels, Designing Object Systems: Object-oriented
Modelling with Syntropy, Prentice-Hall Object-Oriented Series, 1994.

[D’Souza 99] D. D’Souza and A. Wills, Objects, Components and Frameworks with
UML: The Catalysis Approach, Addison-Wesley, 1999.

[Fowler 97] M. Fowler with K. Scott, UML Distilled: Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.

[Griss 96] M. Griss, “Domain Engineering And Variability In The Reuse-Driven
Software Engineering Business,” Object Magazine. December 1996.
UML V1.3 June 1999 xix

 Preface

[Harel 87] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming 8, (1987), pp. 231-274.

[Harel 96a] D. Harel and E. Gery, “Executable Object Modeling with
Statecharts,” Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE Press,
March, 1996, pp. 246-257.

[Harel 96b] D. Harel and A. Naamad, “The STATEMATE Semantics of
Statecharts,” ACM Trans. Soft. Eng. Method 5:4, October 1996.

[Jacobson et al. 99] Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified
Software Development Process, Addison Wesley, 1999.

[Malan 96] R. Malan, D. Coleman, R. Letsinger et al, “The Next Generation of
Fusion,” Fusion Newsletter, October 1996.

[Martin/Odell 95] J. Martin and J. Odell, Object-Oriented Methods, A Foundation,
Prentice Hall, 1995

[Ramackers 95] Ramackers, G. and Clegg, D., “Object Business Modelling,
requirements and approach” in Sutherland, J. and Patel, D. (eds.),
Proceedings of the OOPSLA95 Workshop on Business Object Design
and Implementation, Springer Verlag, publication pending.

[Ramackers 96] Ramackers, G. and Clegg, D., “Extended Use Cases and Business
Objects for BPR,” ObjectWorld UK ‘96, London, June 18-21, 1996.

[Rumbaugh et al. 99] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified
Modeling Language Reference Manual, Addison Wesley, 1999.

[Selic et al. 94] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented
Modeling, John Wiley & Sons, 1994.

[Warmer et al. 99] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML, Addison-Wesley, 1999.

[UML Web Sites] www.omg.org
www.rational.com/uml
uml.shl.com
xx UML V1.3 June 1999

UML Summary 1

The UML Summary provides an introduction to the UML, discussing its motivation
and history.

Contents

1.1 Overview 1-3
1.2 Primary Artifacts of the UML 1-3
1.3 Motivation to Define the UML 1-4
1.4 Goals of the UML 1-5
1.5 Scope of the UML 1-7
1.6 UML - Past, Present, and Future 1-11
UML V1.3 June 1999 1-1

1 UML Summary
1-2 UML V1.3 June 1999

1.1 Overview

ng,
 other
 that

elf,
ML

 a
on
 this:

ws of
1UML Summary

1.1 Overview

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructi
and documenting the artifacts of software systems, as well as for business modeling and
non-software systems. The UML represents a collection of the best engineering practices
have proven successful in the modeling of large and complex systems.

1.2 Primary Artifacts of the UML

What are the primary artifacts of the UML? This can be answered from two different
perspectives: the UML definition itself and how it is used to produce project artifacts.

1.2.1 UML-defining Artifacts

To aid the understanding of the artifacts that constitute the Unified Modeling Language its
this document consists of chapters describing UML Semantics, UML Notation Guide, and U
Standard Profiles.

1.2.2 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon how
problem is attacked and how a corresponding solution is shaped. Abstraction, the focus
relevant details while ignoring others, is a key to learning and communicating. Because of

• Every complex system is best approached through a small set of nearly independent vie
a model. No single view is sufficient.

• Every model may be expressed at different levels of fidelity.

• The best models are connected to reality.

 In terms of the views of a model, the UML defines the following graphical diagrams:

• use case diagram

• class diagram

• behavior diagrams:

• statechart diagram

• activity diagram

• interaction diagrams:

• sequence diagram

• collaboration diagram

• implementation diagrams:

• component diagram

• deployment diagram
UML V1.3 June 1999 1-3

1 UML Summary

onical

nt.
be
ry
ber
pter

mply
anly

also

aused

tial for
dels of
e
re are

l. The
ng

ality
sual
xity of
e
Although other names are sometimes given to these diagrams, this list constitutes the can
diagram names.

These diagrams provide multiple perspectives of the system under analysis or developme
The underlying model integrates these perspectives so that a self-consistent system can
analyzed and built. These diagrams, along with supporting documentation, are the prima
artifacts that a modeler sees, although the UML and supporting tools will provide for a num
of derivative views. These diagrams are further described in the UML Notation Guide (Cha
3 of this specification).

A frequently asked question has been: Why doesn’t UML support data-flow diagrams? Si
put, data-flow and other diagram types that were not included in the UML do not fit as cle
into a consistent object-oriented paradigm. Activity diagrams and collaboration diagrams
accomplish much of what people want from DFDs, and then some. Activity diagrams are
useful for modeling workflow.

1.3 Motivation to Define the UML

This section describes several factors motivating the UML and includes why modeling is
essential. It highlights a few key trends in the software industry and describes the issues c
by divergence of modeling approaches.

1.3.1 Why We Model

Developing a model for an industrial-strength software system prior to its construction or
renovation is as essential as having a blueprint for large building. Good models are essen
communication among project teams and to assure architectural soundness. We build mo
complex systems because we cannot comprehend any such system in its entirety. As th
complexity of systems increase, so does the importance of good modeling techniques. The
many additional factors of a project’s success, but having a rigorous modeling language
standard is one essential factor. A modeling language must include:

• Model elements — fundamental modeling concepts and semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become essentia
UML is a well-defined and widely accepted response to that need. It is the visual modeli
language of choice for building object-oriented and component-based systems.

1.3.2 Industry Trends in Software

As the strategic value of software increases for many companies, the industry looks for
techniques to automate the production of software. We look for techniques to improve qu
and reduce cost and time-to-market. These techniques include component technology, vi
programming, patterns, and frameworks. We also seek techniques to manage the comple
systems as they increase in scope and scale. In particular, we recognize the need to solv
1-4 UML V1.3 June 1999

1.4 Goals of the UML

some

s in
uately

m
er.
ressed

om

ew,

eed to
f
ifferent

ter to

 of the

mple,

ing

d

works
recurring architectural problems, such as physical distribution, concurrency, replication,
security, load balancing, and fault tolerance. Development for the worldwide web makes
things simpler, but exacerbates these architectural problems.

Complexity will vary by application domain and process phase. One of the key motivation
the minds of the UML developers was to create a set of semantics and notation that adeq
addresses all scales of architectural complexity, across all domains.

1.3.3 Prior to Industry Convergence

Prior to the UML, there was no clear leading modeling language. Users had to choose fro
among many similar modeling languages with minor differences in overall expressive pow
Most of the modeling languages shared a set of commonly accepted concepts that are exp
slightly differently in various languages. This lack of agreement discouraged new users fr
entering the object technology market and from doing object modeling, without greatly
expanding the power of modeling. Users longed for the industry to adopt one, or a very f
broadly supported modeling languages suitable for general-purpose usage.

Some vendors were discouraged from entering the object modeling area because of the n
support many similar, but slightly different, modeling languages. In particular, the supply o
add-on tools has been depressed because small vendors cannot afford to support many d
formats from many different front-end modeling tools. It is important to the entire object
industry to encourage broadly based tools and vendors, as well as niche products that ca
the needs of specialized groups.

The perpetual cost of using and supporting many modeling languages motivated many
companies producing or using object technology to endorse and support the development
UML.

While the UML does not guarantee project success, it does improve many things. For exa
it significantly lowers the perpetual cost of training and retooling when changing between
projects or organizations. It provides the opportunity for new integration between tools,
processes, and domains. But most importantly, it enables developers to focus on deliver
business value and gives them a paradigm to accomplish this.

1.4 Goals of the UML

The primary design goals of the UML are as follows:

• Provide users with a ready-to-use, expressive visual modeling language to develop an
exchange meaningful models.

• Furnish extensibility and specialization mechanisms to extend the core concepts.

• Support specifications that are independent of particular programming languages and
development processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the object tools market.

• Support higher-level development concepts such as components, collaborations, frame
and patterns.
UML V1.3 June 1999 1-5

1 UML Summary

and

 If the
t of
dels

ery

in many

el
ncepts
rk,

rted

efined
nisms
t the

n

l

ensus,

d

 can
le

 and
 not

 that
• Integrate best practices.

These goals are discussed in detail below.

Provide users with a ready-to-use, expressive visual modeling language to develop
exchange meaningful models

It is important that the Object Analysis and Design (OA&D) standard supports a modeling
language that can be used "out of the box" to do normal general-purpose modeling tasks.
standard merely provides a meta-meta-description that requires tailoring to a particular se
modeling concepts, then it will not achieve the purpose of allowing users to exchange mo
without losing information or without imposing excessive work to map their models to a v
abstract form. The UML consolidates a set of core modeling concepts that are generally
accepted across many current methods and modeling tools. These concepts are needed
or most large applications, although not every concept is needed in every part of every
application. Specifying a meta-meta-level format for the concepts is not sufficient for mod
users, because the concepts must be made concrete for real modeling to occur. If the co
in different application areas were substantially different, then such an approach might wo
but the core concepts needed by most application areas are similar and should be suppo
directly by the standard without the need for another layer.

Furnish extensibility and specialization mechanisms to extend the core concepts

OMG expects that the UML will be tailored as new needs are discovered and for specific
domains. At the same time, we do not want to force the common core concepts to be red
or re-implemented for each tailored area. Therefore, we believe that the extension mecha
should support deviations from the common case, rather than being required to implemen
core modeling concepts themselves. The core concepts should not be changed more tha
necessary. Users need to be able to

• build models using core concepts without using extension mechanisms for most norma
applications,

• add new concepts and notations for issues not covered by the core,

• choose among variant interpretations of existing concepts, when there is no clear cons
and

• specialize the concepts, notations, and constraints for particular application domains.

Support specifications that are independent of particular programming languages an
development processes

The UML must and can support all reasonable programming languages. It also must and
support various methods and processes of building models. The UML can support multip
programming languages and development methods without excessive difficulty.

Provide a formal basis for understanding the modeling language

Because users will use formality to help understand the language, it must be both precise
approachable; a lack of either dimension damages its usefulness. The formalisms must
require excessive levels of indirection or layering, use of low-level mathematical notations
distant from the modeling domain, such as set-theoretic notation, or operational definitions
1-6 UML V1.3 June 1999

1.5 Scope of the UML

 of
 is a
ectly

ML
ully
gh for

ols, the
g
ng
rmat
s the

s a

tices
ns,
h an

ng,

nd
 these

isting
ted

ndard
nce
le, the
k-
hich
nifies
are equivalent to programming an implementation. The UML provides a formal definition
the static format of the model using a metamodel expressed in UML class diagrams. This
popular and widely accepted formal approach for specifying the format of a model and dir
leads to the implementation of interchange formats. UML expresses well-formedness
constraints in precise natural language plus Object Constraint Language expressions. U
expresses the operational meaning of most constructs in precise natural language. The f
formal approach taken to specify languages such as Algol-68 was not approachable enou
most practical usage.

Encourage the growth of the object tools market

By enabling vendors to support a standard modeling language used by most users and to
industry benefits. While vendors still can add value in their tool implementations, enablin
interoperability is essential. Interoperability requires that models can be exchanged amo
users and tools without loss of information. This can only occur if the tools agree on the fo
and meaning of all of the relevant concepts. Using a higher meta-level is no solution unles
mapping to the user-level concepts is included in the standard.

Support higher-level development concepts such as components, collaborations,
frameworks, and patterns

Clearly defined semantics of these concepts is essential to reap the full benefit of object-
orientation and reuse. Defining these within the holistic context of a modeling language i
unique contribution of the UML.

Integrate best practices

A key motivation behind the development of the UML has been to integrate the best prac
in the industry, encompassing widely varying views based on levels of abstraction, domai
architectures, life cycle stages, implementation technologies, etc. The UML is indeed suc
integration of best practices.

1.5 Scope of the UML

The Unified Modeling Language (UML) is a language for specifying, constructing, visualizi
and documenting the artifacts of a software-intensive system.

First and foremost, the Unified Modeling Language fuses the concepts of Booch, OMT, a
OOSE. The result is a single, common, and widely usable modeling language for users of
and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with ex
methods. As an example, the UML authors targeted the modeling of concurrent, distribu
systems to assure the UML adequately addresses these domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a sta
process. Although the UML must be applied in the context of a process, it is our experie
that different organizations and problem domains require different processes. (For examp
development process for shrink-wrapped software is an interesting one, but building shrin
wrapped software is vastly different from building hard-real-time avionics systems upon w
lives depend.) Therefore, the efforts concentrated first on a common metamodel (which u
UML V1.3 June 1999 1-7

1 UML Summary

se

’s
s

a

f the

e, in
g
ting
ode.

u can

heir
e

run-

t do
ring,
semantics) and second on a common notation (which provides a human rendering of the
semantics). The UML authors promote a development process that is use-case driven,
architecture centric, and iterative and incremental.

The UML specifies a modeling language that incorporates the object-oriented community
consensus on core modeling concepts. It allows deviations to be expressed in terms of it
extension mechanisms. The Unified Modeling Language provides the following:

• Semantics and notation to address a wide variety of contemporary modeling issues in
direct and economical fashion.

• Semantics to address certain expected future modeling issues, specifically related to
component technology, distributed computing, frameworks, and executability.

• Extensibility mechanisms so individual projects can extend the metamodel for their
application at low cost. We don’t want users to directly change the UML metamodel.

• Extensibility mechanisms so that future modeling approaches could be grown on top o
UML.

• Semantics to facilitate model interchange among a variety of tools.

• Semantics to specify the interface to repositories for the sharing and storage of model
artifacts.

1.5.1 Outside the Scope of the UML

Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming languag
the sense of having all the necessary visual and semantic support to replace programmin
languages. The UML is a language for visualizing, specifying, constructing, and documen
the artifacts of a software-intensive system, but it does draw the line as you move toward c
For example, complex branches and joins are better expressed in a textual programming
language. The UML does have a tight mapping to a family of object languages so that yo
get the best of both worlds.

Tools

Standardizing a language is necessarily the foundation for tools and process. Tools and t
interoperability are very dependent on a solid semantic and notation definition, such as th
UML provides. The UML defines a semantic metamodel, not a tool interface, storage, or
time model, although these should be fairly close to one another.

The UML documents do include some tips to tool vendors on implementation choices, bu
not address everything needed. For example, they don’t address topics like diagram colo
user navigation, animation, storage/implementation models, or other features.
1-8 UML V1.3 June 1999

1.5 Scope of the UML

will

 UML

d and

omain
)

main,

L can
ctices,
ment
idual
opers
ental

m
if you
rved,

s.

och,

ne
o the
re the

PR
s and
Process

Many organizations will use the UML as a common language for its project artifacts, but
use the same UML diagram types in the context of different processes. The UML is
intentionally process independent, and defining a standard process was not a goal of the
or OMG’s RFP.

The UML authors do recognize the importance of process. The presence of a well-define
well-managed process is often a key discriminator between hyperproductive projects and
unsuccessful ones. The reliance upon heroic programming is not a sustainable business
practice. A process

• provides guidance as to the order of a team’s activities,

• specifies what artifacts should be developed,

• directs the tasks of individual developers and the team as a whole, and

• offers criteria for monitoring and measuring a project’s products and activities.

Processes by their very nature must be tailored to the organization, culture, and problem d
at hand. What works in one context (shrink-wrapped software development, for example
would be a disaster in another (hard-real-time, human-rated systems, for example). The
selection of a particular process will vary greatly, depending on such things as problem do
implementation technology, and skills of the team.

Booch, OMT, OOSE, and many other methods have well-defined processes, and the UM
support most methods. There has been some convergence on development process pra
but there is not yet consensus for standardization. What will likely result is general agree
on best practices and potentially the embracing of a process framework, within which indiv
processes can be instantiated. Although the UML does not mandate a process, its devel
have recognized the value of a use-case driven, architecture-centric, iterative, and increm
process, so were careful to enable (but not require) this with the UML.

1.5.2 Comparing UML to Other Modeling Languages

It should be made clear that the Unified Modeling Language is not a radical departure fro
Booch, OMT, or OOSE, but rather the legitimate successor to all three. This means that
are a Booch, OMT, or OOSE user today, your training, experience, and tools will be prese
because the Unified Modeling Language is a natural evolutionary step. The UML will be
equally easy to adopt for users of many other methods, but their authors must decide for
themselves whether to embrace the UML concepts and notation underneath their method

The Unified Modeling Language is more expressive yet cleaner and more uniform than Bo
OMT, OOSE, and other methods. This means that there is value in moving to the Unified
Modeling Language, because it will allow projects to model things they could not have do
before. Users of most other methods and modeling languages will gain value by moving t
UML, since it removes the unnecessary differences in notation and terminology that obscu
underlying similarities of most of these approaches.

With respect to other visual modeling languages, including entity-relationship modeling, B
flow charts, and state-driven languages, the UML should provide improved expressivenes
holistic integrity.
UML V1.3 June 1999 1-9

1 UML Summary

ake
n

ual
s of

s will

 same
tively.
me

em at

ng
 that

y had

were
sarily
dd

ings
 other

any
thors,

ous
r little

ity of
Users of existing methods will experience slight changes in notation, but this should not t
much relearning and will bring a clarification of the underlying semantics. If the unificatio
goals have been achieved, UML will be an obvious choice when beginning new projects,
especially as the availability of tools, books, and training becomes widespread. Many vis
modeling tools support existing notations, such as Booch, OMT, OOSE, or others, as view
an underlying model; when these tools add support for UML (as some already have) user
enjoy the benefit of switching their current models to the UML notation without loss of
information.

Existing users of any object method can expect a fairly quick learning curve to achieve the
expressiveness as they previously knew. One can quickly learn and use the basics produc
More advanced techniques, such as the use of stereotypes and properties, will require so
study since they enable very expressive and precise models needed only when the probl
hand requires them.

1.5.3 Features of the UML

The goals of the unification efforts were to keep it simple, to cast away elements of existi
Booch, OMT, and OOSE that didn’t work in practice, to add elements from other methods
were more effective, and to invent new only when an existing solution was not available.
Because the UML authors were in effect designing a language (albeit a graphical one), the
to strike a proper balance between minimalism (everything is text and boxes) and over-
engineering (having an icon for every conceivable modeling element). To that end, they
very careful about adding new things, because they didn’t want to make the UML unneces
complex. Along the way, however, some things were found that were advantageous to a
because they have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including

• extensibility mechanisms (stereotypes, tagged values, and constraints),

• threads and processes,

• distribution and concurrency (e.g., for modeling ActiveX/DCOM and CORBA),

• patterns/collaborations,

• activity diagrams (for business process modeling),

• refinement (to handle relationships between levels of abstraction),

• interfaces and components, and

• a constraint language.

Many of these ideas were present in various individual methods and theories but UML br
them together into a coherent whole. In addition to these major changes, there are many
localized improvements over the Booch, OMT, and OOSE semantics and notation.

The UML is an evolution from Booch, OMT, OOSE, other object-oriented methods, and m
other sources. These various sources incorporated many different elements from many au
including non-OO influences. The UML notation is a melding of graphical syntax from vari
sources, with a number of symbols removed (because they were confusing, superfluous, o
used) and with a few new symbols added. The ideas in the UML come from the commun
1-10 UML V1.3 June 1999

1.6 UML - Past, Present, and Future

s did
s from
d
ext,

ds.
t other
hat did

ics,
ect

nd a

och’s
-

model.
cific

a
t in
 like
ed

hat any
ng

cover
ideas developed by many different people in the object-oriented field. The UML developer
not invent most of these ideas; rather, their role was to select and integrate the best idea
object modeling and computer-science practices. The actual genealogy of the notation an
underlying detailed semantics is complicated, so it is discussed here only to provide cont
not to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other object metho
Stereotypes and their corresponding icons can be defined for various diagrams to suppor
modeling styles. Stereotypes, constraints, and taggedValues are concepts added in UML t
not previously exist in the major modeling languages.

Statechart diagrams are substantially based on the statecharts of David Harel with minor
modifications. Activity graph diagrams, which share much of the same underlying semant
are similar to the work flow diagrams developed by many sources including many pre-obj
sources.

Sequence diagrams were found in a variety of object methods under a variety of names
(interaction, message trace, and event trace) and date to pre-object days. Collaboration
diagrams were adapted from Booch (object diagram), Fusion (object interaction graph), a
number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

The implementation diagrams (component and deployment diagrams) are derived from Bo
module and process diagrams, but they are now component-centered, rather than module
centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the meta
User-defined icons can be associated with given stereotypes for tailoring the UML to spe
processes.

Object Constraint Language is used by UML to specify the semantics and is provided as
language for expressions during modeling. OCL is an expression language having its roo
the Syntropy method and has been influenced by expression languages in other methods
Catalysis. The informal navigation from OMT has the same intent, where OCL is formaliz
and more extensive.

Each of these concepts has further predecessors and many other influences. We realize t
brief list of influences is incomplete and we recognize that the UML is the product of a lo
history of ideas in the computer science and software engineering area.

1.6 UML - Past, Present, and Future

The UML was developed by Rational Software and its partners. Many companies are
incorporating the UML as a standard into their development process and products, which
disciplines such as business modeling, requirements management, analysis & design,
programming, and testing.
UML V1.3 June 1999 1-11

1 UML Summary

e late
d

ty-
T),
an 10
d
ars.”
3, the
r’s
and
certain

lent
e for
ring
ions.

h of

d
their
ober
 this
he
ss,

ugh,
s.

nse to
ssary
antics

ering
ts in
s that
1.6.1 UML 0.8 - 0.91

Precursors to UML

Identifiable object-oriented modeling languages began to appear between mid-1970 and th
1980s as various methodologists experimented with different approaches to object-oriente
analysis and design. Several other techniques influenced these languages, including Enti
Relationship modeling, the Specification & Description Language (SDL, circa 1976, CCIT
and other techniques. The number of identified modeling languages increased from less th
to more than 50 during the period between 1989-1994. Many users of object methods ha
trouble finding complete satisfaction in any one modeling language, fueling the “method w
By the mid-1990s, new iterations of these methods began to appear, most notably Booch’9
continued evolution of OMT, and Fusion. These methods began to incorporate each othe
techniques, and a few clearly prominent methods emerged, including the OOSE, OMT-2,
Booch’93 methods. Each of these was a complete method, and was recognized as having
strengths. In simple terms, OOSE was a use-case oriented approach that provided excel
support business engineering and requirements analysis. OMT-2 was especially expressiv
analysis and data-intensive information systems. Booch’93 was particularly expressive du
design and construction phases of projects and popular for engineering-intensive applicat

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim Rumbaug
Rational Software Corporation began their work on unifying the Booch and OMT (Object
Modeling Technique) methods. Given that the Booch and OMT methods were already
independently growing together and were collectively recognized as leading object-oriente
methods worldwide, Booch and Rumbaugh joined forces to forge a complete unification of
work. A draft version 0.8 of the Unified Method, as it was then called, was released in Oct
of 1995. In the Fall of 1995, Ivar Jacobson and his Objectory company joined Rational and
unification effort, merging in the OOSE (Object-Oriented Software Engineering) method. T
Objectory name is now used within Rational primarily to describe its UML-compliant proce
the Rational Unified Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim Rumba
and Ivar Jacobson were motivated to create a unified modeling language for three reason
First, these methods were already evolving toward each other independently. It made se
continue that evolution together rather than apart, eliminating the potential for any unnece
and gratuitous differences that would further confuse users. Second, by unifying the sem
and notation, they could bring some stability to the object-oriented marketplace, allowing
projects to settle on one mature modeling language and letting tool builders focus on deliv
more useful features. Third, they expected that their collaboration would yield improvemen
all three earlier methods, helping them to capture lessons learned and to address problem
none of their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:

1. Enable the modeling of systems (and not just software) using object-oriented concepts

2. Establish an explicit coupling to conceptual as well as executable artifacts
1-12 UML V1.3 June 1999

1.6 UML - Past, Present, and Future

a
 the
d to
tween
 can
ying
s, and

 the

d 0.91
ived
hat

ness.
 the
tional

,
n

erally

e the

effort.
 in
m and

erfaces,
3. Address the issues of scale inherent in complex, mission-critical systems

4. Create a modeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike designing
programming language. There are tradeoffs. First, one must bound the problem: Should
notation encompass requirement specification? (Yes, partially.) Should the notation exten
the level of a visual programming language? (No.) Second, one must strike a balance be
expressiveness and simplicity: Too simple a notation will limit the breadth of problems that
be solved; too complex a notation will overwhelm the mortal developer. In the case of unif
existing methods, one must also be sensitive to the installed base: Make too many change
you will confuse existing users. Resist advancing the notation, and you will miss the
opportunity of engaging a much broader set of users. The UML definition strives to make
best tradeoffs in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9 an
documents in June and October of 1996. During 1996, the UML authors invited and rece
feedback from the general community. They incorporated this feedback, but it was clear t
additional focused attention was still required.

1.6.2 UML Partners

During 1996, it became clear that several organizations saw UML as strategic to their busi
A Request for Proposal (RFP) issued by the Object Management Group (OMG) provided
catalyst for these organizations to join forces around producing a joint RFP response. Ra
established the UML Partners consortium with several organizations willing to dedicate
resources to work toward a strong UML definition. Those contributing most to the UML
definition included: Digital Equipment Corp., HP, i-Logix, IntelliCorp, IBM, ICON Computing
MCI Systemhouse, Microsoft, Oracle, Rational Software, TI, and Unisys. This collaboratio
produced UML, a modeling language that was well defined, expressive, powerful, and gen
applicable.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich
Technologies; and Softeam also submitted separate RFP responses to the OMG. These
companies joined the UML partners to contribute their ideas, and together the partners
produced the revised UML 1.1 response. The focus of the UML 1.1 release was to improv
clarity of the UML 1.0 semantics and to incorporate contributions from the new partners.

This document is based on the UML 1.1 release and is the result of a collaborative team
The UML Partners have worked hard as a team to define UML. While each partner came
with their own perspective and areas of interest, the result has benefited from each of the
from the diversity of their experiences. The UML Partners contributed a variety of expert
perspectives, including, but not limited to, the following: OMG and RM-ODP technology
perspectives, business modeling, constraint language, state machine semantics, types, int
components, collaborations, refinement, frameworks, distribution, and metamodel.
UML V1.3 June 1999 1-13

1 UML Summary

sed.
e

ding
al

f the
.
kinds
gn, and

e it is
pread
ng
such
hable

ty for

nd to
or
sal.
sons.
or
antics,
the
ll

er of
will

tions,
1.6.3 UML - Present and Future

The UML is nonproprietary and open to all. It addresses the needs of user and scientific
communities, as established by experience with the underlying methods on which it is ba
Many methodologists, organizations, and tool vendors have committed to use it. Since th
UML builds upon similar semantics and notation from Booch, OMT, OOSE, and other lea
methods and has incorporated input from the UML partners and feedback from the gener
public, widespread adoption of the UML should be straightforward.

There are two aspects of "unified" that the UML achieves: First, it effectively ends many o
differences, often inconsequential, between the modeling languages of previous methods
Secondly, and perhaps more importantly, it unifies the perspectives among many different
of systems (business versus software), development phases (requirements analysis, desi
implementation), and internal concepts.

Standardization of the UML

Many organizations have already endorsed the UML as their organization’s standard, sinc
based on the modeling languages of leading object methods. The UML is ready for wides
use. This document is suitable as the primary source for authors writing books and traini
materials, as well as developers implementing visual modeling tools. Additional collateral,
as articles, training courses, examples, and books, will soon make the UML very approac
for a wide audience.

The Unified Modeling Language v. 1.1 specification which was added to the list of OMG
Adopted Technologies in November 1997. Since then the OMG has assumed responsibili
the further development of the UML standard.

Revision of the UML

After adoption of the UML 1.1 proposal by the OMG membership in November 1997, the
OMG chartered a revision task force (RTF) to accept comments from the general public a
make revisions to the specifications to handle bugs, inconsistencies, ambiguities, and min
omissions that could be handled without a major change in scope from the original propo
The members of the RTF were drawn from the original proposers with a few additional per
The RTF issued several preliminary reports with the final report containing UML 1.3 due f
the second quarter of 1999. It contains a number of changes to the UML metamodel, sem
and notation, but in the big picture this version should be considered a minor upgrade to
original proposal. More substantive changes and expansion in scope would require the fu
OMG proposal and adoption process.

Industrialization

Many organizations and vendors worldwide have already embraced the UML. The numb
endorsing organizations is expected to grow significantly over time. These organizations
continue to encourage the use of the Unified Modeling Language by making the definition
readily available and by encouraging other methodologists, tool vendors, training organiza
and authors to adopt the UML.
1-14 UML V1.3 June 1999

1.6 UML - Past, Present, and Future

ng

n
ional
fined

for
ns
ilable.

of

 is
 will
tics of
The real measure of the UML’s success is its use on successful projects and the increasi
demand for supporting tools, books, training, and mentoring.

Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future improvements i
modeling concepts. We have addressed many leading-edge techniques, but expect addit
techniques to influence future versions of the UML. Many advanced techniques can be de
using UML as a base. The UML can be extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including those
visual modeling, simulation, and development environments. As interesting tool integratio
are developed, implementation standards based on the UML will become increasingly ava

The UML has integrated many disparate ideas, so this integration will accelerate the use
object-orientation. Component-based development is an approach worth mentioning. It is
synergistic with traditional object-oriented techniques. While reuse based on components
becoming increasingly widespread, this does not mean that component-based techniques
replace object-oriented techniques. There are only subtle differences between the seman
components and classes.
UML V1.3 June 1999 1-15

1 UML Summary
1-16 UML V1.3 June 1999

 UML Semantics 2
e
The UML Semantics section is primarily intended as a comprehensive and precis
specification of the UML’s semantic constructs.

Contents

Part 1 - Background 2-3
2.1 Introduction 2-3
2.2 Language Architecture 2-4
2.3 Language Formalism 2-8

Part 2 - Foundation 2-13
2.4 Foundation Package 2-13
2.5 Core 2-13
2.6 Extension Mechanisms 2-65
2.7 Data Types 2-75

Part 3 - Behavioral Elements 2-83
2.8 Behavioral Elements Package 2-83
2.9 Common Behavior 2-83
2.10 Collaborations 2-103
2.11 Use Cases 2-116
2.12 State Machines 2-127
2.13 Activity Graphs 2-157

Part 4 - General Mechanisms 2-169
2.14 Model Management 2-169

Index 2-183
UML V1.3 June 1999 2-1

2 UML Semantics
2-2 UML V1.3 June 1999

2.1 Introduction

thors
r an

rstood
. The
tend

odels
heir
odels)

L
s:
am,
es a

ML is
jects,

in the
ure of

e
esses
its
, tool

at it

.
2UML Semantics
Part 1 - Background

2.1 Introduction

2.1.1 Purpose and Scope

The primary audience for this detailed description consists of the OMG, other standards
organizations, tool builders, metamodelers, methodologists, and expert modelers. The au
assume familiarity with metamodeling and advanced object modeling. Readers looking fo
introduction to the UML or object modeling should consider another source.

Although the document is meant for advanced readers, it is also meant to be easily unde
by its intended audience. Consequently, it is structured and written to increase readability
structure of the document, like the language, builds on previous concepts to refine and ex
the semantics. In addition, the document is written in a ‘semi-formal’ style that combines
natural and formal languages in a complementary manner.

This section specifies semantics for structural and behavioral object models. Structural m
(also known as static models) emphasize the structure of objects in a system, including t
classes, interfaces, attributes and relations. Behavioral models (also known as dynamic m
emphasize the behavior of objects in a system, including their methods, interactions,
collaborations, and state histories.

This section provides complete semantics for all modeling notations described in the UM
Notation Guide (Chapter 3). This includes support for a wide range of diagram technique
class diagram, object diagram, use case diagram, sequence diagram, collaboration diagr
state diagram, activity diagram, and deployment diagram. The UML Notation Guide includ
summary of the semantics sections that are relevant to each diagram technique.

2.1.2 Approach

This section emphasizes language architecture and formal rigor. The architecture of the U
based on a four-layer metamodel structure, which consists of the following layers: user ob
model, metamodel, and meta-metamodel. This document is primarily concerned with the
metamodel layer, which is an instance of the meta-metamodel layer. For example, Class
metamodel is an instance of MetaClass in the meta-metamodel. The metamodel architect
UML is discussed further in “Language Architecture” on page 2-4.

The UML metamodel is a logical model and not a physical (or implementation) model. Th
advantage of a logical metamodel is that it emphasizes declarative semantics, and suppr
implementation details. Implementations that use the logical metamodel must conform to
semantics, and must be able to import and export full as well as partial models. However
vendors may construct the logical metamodel in various ways, so they can tune their
implementations for reliability and performance. The disadvantage of a logical model is th
lacks the imperative semantics required for accurate and efficient implementation.
Consequently, the metamodel is accompanied with implementation notes for tool builders
UML V1.3 June 1999 2-3

2 UML Semantics

eral
ages
 of the

ge is

UML
traps
s
guage
ude
tation
n

al
 can
ts that

ture.

s

r
UML is also structured within the metamodel layer. The language is decomposed into sev
logical packages: Foundation, Behavioral Elements, and Model Management. These pack
in turn are decomposed into subpackages. For example, the Foundation package consists
Core, Extension Mechanisms, and Data Types subpackages. The structure of the langua
fully described in “Language Architecture” on page 2-4.

The metamodel is described in a semi-formal manner using these views:

• Abstract syntax

• Well-formedness rules

• Semantics

The abstract syntax is provided as a model described in a subset of UML, consisting of a
class diagram and a supporting natural language description. (In this way the UML boots
itself in a manner similar to how a compiler is used to compile itself.) The well-formednes
rules are provided using a formal language (Object Constraint Language) and natural lan
(English). Finally, the semantics are described primarily in natural language, but may incl
some additional notation, depending on the part of the model being described. The adap
of formal techniques to specify the language is fully described in “Language Formalism” o
page 2-8.

In summary, the UML metamodel is described in a combination of graphic notation, natur
language and formal language. We recognize that there are theoretical limits to what one
express about a metamodel using the metamodel itself. However, our experience sugges
this combination strikes a reasonable balance between expressiveness and readability.

2.2 Language Architecture

2.2.1 Four-Layer Metamodel Architecture

The UML metamodel is defined as one of the layers of a four-layer metamodeling architec
This architecture is a proven infrastructure for defining the precise semantics required by
complex models. There are several other advantages associated with this approach:

• It refines semantic constructs by recursively applying them to successive metalayers.

• It provides an architectural basis for defining future UML metamodel extensions.

• It furnishes an architectural basis for aligning the UML metamodel with other standard
based on a four-layer metamodeling architecture, in particular the OMG Meta-Object
Facility (MOF).

The generally accepted framework for metamodeling is based on an architecture with fou
layers:

• meta-metamodel

• metamodel

• model

• user objects
2-4 UML V1.3 June 1999

2.2 Language Architecture

e

is
ine

mon
s own
lass,

odel
rate
antics.

o
eling

e user
r
The functions of these layers are summarized in the following table.

The meta-metamodeling layer forms the foundation for the metamodeling architecture. Th
primary responsibility of this layer is to define the language for specifying a metamodel. A
meta-metamodel defines a model at a higher level of abstraction than a metamodel, and
typically more compact than the metamodel that it describes. A meta-metamodel can def
multiple metamodels, and there can be multiple meta-metamodels associated with each
metamodel.

While it is generally desirable that related metamodels and meta-metamodels share com
design philosophies and constructs, this is not a strict rule. Each layer needs to maintain it
design integrity. Examples of meta-metaobjects in the meta-metamodeling layer are: MetaC
MetaAttribute, and MetaOperation.

A metamodel is an instance of a meta-metamodel. The primary responsibility of the metam
layer is to define a language for specifying models. Metamodels are typically more elabo
than the meta-metamodels that describe them, especially when they define dynamic sem
Examples of metaobjects in the metamodeling layer are: Class, Attribute, Operation, and
Component.

A model is an instance of a metamodel. The primary responsibility of the model layer is t
define a language that describes an information domain. Examples of objects in the mod
layer are: StockShare, askPrice, sellLimitOrder, and StockQuoteServer.

User objects (a.k.a. user data) are an instance of a model. The primary responsibility of th
objects layer is to describe a specific information domain. Examples of objects in the use
objects layer are: <Acme_Software_Share_98789>, 654.56, sell_limit_order, and
<Stock_Quote_Svr_32123>.

Table 2-1 Four Layer Metamodeling Architecture

Layer Description Example

meta-metamodel The infrastructure for a
metamodeling architecture.
Defines the language for
specifying metamodels.

MetaClass, MetaAttribute,
MetaOperation

metamodel An instance of a meta-
metamodel. Defines the
language for specifying a
model.

Class, Attribute, Operation,
Component

model An instance of a metamodel.
Defines a language to
describe an information
domain.

StockShare, askPrice,
sellLimitOrder,
StockQuoteServer

user objects (user data) An instance of a model.
Defines a specific
information domain.

<Acme_SW_Share_98789>,
654.56, sell_limit_order,
<Stock_Quote_Svr_32123>
UML V1.3 June 1999 2-5

2 UML Semantics

MOF
L
e

e

eta-
odels
a-

.

-level

Architectural Alignment with the MOF Meta-Metamodel

Both the UML and the MOF are based on a four-layer metamodel architecture, where the
meta-metamodel is the meta-metamodel for the UML metamodel. Since the MOF and UM
have different scopes and differ in their abstraction levels (the UML metamodel tends to b
more of a logical model than the MOF meta-metamodel), they are related by loose
metamodeling rather than strict metamodeling.1 As a result, the UML metamodel is an instanc
of the MOF meta-metamodel.

Consequently, there is not a strict isomorphic instance-of mapping between all the MOF m
metamodel elements and the UML metamodel elements. In spite of this, since the two m
were designed to be interoperable, the UML Core package metamodel and the MOF met
metamodel are structurally quite similar.

2.2.2 Package Structure

The complexity of the UML metamodel is managed by organizing it into logical packages
These packages group metaclasses that show strong cohesion with each other and loose
coupling with metaclasses in other packages. The metamodel is decomposed into the top
packages shown in Figure 2-1 on page -6.

Figure 2-1 Top-Level Packages

The Foundation and Behavioral Elements packages are further decomposed as shown in
Figure 2-2 and Figure 2-3 on page -7.

1.In loose (or “non-strict”) metamodeling a Mn level model is an instance of a Mn+1
level model. In strict metamodeling, every element of a Mn level model is an
instance of exactly one element of Mn+1 level model.

Behavioral
Elements

Model
Management

Foundation
2-6 UML V1.3 June 1999

2.2 Language Architecture

avioral
Figure 2-2 Foundation Packages

Figure 2-3 Behavioral Elements Packages

The functions and contents of these packages are described in this chapter’s Part 3, Beh
Elements.

Core

Data Types

Extens ion
Mechanism s

Use Cases State MachinesCollaborations

Com m on
Behavior

Ac tivity Grap hs
UML V1.3 June 1999 2-7

2 UML Semantics

ation
e
The

f the
. In
 more

ed for
gh in
t

he

uage
s exist
es,

tation
x is
 the

cted to
ll-

the
atic
 are
 also

nt
the full
d the

cs.
2.3 Language Formalism

This section contains a description of the techniques used to describe UML. The specific
adapts formal techniques to improve precision while maintaining readability. The techniqu
describes the UML metamodel in three views using both text and graphic presentations.
benefits of adapting formal techniques include:

• the correctness of the description is improved,

• ambiguities and inconsistencies are reduced,

• the architecture of the metamodel is validated by a complementary technique, and

• the readability of the description is increased.

It is important to note that the current description is not a completely formal specification o
language because to do so would have added significant complexity without clear benefit
addition, the state of the practice in formal specifications does not yet address some of the
difficult language issues that UML introduces.

The structure of the language is nevertheless given a precise specification, which is requir
tool interoperability. The dynamic semantics are described using natural language, althou
a precise way so they can easily be understood. Currently, the dynamic semantics are no
considered essential for the development of tools; however, this will probably change in t
future.

2.3.1 Levels of Formalism

A common technique for specification of languages is to first define the syntax of the lang
and then to describe its static and dynamic semantics. The syntax defines what construct
in the language and how the constructs are built up in terms of other constructs. Sometim
especially if the language has a graphic syntax, it is important to define the syntax in a no
independent way (i.e., to define the abstract syntax of the language). The concrete synta
then defined by mapping the notation onto the abstract syntax. The syntax is described in
Abstract Syntax sections.

The static semantics of a language define how an instance of a construct should be conne
other instances to be meaningful, and the dynamic semantics define the meaning of a we
formed construct. The meaning of a description written in the language is defined only if
description is well formed (i.e., if it fulfills the rules defined in the static semantics). The st
semantics are found in sections headed Well-Formedness Rules. The dynamic semantics
described under the heading Semantics. In some cases, parts of the static semantics are
explained in the Semantics section for completeness.

The specification uses a combination of languages - a subset of UML, an object constrai
language, and precise natural language to describe the abstract syntax and semantics of
UML. The description is self-contained; no other sources of information are needed to rea
document2. Although this is a metacircular description3, understanding this document is
practical since only a small subset of UML constructs are needed to describe its semanti
2-8 UML V1.3 June 1999

2.3 Language Formalism

age
ied
es, are
antics

e
ation
icate

ion.

e has

ng the
 rules,
 of a

iptions
raphs

he
e way.

, are
ot
 be
 the

re
he well-
formal

e
ed in
In constructing the UML metamodel different techniques have been used to specify langu
constructs, using some of the capabilities of UML. The main language constructs are reif
into metaclasses in the metamodel. Other constructs, in essence being variants of other on
defined as stereotypes of metaclasses in the metamodel. This mechanism allows the sem
of the variant construct to be significantly different from the base metaclass. Another mor
"lightweight" way of defining variants is to use metaattributes. As an example, the aggreg
construct is specified by an attribute of the metaclass AssociationEnd, which is used to ind
if an association is an ordinary aggregate, a composite aggregate, or a common associat

2.3.2 Package Specification Structure

This section provides information for each package in the UML metamodel. Each packag
one or more of the following subsections.

Abstract Syntax

The abstract syntax is presented in a UML class diagram showing the metaclasses defini
constructs and their relationships. The diagram also presents some of the well-formedness
mainly the multiplicity requirements of the relationships, and whether or not the instances
particular sub-construct must be ordered. Finally, a short informal description in natural
language describing each construct is supplied. The first paragraph of each of these descr
is a general presentation of the construct which sets the context, while the following parag
give the informal definition of the metaclass specifying the construct in UML. For each
metaclass, its attributes are enumerated together with a short explanation. Furthermore, t
opposite role names of associations connected to the metaclass are also listed in the sam

Well-Formedness Rules

The static semantics of UML metaclasses, except for multiplicity and ordering constraints
defined as a set of invariants of an instance of the metaclass. (Note that a metaclass is n
required to have any invariants.) These invariants have to be satisfied for the construct to
meaningful. The rules thus specify constraints over attributes and associations defined in
metamodel. Each invariant is defined by an OCL expression together with an informal
explanation of the expression. In many cases, additional operations on the metaclasses a
needed for the OCL expressions. These are then defined in a separate subsection after t
formedness rules for the construct, using the same approach as the abstract syntax: an in
explanation followed by the OCL expression defining the operation.

The statement ‘No extra well-formedness rules’ means that all current static semantics ar
expressed in the superclasses together with the multiplicity and type information express
the diagrams.

2. Although a comprehension of the UML’s four-layer metamodel architecture and its
 underlying meta-metamodel is helpful, it is not essential to understand the UML semantics.

3. In order to understand the description of the UML semantics, you must understand some
UML semantics.
UML V1.3 June 1999 2-9

2 UML Semantics

rouped
e

al
fined

ned in

e of

bject

e

dds

, the
X is
ormal

For
y "a
an
r the
Semantics

The meanings of the constructs are defined using natural language. The constructs are g
into logical chunks that are defined together. Since only concrete metaclasses have a tru
meaning in the language, only these are described in this section.

Standard Elements

Stereotypes of the metaclasses defined previously in the section are listed, with an inform
definition in natural language. Well-formedness rules, if any, for the stereotypes are also de
in the same manner as in the Well-Formedness Rules subsection.

Other kinds of standard elements (constraints and tagged-values) are listed, and are defi
the Standard Elements appendix.

Notes

This subsection may contain rationales for metamodeling decisions, pragmatics for the us
the constructs, and examples, all written in natural language.

2.3.3 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Chapter 7, “O
Constraint Language Specification,” for expressing well-formedness rules. The following
conventions are used to promote readability:

• Self - which can be omitted as a reference to the metaclass defining the context of th
invariant, has been kept for clarity.

• In expressions where a collection is iterated, an iterator is used for clarity, even when
formally unnecessary. The type of the iterator is usually omitted, but included when it a
to understanding.

• The ‘collect’ operation is left implicit where this is practical.

2.3.4 Use of Natural Language

We strove to be precise in our use of natural language, in this case English. For example
description of UML semantics includes phrases such as “X provides the ability to…” and “
a Y.” In each of these cases, the usual English meaning is assumed, although a deeply f
description would demand a specification of the semantics of even these simple phrases.

The following general rules apply:

• When referring to an instance of some metaclass, we often omit the word "instance."
example, instead of saying "a Class instance" or "an Association instance," we just sa
Class" or "an Association." By prefixing it with an "a" or "an," assume that we mean "
instance of." In the same way, by saying something like "Elements" we mean "a set (o
set) of instances of the metaclass Element."
2-10 UML V1.3 June 1999

2.3 Language Formalism

 text

 are

classes

(e.g.,

xact

e»).
• Every time a word coinciding with the name of some construct in UML is used, that
construct is referenced.

• Terms including one of the prefixes sub, super, or meta are written as one word (e.g.,
metamodel, subclass).

2.3.5 Naming Conventions and Typography

In the description of UML, the following conventions have been used:

• When referring to constructs in UML, not their representation in the metamodel, normal
is used.

• Metaclass names that consist of appended nouns/adjectives, initial embedded capitals
used (e.g., ‘ModelElement,’ ‘StructuralFeature’).

• Names of metaassociations/association classes are written in the same manner as meta
(e.g., ‘ElementReference’).

• Initial embedded capital is used for names that consist of appended nouns/adjectives
‘ownedElement,’ ‘allContents’).

• Boolean metaattribute names always start with ‘is’ (e.g., ‘isAbstract’).

• Enumeration types always end with “Kind” (e.g., ‘AggregationKind’).

• While referring to metaclasses, metaassociations, metaattributes, etc. in the text, the e
names as they appear in the model are always used.

• Names of stereotypes are delimited by guillemets and begin with lowercase (e.g., «typ
UML V1.3 June 1999 2-11

2 UML Semantics
2-12 UML V1.3 June 1999

2.4 Foundation Package

of

 The
ines an
,
 model
fines

ded for
only

ent,
lass,

es an

2UML Semantics
Part 2 - Foundation

2.4 Foundation Package

The Foundation package is the language infrastructure that specifies the static structure
models. The Foundation package is decomposed into the following subpackages: Core,
Extension Mechanisms, and Data Types. Figure 2-4 illustrates the Foundation Packages.
Core package specifies the basic concepts required for an elementary metamodel and def
architectural backbone for attaching additional language constructs, such as metaclasses
metaassociations, and metaattributes. The Extension Mechanisms package specifies how
elements are customized and extended with new semantics. The Data Types package de
basic data structures for the language.

Figure 2-4 Foundation Packages

2.5 Core

2.5.1 Overview

The Core package is the most fundamental of the subpackages that compose the UML
Foundation package. It defines the basic abstract and concrete metamodel constructs nee
the development of object models. Abstract constructs are not instantiable and are comm
used to reify key constructs, share structure, and organize the UML metamodel. Concrete
metamodel constructs are instantiable and reflect the modeling constructs used by object
modelers (cf. metamodelers). Abstract constructs defined in the Core include ModelElem
GeneralizableElement, and Classifier. Concrete constructs specified in the Core include C
Attribute, Operation, and Association.

The Core package specifies the core constructs required for a basic metamodel and defin
architectural backbone (“skeleton”) for attaching additional language constructs such as
metaclasses, metaassociations, and metaattributes. Although the Core package contains

Core

Data Types

Extension
Mechanisms
UML V1.3 June 1999 2-13

2 UML Semantics

t is
e for
the

 of the

g
ne of
ips.
 on

sufficient semantics to define the remainder of UML, it is not the UML meta-metamodel. I
the underlying base for the Foundation package, which in turn serves as the infrastructur
the rest of language. In other packages, the Core is extended by adding metaclasses to
backbone using generalizations and associations.

The following sections describe the abstract syntax, well-formedness rules, and semantics
Core package.

2.5.2 Abstract Syntax

The abstract syntax for the Core package is expressed in graphic notation in the followin
figures. Figure 2-5 on page 2-14 shows the model elements that form the structural backbo
the metamodel. Figure 2-6 on page 2-15 shows the model elements that define relationsh
Figure 2-7 on page 2-16 shows the model elements that define dependencies. Figure 2-8
page 2-17 shows the various kinds of classifiers. Figure 2-9 on page 2-18 shows auxiliary
elements for template parameters, presentation elements, and comments.

Figure 2-5 Core Package - Backbone

Element

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Attribute
initialValue : Expression

Method
body : ProcedureExpression

Operation
concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

*1 *

+specification

1

ElementOwnership
visibility : VisibilityKind
isSpecification : Boolean

Namespace Constraint
body : BooleanExpression

ModelElement
name : Name

0..1

*

+namespace
0..1

+ownedElement
*

*

1..*

+constraint

*

+constrainedElement

1..* {ordered}

BehavioralFeature
isQuery : Boolean

Feature
ownerScope : ScopeKind
visibility : VisibilityKind

StructuralFeature
multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind

Parameter
defaultValue : Expression
kind : ParameterDirectionKind

0..1

*

0..1

+parameter*

{ordered}

Classifier

*

0..1

+feature*

{ordered}

+owner

0..1

*

1

*

+type1

*

1

*

+type1
2-14 UML V1.3 June 1999

2.5 Core
Figure 2-6 Core Package - Relationships

{ordered}

AssociationClass

Class

isActive : Boolean

Relationship

Flow

ModelElement

name : Name

*

*

+sourceFlow

*

+source *

*

*

+targetFlow

*

+target *

Association

Attribute

initialValue : Expression

AssociationEnd

isNavigable : Boolean
ordering : Orderi ngKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeabil ity : Changeabl eKind
visibility : VisibilityKind

2..* 1

+connection

2..* 1

* 0..1

+qualifier

*
{ordered}

+associ ati onEnd

0..1

Generali zableEl ement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Classifier

1 *

+type

1 *

** *

+specification

*

Generalization

discriminator : Name * 1

+generalization

*

+child

1

1*

+parent

1

+special izati on

*

0..1

*

+powertype 0..1

+powertypeRange *
UML V1.3 June 1999 2-15

2 UML Semantics
Figure 2-7 Core Package - Dependencies

Usage

Permission
Abstraction

mapping : MappingExpression

Dependency

Binding

ModelElement

name : Name 1..* *

+supplier

1..*

+supplierDependency

*

1..* *

+client

1..*

+clientDependency

*

0..1

1..*

0..1

+argument 1..*

{ordered}

Relationship
2-16 UML V1.3 June 1999

2.5 Core
Figure 2-8 Core Package - Classifiers

Classifier

Class
isActive : Boolean

DataType

Interface Node Component

*

*+deploymentLocation

* +resident

*

ModelElement
name : Name

*

*

+implementationLocation*

+resident*

Element
visibility : VisibilityKind
UML V1.3 June 1999 2-17

2 UML Semantics

s that

the
 may

to the
everal

ent,

Figure 2-9 Core Package - Auxiliary elements

Abstraction

An abstraction is a Dependency relationship that relates two elements or sets of element
represent the same concept at different levels of abstraction or from different viewpoints.

In the metamodel, an Abstraction is a Dependency in which there in a mapping between
supplier and the client. Depending on the specific stereotype of Abstraction, the mapping
be formal or informal, and it may be unidirectional or bidirectional.

If an Abstraction element has more than one client element, the supplier element maps in
set of client elements as a group. For example, an analysis-level class might be split into s
design-level classes. The situation is similar if there is more than one supplier element.

The UML standard stereotyped classes of Abstraction are Derivation, Realization, Refinem
and Trace. (These are the names for the Abstraction class with the stereotypes «derive»,
«realize», «refine», and «trace», respectively.)

PresentationElement

TemplateParameter

Binding

Element

Comment

ModelElement
name : Name

**

+presentation

*

+subject

*

0..1

*

0..1

+templateParameter *

{ordered}
0..1

*

+defaultElement

0..1

*

0..1

1..*

0..1

+argument1..*

{ordered}

*

* +annotatedElement

*

*

2-18 UML V1.3 June 1999

2.5 Core

appear
Attributes

Stereotypes

Association

An association defines a semantic relationship between classifiers. The instances of an
association are a set of tuples relating instances of the classifiers. Each tuple value may
at most once.

mapping A MappingExpression that states the abstraction relationship between the
supplier and the client. In some cases, such as Derivation, it is usually
formal and unidirectional; in other cases, such as Trace, it is usually
informal and bidirectional. The mapping attribute is optional and may be
omitted if the precise relationship between the elements is not specified.

«derive» Abstraction (Name for the stereotyped class is Derivation.) Specifies a derivation
relationship among model elements that are usually, but not
necessarily, of the same type. A derived dependency specifies that the
client may be computed from the supplier. The mapping specifies the
computation. The client may be implemented for design reasons, such
as efficiency, even though it is logically redundant.

«realize»Abstraction (Name for the stereotyped class is Realization.) Specifies a realization
relationship between a specification model element or elements (the
supplier) and a model element or elements that implement it (the
client). The implementation model element is required to support all
of the operations or received signals that the specification model
element declares. The implementation model element must make or
inherit its own declarations of the operations and signal receptions.
The mapping specifies the relationship between the two. The mapping
may or may not be computable. Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model
synthesis, framework composition, etc.

«refine» Abstraction (Name for the stereotyped class is Refinement.) Specifies refinement
relationship between model elements at different semantic levels,
such as analysis and design.
The mapping specifies the relationship between the two elements or
sets of elements. The mapping may or may not be computable, and it
may be unidirectional or bidirectional. Refinement can be used to
model transformations from analysis to design and other such
changes.

«trace» Abstraction (Name for the stereotyped class is Trace.) Specifies a trace
relationship between model elements or sets of model elements that
represent the same concept in different models. Traces are mainly
used for tracking requirements and changes across models. Since
model changes can occur in both directions, the directionality of the
dependency can often be ignored. The mapping specifies the
relationship between the two, but it is rarely computable and is
usually informal.
UML V1.3 June 1999 2-19

2 UML Semantics

 is

le of

ssifiers
In the metamodel, an Association is a declaration of a semantic relationship between
Classifiers, such as Classes. An Association has at least two AssociationEnds. Each end
connected to a Classifier - the same Classifier may be connected to more than one
AssociationEnd in the same Association. The Association represents a set of connections
among instances of the Classifiers. An instance of an Association is a Link, which is a tup
Instances drawn from the corresponding Classifiers.

Attributes

Associations

Stereotypes

Standard Constraints

Tagged Values

AssociationClass

An association class is an association that is also a class. It not only connects a set of cla
but also defines a set of features that belong to the relationship itself and not any of the
classifiers.

name The name of the Association which, in combination with its associated
Classifiers, must be unique within the enclosing namespace (usually a
Package).

connection An Association consists of at least two AssociationEnds, each of which
represents a connection of the association to a Classifier. Each
AssociationEnd specifies a set of properties that must be fulfilled for the
relationship to be valid. The bulk of the structure of an Association is
defined by its AssociationEnds.

implicit
Association

The «implicit» stereotype is applied to an association, specifying that the
association is not manifest, but rather is only conceptual.

xor
Association

The {xor} constraint is applied to a set of associations, specifying that
over that set, exactly one is manifest for each associated instance. Xor is
an exclusive or (not inclusive or) constraint.

persistence
Association

Persistence denotes the permanence of the state of the association,
marking it as transitory (its state is destroyed when the instance is
destroyed) or persistent (its state is not destroyed when the instance is
destroyed).
2-20 UML V1.3 June 1999

2.5 Core

n

on of
ction

, the
sed.
In the metamodel, an AssociationClass is a declaration of a semantic relationship betwee
Classifiers, which has a set of features of its own. AssociationClass is a subclass of both
Association and Class (i.e., each AssociationClass is both an Association and a Class);
therefore, an AssociationClass has both AssociationEnds and Features.

AssociationEnd

An association end is an endpoint of an association, which connects the association to a
classifier. Each association end is part of one association. The association-ends of each
association are ordered.

In the metamodel, an AssociationEnd is part of an Association and specifies the connecti
an Association to a Classifier. It has a name and defines a set of properties of the conne
(e.g., which Classifier the Instances must conform to, their multiplicity, and if they may be
reached from another Instance via this connection).

In the following descriptions when referring to an association end for a binary association
source end is the other end. The target end is the one whose properties are being discus

Attributes

aggregation When placed on a target end, specifies whether the target end is
an aggregation with respect to the source end. Only one end can
be an aggregation. Possibilities are:

• none - The end is not an aggregate.

• aggregate - The end is an aggregate; therefore, the other end is
a part and must have the aggregation value of none. The part
may be contained in other aggregates.

• composite - The end is a composite; therefore, the other end is
a part and must have the aggregation value of none. The part is
strongly owned by the composite and may not be part of any
other composite.

changeability When placed on a target end, specifies whether an instance of the
Association may be modified from the source end. Possibilities
are:

• changeable - No restrictions on modification.

• frozen - No links may be added after the creation of the source
object.

• addOnly - Links may be added at any time from the source
object, but once created a link may not be removed from the
source end.
UML V1.3 June 1999 2-21

2 UML Semantics
ordering When placed on a target end, specifies whether the set of links
from the source instance to the target instance is ordered. The
ordering must be determined and maintained by Operations that
add links. It represents additional information not inherent in the
objects or links themselves. Possibilities are:

• unordered - The links form a set with no inherent ordering.
• ordered - A set of ordered links can be scanned in order.
• Other possibilities (such as sorted) may be defined later by

declaring additional keywords. As with user-defined
stereotypes, this would be a private extension supported by
particular editing tools.

isNavigable When placed on a target end, specifies whether traversal from a
source instance to its associated target instances is possible.
Specification of each direction across the Association is
independent. A value of true means that the association can be
navigated by the source class and the target rolename can be used
in navigation expressions.

multiplicity When placed on a target end, specifies the number of target
instances that may be associated with a single source instance
across the given Association.

name (Inherited from ModelElement) The rolename of the end. When
placed on a target end, provides a name for traversing from a
source instance across the association to the target instance or set
of target instances. It represents a pseudo-attribute of the source
classifier (i.e., it may be used in the same way as an Attribute) and
must be unique with respect to Attributes and other pseudo-
attributes of the source Classifier.

targetScope Specifies whether the target value is an instance or a classifier.
Possibilities are:
• instance. An instance value is part of each link. This is the

default.
• classifier. A classifier itself is part of each link. Normally this

would be fixed at modeling time and need not be stored
separately at run time.
2-22 UML V1.3 June 1999

2.5 Core

ces of
Associations

Stereotypes

Attribute

An attribute is a named slot within a classifier that describes a range of values that instan
the classifier may hold.

visibility Specifies the visibility of the association end from the viewpoint
of the classifier on the other end. Possibilities are:

• public - Other classifiers may navigate the association and use
the rolename in expressions, similar to the use of a public
attribute.

• protected - Descendants of the source classifier may navigate
the association and use the rolename in expressions, similar to
the use of a protected attribute.

• private - Only the source classifier may navigate the
association and use the rolename in expressions, similar to the
use of a private attribute.

qualifier An optional list of qualifier Attributes for the end. If the list is
empty, then the Association is not qualified.

specification Designates zero or more Classifiers that specify the Operations
that may be applied to an Instance accessed by the
AssociationEnd across the Association. These determine the
minimum interface that must be realized by the actual Classifier
attached to the end to support the intent of the Association. May
be an Interface or another Classifier.

type Designates the Classifier connected to the end of the Association.
In a link, the actual class may be a descendant of the nominal
class or (for an Interface) a Class that realizes the declared type.

(unnamed
composite end)

Designates the Association that owns the AssociationEnd.

«association»
AssociationEnd

Specifies a real association (default and redundant, but may be included
for emphasis).

«global»
AssociationEnd

Specifies that the target is a global value that is known to all elements
rather than an actual association.

«local»
AssociationEnd

Specifies that the relationship represents a local variable within a
procedure rather than an actual association.

«parameter»
AssociationEnd

Specifies that the relationship represents a procedure parameter rather than
an actual association.

«self»
AssociationEnd

Specifies that the relationship represents a reference to the object that
owns an operation or action rather than an actual association.
UML V1.3 June 1999 2-23

2 UML Semantics

ularly

es in
In the metamodel, an Attribute is a named piece of the declared state of a Classifier, partic
the range of values that Instances of the Classifier may hold.

(The following list includes properties from StructuralFeature which has no other subclass
the current metamodel.)

Attributes

changeability Whether the value may be modified after the object is created.
Possibilities are:

• changeable - No restrictions on modification.

• frozen - The value may not be altered after the object is
instantiated and its values initialized. No additional values may
be added to a set.

• addOnly - Meaningful only if the multiplicity is not fixed to a
single value. Additional values may be added to the set of
values, but once created a value may not be removed or altered.

initialValue An Expression specifying the value of the attribute upon
initialization. It is meant to be evaluated at the time the object is
initialized. (Note that an explicit constructor may supersede an
initial value.)

multiplicity The possible number of data values for the attribute that may be
held by an instance. The cardinality of the set of values is an
implicit part of the attribute. In the common case in which the
multiplicity is 1..1, then the attribute is a scalar (i.e., it holds
exactly one value).

targetScope Specifies whether the targets are ordinary Instances or are
Classifiers. Possibilities are:

• instance - Each value contains a reference to an Instance of the
target Classifier. This is the setting for a normal Attribute.

• classifier - Each value contains a reference to the target
Classifier itself. This represents a way to store meta-
information.
2-24 UML V1.3 June 1999

2.5 Core

n or

erent
s of
Associations

Tagged Values

BehavioralFeature

A behavioral feature refers to a dynamic feature of a model element, such as an operatio
method.

In the metamodel, a BehavioralFeature specifies a behavioral aspect of a Classifier. All diff
kinds of behavioral aspects of a Classifier, such as Operation and Method, are subclasse
BehavioralFeature. BehavioralFeature is an abstract metaclass.

Attributes

Associations

associationEnd Designates the optional AssociationEnd that owns the qualifier
attribute. Note that an attribute may be part of an AssociationEnd
(in which case it is a qualifier) or part of a Classifier (by
inheritance from Feature, in which case it is a feature) but not
both.

type Designates the classifier whose instances are values of the
attribute. Must be a Class, Interface, or DataType. The actual type
may be a descendant of the declared type or (for an Interface) a
Class that realizes the declared type.

persistence
Attribute

Persistence denotes the permanence of the state of the attribute,
marking it as transitory (its state is destroyed when the instance is
destroyed) or persistent (its state is not destroyed when the instance
is destroyed).

isQuery Specifies whether an execution of the Feature leaves the state of
the system unchanged. True indicates that the state is unchanged;
false indicates that side-effects may occur.

name (Inherited from ModelElement) The name of the Feature. The
entire signature of the Feature (name and parameter list) must be
unique within its containing Classifier.

parameter An ordered list of Parameters for the Operation. To call the
Operation, the caller must supply a list of values compatible with
the types of the Parameters.
UML V1.3 June 1999 2-25

2 UML Semantics

 is a

e

 client
te. A

ient.
any

hip

thods,

luding
 a
nce”
e (it

.e., no
ns its

es; all
ey all
Stereotypes

Binding

A binding is a relationship between a template and a model element generated from the
template. It includes a list of arguments matching the template parameters. The template
form that is cloned and modified by substitution to yield an implicit model fragment that
behaves as if it were a direct part of the model. A Binding must have one supplier and on
client; unlike a general Dependency, the supplier and client may not be sets.

In the metamodel, a Binding is a Dependency where the supplier is the template and the
is the instantiation of the template that performs the substitution of parameters of a templa
Binding has a list of arguments that replace the parameters of the supplier to yield the cl
The client is fully specified by the binding of the supplier’s parameters and does not add
information of its own. An element may participate as a supplier in multiple Binding
relationships to different clients. An element may participate in only one Binding relations
as a client.

Associations

Class

A class is a description of a set of objects that share the same attributes, operations, me
relationships, and semantics. A class may use a set of interfaces to specify collections of
operations it provides to its environment.

In the metamodel, a Class describes a set of Objects sharing a collection of Features, inc
Operations, Attributes and Methods, that are common to the set of Objects. Furthermore,
Class may realize zero or more Interfaces; this means that its full descriptor (see “Inherita
on page 2-60 for the definition) must contain every Operation from every realized Interfac
may contain additional operations as well).

A Class defines the data structure of Objects, although some Classes may be abstract (i
Objects can be created directly from them). Each Object instantiated from a Class contai
own set of values corresponding to the StructuralFeatures declared in the full descriptor.
Objects do not contain values corresponding to BehavioralFeatures or class-scope Attribut
Objects of a Class share the definitions of the BehavioralFeatures from the Class, and th
have access to the single value stored for each class-scope attribute.

«create»
BehavioralFeature

Specifies that the designated feature creates an instance of the
classifier to which the feature is attached. May be promoted to the
Classifier containing the feature.

«destroy»
BehavioralFeature

Specifies that the designated feature destroys an instance of the
classifier to which the feature is attached. May be promoted to the
classifier containing the feature.

argument An ordered list of arguments. Each argument replaces the corresponding
supplier parameter in the supplier definition, and the result represents the
definition of the client as if it had been defined directly.
2-26 UML V1.3 June 1999

2.5 Core

veral
ed in

ods,
r.

t, it

uate
ot an
Attributes

Stereotypes

Classifier

A classifier is an element that describes behavioral and structural features; it comes in se
specific forms, including class, data type, interface, component, and others that are defin
other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such as Attributes, Meth
and Operations. It has a name, which is unique in the Namespace enclosing the Classifie
Classifier is an abstract metaclass.

Classifier is a child of GeneralizableElement and Namespace. As a GeneralizableElemen
may inherit Features and participation in Associations (in addition to things inherited as a
ModelElement). It also inherits ownership of StateMachines, Collaborations, etc.

As a Namespace, a Classifier may declare other Classifiers nested in its scope. Nested
Classifiers may be accessed by other Classifiers only if the nested Classifiers have adeq
visibility. There are no data value or state consequences of nested Classifiers, i.e., it is n
aggregation or composition.

isActive Specifies whether an Object of the Class maintains its own thread
of control. If true, then an Object has its own thread of control and
runs concurrently with other active Objects. Such a class is
informally called an active class. If false, then Operations run in
the address space and under the control of the active Object that
controls the caller. Such a class is informally called a passive
class.

«implementationClass»
Class

Specifies the implementation of a class in some programming
language in which an instance may not have more than one class.
This is in contrast to a general UML Class, for which an instance may
have multiple classes at one time and may gain or lose classes over
time, and an object (a child of instance) may dynamically have
multiple classes.

«type»
Class

Specifies a domain of instances (objects) together with the operations
applicable to the objects. A type may not contain any methods, but it
may have attributes and associations.
UML V1.3 June 1999 2-27

2 UML Semantics

as no
Associations

Stereotypes

Tagged Values

Comment

A comment is an annotation attached to a model element or a set of model elements. It h
semantic force but may contain information useful to the modeler.

Associations

feature An ordered list of Features, like Attribute, Operation, Method,
owned by the Classifier.

participant Inverse of specification on association to AssociationEnd. Denotes
that the Classifier participates in an Association.

powertypeRange Designates zero or more Generalizations for which the Classifier
is a powertype. If the cardinality is zero, then the Classifier is not
a powertype; if the cardinality is greater than zero, then the
Classifier is a powertype over the set of Generalizations
designated by the association, and the child elements of the
Generalizations are the instances of the Classifier as a powertype.
A Classifier that is a powertype can be marked with the
«powertype» stereotype.

«metaclass»Classifier Specifies that the instances of the classifier are classes.

«powertype»Classifier Specifies that the classifier is a metatype, the instances of which are
children marked by the same discriminator.

«process» Classifier Specifies a classifier that represents a heavy-weight flow of control.

«thread» Classifier Specifies a classifier that represents a flow of control.

«utility» Classifier Specifies a classifier that has no instances, but rather denotes a named
collection of non-member attributes and operations, all of which are
class-scoped.

persistence Persistence denotes the permanence of the state of the classifier,
marking it as transitory (its state is destroyed when the instance is
destroyed) or persistent (its state is not destroyed when the instance is
destroyed).

semantics Classifier Semantics is the specification of the meaning of the classifier.

annotatedElement A ModelElement or set of ModelElements described by the
Comment.
2-28 UML V1.3 June 1999

2.5 Core

nd
f

o and
e
 of the

of its
h as
Stereotypes

Component

A component is a physical, replaceable part of a system that packages implementation a
provides the realization of a set of interfaces. A component represents a physical piece o
implementation of a system, including software code (source, binary or executable) or
equivalents such as scripts or command files. As such, a Component may itself conform t
provide the realization of a set of interfaces, which represent services implemented by th
elements resident in the component. These services define behavior offered by instances
Component as a whole to other client Component instances.

In the metamodel, a Component is a child of Classifier. It provides the physical packaging
associated specification elements. As a Classifier, it may also have its own Features, suc
Attributes and Operations, and realize Interfaces.

Associations

Stereotypes

Constraint

A constraint is a semantic condition or restriction expressed in text.

«requirement»
Comment

Specifies a desired feature, property, or behavior of an element as part
of a system.

«responsibility»
Comment

Specifies a contract or an obligation of an element in its relationship
to other elements.

deploymentLocation The set of Nodes the Component is residing on.

resident (Association class ElementResidence) The set of model elements
that the component supports. The visibility attribute shows the
external visibility of the element outside the component.

«document»
Component

Denotes a document.

«executable»
Component

Denotes a program that may be run on a node.

«file»
Component

Denotes a document containing source code or data.

«library»
Component

Denotes a static or dynamic library.

«table»
Component

Denotes a data base table.
UML V1.3 June 1999 2-29

2 UML Semantics

s)
ral
aints
rtion,
esign

s
on
).

 all
use
as an

In the metamodel, a Constraint is a BooleanExpression on an associated ModelElement(
which must be true for the model to be well formed. This restriction can be stated in natu
language, or in different kinds of languages with a well-defined semantics. Certain Constr
are predefined in the UML, others may be user defined. Note that a Constraint is an asse
not an executable mechanism. It indicates a restriction that must be enforced by correct d
of a system.

Attributes

Associations

Stereotypes

DataType

A data type is a type whose values have no identity (i.e., they are pure values). Data type
include primitive built-in types (such as integer and string) as well as definable enumerati
types (such as the predefined enumeration type boolean whose literals are false and true

In the metamodel, a DataType defines a special kind of Classifier in which Operations are
pure functions (i.e., they can return DataValues but they cannot change DataValues, beca
they have no identity). For example, an “add” operation on a number with another number
argument yields a third number as a result; the target and argument are unchanged.

Dependency

A term of convenience for a Relationship other than Association, Generalization, Flow, or
metarelationship (such as the relationship between a Classifier and one of its Instances).

body A BooleanExpression that must be true when evaluated for an
instance of a system to be well-formed.

constrainedElement A ModelElement or list of ModelElements affected by the
Constraint. If the constrained element is a Stereotype, then the
constraint applies to all ModelElements that use the stereotype.

«invariant»
Constraint

Specifies a constraint that must be attached to a set of classifiers or
relationships. It indicates that the conditions of the constraint must
hold over time (for the time period of concern in the particular
containing element) for the classifiers or relationships and their
instances.

«postcondition»
Constraint

Specifies a constraint that must be attached to an operation, and
denotes that the conditions of the constraint must hold after the
invocation of the operation.

«precondition»
Constraint

Specifies a constraint that must be attached to an operation, and
denotes that the conditions of the constraint must hold for the
invocation of the operation.
2-30 UML V1.3 June 1999

2.5 Core

uires

pplier
quires

types

A dependency states that the implementation or functioning of one or more elements req
the presence of one or more other elements.

In the metamodel, a Dependency is a directed relationship from a client (or clients) to a su
(or suppliers) stating that the client is dependent on the supplier (i.e., the client element re
the presence and knowledge of the supplier element).

The kinds of Dependency are Abstraction, Binding, Permission, and Usage. Various stereo
of those elements are predefined.

Associations

Element

An element is an atomic constituent of a model.

In the metamodel, an Element is the top metaclass in the metaclass hierarchy. It has two
subclasses: ModelElement and PresentationElement. Element is an abstract metaclass.

Tagged Values

ElementOwnership

Element ownership defines the visibility of a ModelElement contained in a Namespace.

In the metamodel, ElementOwnership reifies the relationship between ModelElement and
Namespace denoting the ownership of a ModelElement by a Namespace and its visibility
outside the Namespace. See “ModelElement” on page 2-37.

client The element that is affected by the supplier element. In some
cases (such as a Trace Abstraction) the direction is unimportant
and serves only to distinguish the two elements.

supplier Inverse of client. Designates the element that is unaffected by a
change. In a two-way relationship (such as some Refinement
Abstractions) this would be the more general element. In an
undirected situation, such as a Trace Abstraction, the choice of
client and supplier may be irrelevant.

documentation
Element

Documentation is a comment, description, or explanation of
the element to which it is attached.
UML V1.3 June 1999 2-31

2 UML Semantics

ows

r.

ce of a
Attributes

ElementResidence

Association class between Component and ModelElement. See Component::resident. Sh
that the component supports the element.

Attributes

Feature

A feature is a property, like operation or attribute, which is encapsulated within a Classifie

In the metamodel, a Feature declares a behavioral or structural characteristic of an Instan
Classifier or of the Classifier itself. Feature is an abstract metaclass.

isSpecification Specifies whether the ownedElement is part of the specification
for the containing namespace (in cases where specification is
distinguished from the realization). Otherwise the ownedElement
is part of the realization. In cases in which the distinction is not
made, the value is false by default.

visibility Specifies whether the ModelElement can be seen and referenced
by other ModelElements. Possibilities:

• public - Any outside ModelElement can see the ModelElement.
• protected - Any descendent of the ModelElement can see the

ModelElement.
• private - Only the ModelElement itself, its constituent parts, or

elements nested within it can see the ModelElement.
Note that use of an element in another Package may also be
subject to access or import of its Package as described in Model
Management; see Permission.

visibility Specifies whether the ModelElement can be used by other
Components. Possibilities:

• public - Any outside Component can use the ModelElement.
• protected - Any descendent of the Component can use the

ModelElement.
• private - Only the Component itself can use the ModelElement.
2-32 UML V1.3 June 1999

2.5 Core

py of

 a
t flow
Attributes

Associations

Flow

A flow is a relationship between two versions of an object or between an object and a co
it.

In the metamodel, a Flow is a child of Relationship. A Flow is a directed relationship from
source or sources to a target or targets. It usually connects an activity to or from an objec
state, or two object flow states. It can also connect from a fork or to a branch.

name (Inherited from ModelElement) The name used to identify the
Feature within the Classifier or Instance. It must be unique across
inheritance of names from ancestors including names of outgoing
AssociationEnd. (See more specific rules for the exact details.
Attributes, discriminators, and opposite association ends must
have unique names in the set of inherited names. There may be
multiple declarations of the same operation. Multiple operations
may have the same name but different signatures; see the rules for
precise details.)

ownerScope Specifies whether Feature appears in each Instance of the
Classifier or whether there is just a single instance of the Feature
for the entire Classifier. Possibilities are:

• instance - Each Instance of the Classifier holds its own value
for the Feature.

• classifier - There is just one value of the Feature for the entire
Classifier.

visibility Specifies whether the Feature can be used by other Classifiers.
Visibilities of nested Classifiers combine so that the most
restrictive visibility is the result. Possibilities:

• public - Any outside Classifier with visibility to the Classifier
can use the Feature.

• protected - Any descendent of the Classifier can use the
Feature.

• private - Only the Classifier itself can use the Feature.

owner The Classifier declaring the Feature. Note that an Attribute may
be owned by a Classifier (in which case it is a feature) or an
AssociationEnd (in which case it is a qualifier) but not both.
UML V1.3 June 1999 2-33

2 UML Semantics

f an
er

he
tract
Predefined stereotypes of Flow are «become» and «copy». Become relates one version o
object to another with a different value, state, or location. Copy relates an object to anoth
object that starts as a copy of it.

Stereotypes

GeneralizableElement

A generalizable element is a model element that may participate in a generalization
relationship.

In the metamodel, a GeneralizableElement can be a generalization of other
GeneralizableElements (i.e., all Features defined in and all ModelElements contained in t
ancestors are also present in the GeneralizableElement). GeneralizableElement is an abs
metaclass.

Attributes

«become»
Flow

Specifies a Flow relationship, source and target of which represent the
same instance at different points in time, but each with potentially
different values, state instance, and roles. A Become Dependency
from A to B means that instance A becomes B with possibly new
values, state instance, and roles at a different moment in time/space.

«copy»
Flow

Specifies a Flow relationship, the source and target of which are
different instances, but each with the same values, state instance, and
roles (but a distinct identity). A Copy Dependency from A to B means
that B is an exact copy of A. Future changes in A are not necessarily
reflected in B.

isAbstract Specifies whether the GeneralizableElement may not have a direct
instance. True indicates that an instance of the
GeneralizableElement must be an instance of a chid of the
GeneralizableElement. False indicates that there may an instance
of the GeneralizableElement that is not an instance of a child. An
abstract GeneralizableElement is not instantiable since it does not
contain all necessary information.

isLeaf Specifies whether the GeneralizableElement is a
GeneralizableElement with no descendents. True indicates that it
may not have descendents, false indicates that it may have
descendents (whether or not it actually has any descendents at the
moment).

isRoot Specifies whether the GeneralizableElement is a root
GeneralizableElement with no ancestors. True indicates that it
may not have ancestors, false indicates that it may have ancestors
(whether or not it actually has any ancestors at the moment).
2-34 UML V1.3 June 1999

2.5 Core

ent

ation.

ation
ay be

or the
Associations

Generalization

A generalization is a taxonomic relationship between a more general element and a more
specific element. The more specific element is fully consistent with the more general elem
(it has all of its properties, members, and relationships) and may contain additional inform

In the metamodel, a Generalization is a directed inheritance relationship, uniting a
GeneralizableElement with a more general GeneralizableElement in a hierarchy. Generaliz
is a subtyping relationship (i.e., an Instance of the more general GeneralizableElement m
substituted by an Instance of the more specific GeneralizableElement). See Inheritance f
consequences of Generalization relationships.

Attributes

Associations

generalization Designates a Generalization whose parent GeneralizableElement
is the immediate ancestor of the current GeneralizableElement.

specialization Designates a Generalization whose child GeneralizableElement is
the immediate descendent of the current GeneralizableElement.

discriminator Designates the partition to which the Generalization link belongs.
All of the Generalization links that share a given parent
GeneralizableElement are divided into disjoint sets (that is,
partitions) by their discriminator names. Each partition (a set of
links sharing a discriminator name) represents an orthogonal
dimension of specialization of the parent GeneralizableElement.
The discriminator need not be unique. The empty string is also
considered as a partition name, therefore all Generalization links
have a discriminator. If the set of Generalization links that have
the same parent all have the same name, then the children in the
Generalization links are GeneralizableElements that specialize the
parent, and an instance of any of them is a legal instance of the
parent. Otherwise an indirect instance of the parent must be a
(direct or indirect) instance of at least one element from each of
the partitions.

child Designates a GeneralizableElement that is the specialized version
of the parent GeneralizableElement.

parent Designates a GeneralizableElement that is the generalized version
of the child GeneralizableElement.

powertype Designates a Classifier that serves as a powertype for the child
element along the dimension of generalization expressed by the
Generalization. The child element is therefore an instance of the
powertype element.
UML V1.3 June 1999 2-35

2 UML Semantics

ch
e
Stereotypes

Standard Constraints

Interface

An interface is a named set of operations that characterize the behavior of an element.

In the metamodel, an Interface contains a set of Operations that together define a service
offered by a Classifier realizing the Interface. A Classifier may offer several services, whi
means that it may realize several Interfaces, and several Classifiers may realize the sam
Interface.

Interfaces are GeneralizableElements.

«implementation»
Generalization

Specifies that the child inherits the implementation of the parent
(its attributes, operations and methods) but does not make public
the supplier’s interfaces nor guarantee to support them, thereby
violating substitutability. This is private inheritance and is usually
used only for programming implementation purposes.

complete
Generalization

Specifies a constraint applied to a set of generalizations with the same
discriminator and the same parent, indicating that any instance of the
parent must be an instance of at least one child within the set of
generalizations. If a parent has a single discriminator, the set of its child
generalizations being complete implies that the parent is abstract. The
connotation of declaring a set of generalizations complete is that all of
the children with the given discriminator have been declared and that
additional ones are not expected (in other words, the set of
generalizations is closed), and designs may assume with some
confidence that the set of children is fixed. If a new child is nevertheless
added in the future, existing models may be adversely affected and may
require modification.

disjoint
Generalization

Specifies a constraint applied to a set of generalizations, indicating that
instance of the parent may be an instance of no more than one of the
given children within the set of generalizations. This is the default
semantics of generalization.

incomplete
Generalization

Specifies a constraint applied to a set of generalizations with the same
discriminator, indicating that an instance of the parent need not be an
instance of a child within the set (but there is no guarantee that such an
instance will actually exist). Being incomplete implies that the parent is
concrete. The connotation of declaring a set of generalizations
incomplete is that all of the children with the given discriminator have
not necessarily been declared and that additional ones are might be
added, therefore users should not count on the set of children being
fixed.

overlapping
Generalization

Specifies a constraint applied to a set of generalizations, indicating that
an instance of one child may be simultaneously an instance of another
child in the set (but there is no guarantee that such an instance will
actually exist).
2-36 UML V1.3 June 1999

2.5 Core

e in
r than
r but

at

 and

led.
ion of

eling
asses

meters

ovided
te,
Interfaces may not have Attributes, Associations, or Methods. An Interface may participat
an Association provided the Interface cannot see the Association; that is, a Classifier (othe
an Interface) may have an Association to an Interface that is navigable from the Classifie
not from the Interface.

Method

A method is the implementation of an operation. It specifies the algorithm or procedure th
effects the results of an operation.

In the metamodel, a Method is a declaration of a named piece of behavior in a Classifier
realizes one (directly) or a set (indirectly) of Operations of the Classifier.

Attributes

Associations

ModelElement

A model element is an element that is an abstraction drawn from the system being mode
Contrast with view element, which is an element whose purpose is to provide a presentat
information for human comprehension.

In the metamodel, a ModelElement is a named entity in a Model. It is the base for all mod
metaclasses in the UML. All other modeling metaclasses are either direct or indirect subcl
of ModelElement.

Each ModelElement can be regarded as a template. A template has a set of templatePara
that denotes which of the parts of a ModelElement are the template parameters. A
ModelElement is a template when there is at least one template parameter. If it is not a
template, a ModelElement cannot have template parameters. However, such embedded
parameters are not usually complete and need not satisfy well-formedness rules. It is the
arguments supplied when the template is instantiated that must be well-formed.

Partially instantiated templates are allowed. This is the case when there are arguments pr
for some, but not all templateParameters. A partially instantiated template is still a templa
since it still has parameters.

Attributes

body The implementation of the Method as a ProcedureExpression.

specification Designates an Operation that the Method implements. The
Operation must be owned by the Classifier that owns the Method
or be inherited by it. The signatures of the Operation and Method
must match.

name An identifier for the ModelElement within its containing
Namespace.
UML V1.3 June 1999 2-37

2 UML Semantics
Associations

Note that iff a ModelElement has at least one templateParameter, then it is a template,
otherwise it is an ordinary element.

Tagged Values

clientDependency Inverse of client. Designates a set of Dependency in which the
ModelElement is a client.

constraint A set of Constraints affecting the element.

implementationLocation The component that an implemented model element resides in.

namespace Designates the Namespace that contains the ModelElement. Every
ModelElement except a root element must belong to exactly one
Namespace or else be a composite part of another ModelElement
(which is a kind of virtual namespace). The pathname of
Namespace or ModelElement names starting from the root
package provides a unique designation for every ModelElement.
The association attribute visibility specifies the visibility of the
element outside its namespace (see ElementOwnership).

presentation A set of PresentationElements that present a view of the
ModelElement.

supplierDependency Inverse of supplier. Designates a set of Dependency in which the
ModelElement is a supplier.

templateParameter (association class TemplateParameter) A composite aggregation
ordered list of parameters. Each parameter is a dummy
ModelElement designated as a placeholder for a real
ModelElement to be substituted during a binding of the template
(see Binding). The real model element must be of the same kind
(or a descendant kind) as the dummy ModelElement. The
properties of the dummy ModelElement are ignored, except the
name of the dummy element is used as the name of the template
parameter. The association class TemplateParameter may be
associated with a default ModelElement of the same kind as the
dummy ModelElement. In the case of a Binding that does not
supply an argument corresponding to the parameter, the value of
the default ModelElement is used. If a Binding lacks an argument
and there is no default ModelElement, the construct is invalid.
Note that the template parameter element lacks structure. For
example, a parameter that is a Class lacks Features; they are found
in the actual argument.

derived ModelElement A true value indicates that the model element can be completely
derived from other model elements and is therefore logically
redundant. In an analysis model, the element may be included to
define a useful name or concept. In a design model, the usual
intent is that the element should exist in the implementation to
avoid the need for recomputation.
2-38 UML V1.3 June 1999

2.5 Core

ames

like
thin
space.
ents

deled
h as the

aving
ay be

nents

ration
ble

es of
Namespace

A namespace is a part of a model that contains a set of ModelElements each of whose n
designates a unique element within the namespace.

In the metamodel, a Namespace is a ModelElement that can own other ModelElements,
Associations and Classifiers. The name of each owned ModelElement must be unique wi
the Namespace. Moreover, each contained ModelElement is owned by at most one Name
The concrete subclasses of Namespace have additional constraints on which kind of elem
may be contained. Namespace is an abstract metaclass.

Note that explicit parts of a model element, such as the features of a Classifier, are not mo
as owned elements in a namespace. A namespace is used for unstructured contents suc
contents of a package or a class declared inside the scope of another class.

Associations

Node

A node is a run-time physical object that represents a computational resource, generally h
at least a memory and often processing capability as well, and upon which components m
deployed.

In the metamodel, a Node is a subclass of Classifier. It is associated with a set of Compo
residing on the Node.

Associations

Operation

An operation is a service that can be requested from an object to effect behavior. An ope
has a signature, which describes the actual parameters that are possible (including possi
return values).

In the metamodel, an Operation is a BehavioralFeature that can be applied to the Instanc
the Classifier that contains the Operation.

ownedElement (association class ElementOwnership) A set of ModelElements
owned by the Namespace. Its visibility attribute states whether the
element is visible outside the namespace.

resident The set of Components residing on the Node.
UML V1.3 June 1999 2-39

2 UML Semantics
Attributes

Tagged Values

concurrency Specifies the semantics of concurrent calls to the same passive
instance (i.e., an Instance originating from a Classifier with
isActive=false). Active instances control access to their own
Operations so this property is usually (although not required in
UML) set to sequential. Possibilities include:

• sequential - Callers must coordinate so that only one call to an
Instance (on any sequential Operation) may be outstanding at
once. If simultaneous calls occur, then the semantics and
integrity of the system cannot be guaranteed.

• guarded - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any guarded Operation), but
only one is allowed to commence. The others are blocked until
the performance of the first Operation is complete. It is the
responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocks. Guarded Operations
must perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot
be claimed.

• concurrent - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any concurrent Operation).
All of them may proceed concurrently with correct semantics.
Concurrent Operations must perform correctly in the case of a
simultaneous sequential or guarded Operation or concurrent
semantics cannot be claimed.

isAbstract If true, then the operation does not have an implementation, and
one must be supplied by a descendant. If false, the operation must
have an implementation in the class or inherited from an ancestor.

isLeaf If true, then the implementation of the operation may not be
overriden by a descendant class. If false, then the implementation
of the operation may be overridden by a descendant class (but it
need not be overridden).

isRoot If true, then the class must not inherit a declaration of the same
operation. If false, then the class may (but need not) inherit a
declaration of the same operation. (But the declaration must
match in any case; a class may not modify an inherited operation
declaration.)

semantics
Operation

Semantics is the specification of the meaning of the operation.
2-40 UML V1.3 June 1999

2.5 Core

er may
cation

d from,

ents in

pplier
pplier

rence
type,
nt may
ess any
Parameter

A parameter is an unbound variable that can be changed, passed, or returned. A paramet
include a name, type, and direction of communication. Parameters are used in the specifi
of operations, messages and events, templates, etc.

In the metamodel, a Parameter is a declaration of an argument to be passed to, or returne
an Operation, a Signal, etc.

Attributes

Associations

Permission

Permission is a kind of dependency. It grants a model element permission to access elem
another namespace.

In the metamodel, Permission in a Dependency between a client ModelElement and a su
ModelElement. The client receives permission to reference the supplier’s contents. The su
must be a Namespace.

The predefined stereotypes of Permission are access, import, and friend.

In the case of the access and import stereotypes, the client is granted permission to refe
elements in the supplier namespace with public visibility. In the case of the import stereo
the public names in the supplier namespace are added to the client namespace. An eleme
also access any protected contents of an ancestor namespace. An element may also acc
contents (public, protected, or private) of its own namespace or a containing namespace.

defaultValue An Expression whose evaluation yields a value to be used when
no argument is supplied for the Parameter.

kind Specifies what kind of a Parameter is required. Possibilities are:

• in - An input Parameter (may not be modified).

• out - An output Parameter (may be modified to communicate
information to the caller).

• inout - An input Parameter that may be modified.

• return -A return value of a call.

name (Inherited from ModelElement) The name of the Parameter, which
must be unique within its containing Parameter list.

type Designates a Classifier to which an argument value must conform.
UML V1.3 June 1999 2-41

2 UML Semantics

 in the

nts.

ments
 with

 a

It is

ssifier,

ass of
In the case of the friend stereotype, the client is granted permission to reference elements
supplier namespace, regardless of visibility.

Stereotypes

PresentationElement

A presentation element is a textual or graphical presentation of one or more model eleme

In the metamodel, a PresentationElement is an Element which presents a set of ModelEle
to a reader. It is the base for all metaclasses used for presentation. All other metaclasses
this purpose are either direct or indirect subclasses of PresentationElement.
PresentationElement is an abstract metaclass. The subclasses of this class are proper to
graphic editor tool and are not specified here. It is a stub for their future definition.

Relationship

A relationship is a connection among model elements.

In the metamodel, Relationship is a term of convenience without any specific semantics.
abstract.

Children of Relationship are Association, Dependency, Flow, and Generalization.

StructuralFeature

A structural feature refers to a static feature of a model element, such as an attribute.

In the metamodel, a StructuralFeature declares a structural aspect of an Instance of a Cla
such as an Attribute. For example, it specifies the multiplicity and changeability of the
StructuralFeature. StructuralFeature is an abstract metaclass.

See Attribute for the descriptions of the attributes and associations, as it is the only subcl
StructuralFeature in the current metamodel.

«access»
Permission

Access is a stereotyped permission dependency between two
namespaces, denoting that the public contents of the target namespace
are accessible to the namespace of the source package.

«friend»
Permission

Friend is a stereotyped permission dependency whose source is a
model element, such as an operation, class, or package, and whose
target is a model element in a different package, such as an operation,
class or package. A friend relationship grants the source access to the
target regardless of the declared visibility. It extends the visibility of
the supplier so that the client can see into the supplier.

«import»
Permission

Import is a stereotyped permission dependency between two
namespaces, denoting that the public contents of the target package
are added to the namespace of the source package.
2-42 UML V1.3 June 1999

2.5 Core

plate

at is a

ts) for
n

 the
 class,
nother

ed to.
TemplateParameter

Defines the relationship between a template (a ModelElement) and its parameter (a
ModelElement). A ModelElement with at least one templateParameter association is a tem
(by definition).

In the metamodel, TemplateParameter reifies the relationship between a ModelElement th
template and a ModelElement that is a dummy placeholder for a template argument. See
ModelElement on page 2-37, association templateParameter, for details.

Associations

Usage

A usage is a relationship in which one element requires another element (or set of elemen
its full implementation or operation. The relationship is not a mere historical artifact, but a
ongoing need; therefore, two elements related by usage must be in the same model.

In the metamodel, a Usage is a Dependency in which the client requires the presence of
supplier. How the client uses the supplier, such as a class calling an operation of another
a method having an argument of another class, and a method from a class instantiating a
class, is defined in the description of the particular Usage stereotype.

Various stereotypes of Usage are predefined, but the set is open-ended and may be add

Stereotypes

defaultElement An optional default value ModelElement. In case of a Binding of
the template ModelElement in the reified TemplateParameter class
association, the defaultElement is used as the argument of the
bound element if no argument is supplied for the corresponding
template parameter. If no argument is supplied and there is no
default value, the model is ill formed.

«call»
Usage

Call is a stereotyped usage dependency whose source is an operation
and whose target is an operation. The relationship may also be
subsumed to the class containing an operation, with the meaning that
there exists an operation in the class to which the dependency applies.
A call dependency specifies that the source operation or an operation
in the source class invokes the target operation or an operation in the
target class. A call dependency may connect a source operation to any
target operation that is within scope including, but not limited to,
operations of the enclosing classifier and operations of other visible
classifiers.
UML V1.3 June 1999 2-43

2 UML Semantics
2.5.3 Well-Formedness Rules

The following well-formedness rules apply to the Core package.

Association

[1] The AssociationEnds must have a unique name within the Association.

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2
)

[2] At most one AssociationEnd may be an aggregation or composition.

self.allConnections->select(aggregation <#none)->size <= 1

[3] If an Association has three or more AssociationEnds, then no AssociationEnd
 may be an aggregation or composition.

self.allConnections->size >=3 implies
self.allConnections->forall(aggregation = #none)

[4] The connected Classifiers of the AssociationEnds should be included in the
 Namespace of the Association.

self.allConnections->forAll (r |

self.namespace.allContents->includes (r.type))

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the
 Association.

allConnections : Set(AssociationEnd);

allConnections = self.connection

AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

self.allConnections->forAll(ar |

self.allFeatures->forAll(f |

f.oclIsKindOf(StructuralFeature) implies ar.name <f.name))

[2] An AssociationClass cannot be defined between itself and something else.

«create»
Usage

Create is a stereotyped usage dependency denoting that the client
classifier creates instances of the supplier classifier.

«instantiate»
Usage

A stereotyped usage dependency among classifiers indicating that
operations on the client create instances of the supplier.

«send»
Usage

Send is a stereotyped usage dependency whose source is an operation
and whose target is a signal, specifying that the source sends the
target signal.
2-44 UML V1.3 June 1999

2.5 Core

n
self.allConnections->forAll(ar | ar.type <self)

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the
 AssociationClass, including all connections defined by its parent (transitive
 closure).

allConnections : Set(AssociationEnd);

allConnections = self.connection->union(self.parent->select

(s | s.oclIsKindOf(Association))->collect (a : Association |

a.allConnections))->asSet

AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the associatio
is navigable away from that end.

(self.type.oclIsKindOf (Interface) or
self.type.oclIsKingOf (DataType)) implies

self.association.connection->select
(ae | ae <self)->forAll(ae | ae.isNavigable = #false)

 [2] An Instance may not belong by composition to more than one composite
 Instance.

self.aggregation = #composite implies self.multiplicity.max <= 1

Attribute

No extra well-formedness rules.

BehavioralFeature

[1] All Parameters should have a unique name.

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[2] The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |

self.owner.namespace.allContents->includes (p.type))

Additional operations

[1] The operation hasSameSignature checks if the argument has the same signature
 as the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;

hasSameSignature (b) =

(self.name = b.name) and
UML V1.3 June 1999 2-45

2 UML Semantics

sh
(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type and

b.parameter->at(index).kind =

self.parameter->at(index).kind

)

[2] The operation matchesSignature checks if the argument has a signature that would cla
with the signature of the instance itself (and therefore must be unique). Mismatches in
kind or any differences in return parameters do not cause a mismatch:

matchesSignature (b : BehavioralFeature) : Boolean;

matchesSignature (b) =

(self.name = b.name) and

(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type or

(b.parameter->at(index).kind = return and

self.parameter->at(index).kind = return)

)

Binding

[1] The argument ModelElement must conform to the parameter ModelElement in a
 Binding. In an instantiation it must be of the same kind.

[2] A Binding has one client and one supplier.

(self.client->size = 1) and (self.supplier->size = 1)

[3] A ModelElement may participate in at most one Binding as a client.

Binding.allInstances->forAll

 [b1, b2 | (b1 <> b2) implies (b1.client <> b2.client)]

Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing
 Method in the full descriptor.

not self.isAbstract implies self.allOperations->forAll (op |

self.allMethods->exists (m | m.specification->includes(op)))
2-46 UML V1.3 June 1999

2.5 Core
[2] A Class can only contain Classes, Associations, Generalizations, UseCases,
 Constraints, Dependencies, Collaborations, DataTypes, and Interfaces as a
Namespace.

self.allContents->forAll->(c |

c.oclIsKindOf(Class) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(DataType) or

c.oclIsKindOf(Interface)

Classifier

[1] No BehavioralFeature of the same kind may match the same signature in a
 Classifier.

self.feature->forAll(f, g |

(

(

(f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) or

(f.oclIsKindOf(Method) and g.oclIsKindOf(Method)) or

(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))

) and

f.oclAsType(BehavioralFeature).matchesSignature(g)

)

implies f = g)

[2] No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (p, q |

p.name = q.name implies p = q)

[3] No opposite AssociationEnds may have the same name within a Classifier.

self.oppositeEnds->forAll (p, q | p.name = q.name implies p = q)

[4] The name of an Attribute may not be the same as the name of an opposite
 AssociationEnd or a ModelElement contained in the Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |

not self.allOppositeAssociationEnds->union (self.allContents)-
>collect (q |
UML V1.3 June 1999 2-47

2 UML Semantics

 a

q.name)->includes (a.name))

[5] The name of an opposite AssociationEnd may not be the same as the name of an
 Attribute or a ModelElement contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |

not self.allAttributes->union (self.allContents)->collect (q |

q.name)->includes (o.name))

[6] For each Operation in an specification realized by the Classifier, the Classifier must have
 matching Operation.

self.specification.allOperations->forAll (interOp |

self.allOperations->exists(op | op.hasMatchingSignature
(interOp)))

[7] All of the generalizations in the range of a powertype have the same discriminator.

self.powertypeRange->forAll
(g1, g2 | g1.discriminator = g2.discriminator)

[8] Discriminator names must be distinct from attribute names and opposite AssociationEnd
names.

self.allDiscriminators->intersection (self.allAttributes.name->union
(self.allOppositeAssociationEnds.name))->isEmpty

Additional operations

[1] The operation allFeatures results in a Set containing all Features of the Classifier
 itself and all its inherited Features.

allFeatures : Set(Feature);

allFeatures = self.feature->union(

self.parent.oclAsType(Classifier).allFeatures)

[2] The operation allOperations results in a Set containing all Operations of the
 Classifier itself and all its inherited Operations.

allOperations : Set(Operation);

allOperations = self.allFeatures->select(f | f.oclIsKindOf(Operation))

[3] The operation allMethods results in a Set containing all Methods of the Classifier
 itself and all its inherited Methods.

allMethods : set(Method);

allMethods = self.allFeatures->select(f | f.oclIsKindOf(Method))

[4] The operation allAttributes results in a Set containing all Attributes of the
 Classifier itself and all its inherited Attributes.

allAttributes : set(Attribute);

allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))
2-48 UML V1.3 June 1999

2.5 Core
[5] The operation associations results in a Set containing all Associations of the
 Classifier itself.

associations : set(Association);

associations = self.associationEnd.association->asSet

[6] The operation allAssociations results in a Set containing all Associations of the
 Classifier itself and all its inherited Associations.

allAssociations : set(Association);

allAssociations = self.associations->union (

self.parent.oclAsType(Classifier).allAssociations)

[7] The operation oppositeAssociationEnds results in a set of all AssociationEnds
 that are opposite to the Classifier.

oppositeAssociationEnds : Set (AssociationEnd);

oppositeAssociationEnds =

self.association->select (a | a.associationEnd->select (ae |

ae.type = self).size = 1)->collect (a |

a.associationEnd->select (ae | ae.type <self))->union
(

self.association->select (a | a.associationEnd->select (ae |

ae.type = self).size 1)->collect (a |

a.associationEnd))

[8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds,
 including the inherited ones, that are opposite to the Classifier.

allOppositeAssociationEnds : Set (AssociationEnd);

allOppositeAssociationEnds = self.oppositeAssociationEnds->union (

self.parent.allOppositeAssociationEnds)

[9] The operation specification yields the set of Classifiers that the current Classifier realizes.

specification: Set(Classifier)

specification = self.clientDependency->
select(d |

d.oclIsKindOf(Abstraction)
and d.stereotype.name = "realization"
and d.supplier.oclIsKindOf(Classifier))

.supplier.oclAsType(Classifier)

[10] The operation allContents returns a Set containing all ModelElements contained
 in the Classifier together with the contents inherited from its
 parents.

allContents : Set(ModelElement);

allContents = self.contents->union(
UML V1.3 June 1999 2-49

2 UML Semantics

-

t
self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

[11] The operation allDiscriminators results in a Set containing all Discriminators of the Gen
eralizations from which the Classifier is descended
 itself and all its inherited Features.

allDiscriminators : Set(Name);

allDiscriminators = self.generalization.discriminator->union(

self.parent.oclAsType(Classifier).allDiscriminators)

Comment

No extra well-formedness rules.

Component

[1] A Component may only contain other Components.

self.allContents-forAll(c | c.oclIsKindOf(Component))

[2] A Component may only implement DataTypes, Interfaces, Classes, Associations, Depen-
dencies, Constraints, Signals, DataValues and Objects.

self.allResidentElements -forAll(re |

re.oclIsKindOf(DataType) or

re.oclIsKindOf(Interface) or

re.oclIsKindOf(Class) or

re.oclIsKindOf(Association) or

re.oclIsKindOf(Dependency) or

re.oclIsKindOf(Constraint) or

re.oclIsKindOf(Signal) or

re.oclIsKindOf(DataValue) or

re.oclIsKindOf(Object))

Additional operations

[1] The operation allResidentElements results in a Set containing all ModelElements residen
in a Component or one of its ancestors.

allResidentElements : set(ModelElement)

allResidentElements = self.resident->union(

self.parent.oclAsType(Component).allResidentElements->select(
re |
2-50 UML V1.3 June 1999

2.5 Core

-

re.elementResidence.visibility = #public or

re.elementResidence.visibility = #protected))

[2] The operation allVisibleElements results in a Set containing all ModelElements visible out
side the Component.

allVisibleElements : Set(ModelElement)

allVisibleElements = self.allContents -select(e |

e.elementOwnership.visibility = #public) -union (

self.allResidentElements -select (re |

re.elementResidence.visibility = #public)))

Constraint

[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)

DataType

[1] A DataType can only contain Operations, which all must be queries.

self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) and
f.oclAsType(Operation).isQuery)

[2] A DataType cannot contain any other ModelElements.

self.allContents->isEmpty

Dependency

No extra well-formedness rules.

Element

No extra well-formedness rules.

ElementOwnership

No additional well-formedness rules.

ElementResidence

No additional well-formedness rules.
UML V1.3 June 1999 2-51

2 UML Semantics

e
Feature

No extra well-formedness rules.

GeneralizableElement

[1] A root cannot have any Generalizations.

self.isRoot implies self.generalization->isEmpty

[2] No GeneralizableElement can have a parent Generalization to an element
 which is a leaf.

self.parent->forAll(s | not s.isLeaf)

[3] Circular inheritance is not allowed.

not self.allParents->includes(self)

[4] The parent must be included in the Namespace of the GeneralizableElement.

self.generalization->forAll(g |

self.namespace.allContents->includes(g.parent))

Additional Operations

[1] The operation parent returns a Set containing all direct parents.

parent : Set(GeneralizableElement);

parent = self.generalization.parent

[2] The operation allParents returns a Set containing all the Generalizable
 Elements inherited by this GeneralizableElement (the transitive closure),
 excluding the GeneralizableElement itself.

allParents : Set(GeneralizableElement);

allParents = self.parent->union(self.parent.allParents)

Generalization

[1] A GeneralizableElement may only be a child of GeneralizableElement of the
 same kind.

ImplementationClass (stereotype of Class)

[1] All direct instances of an implementation class must not have any other Classifiers that ar
implementation classes.

self.instance.forall(i | i.classifier.forall(c |

c.stereotype.name = "implementationClass" implies c = self))

[2] A parent of an implementation class must be an implementation class.

self.parent->forAll(stereotype.name="implementationClass")
2-52 UML V1.3 June 1999

2.5 Core

e

l-

-

Interface

[1] An Interface can only contain Operations.

self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) or f.oclIsKindOf(Reception))

[2] An Interface cannot contain any ModelElements.

self.allContents->isEmpty

[3] All Features defined in an Interface are public.

self.allFeatures->forAll (f | f.visibility = #public)

Method

[1] If the realized Operation is a query, then so is the Method.

self.specification->isQuery implies self.isQuery

[2] The signature of the Method should be the same as the signature of the realized
 Operation.

self.hasSameSignature (self. specification)

[3] The visibility of the Method should be the same as for the realized Operation.

self.visibility = self.specification.visibility

[4] The realized Operation must be a feature (possibly inherited) of the same Classifier as th
Method.

self.owner.allOperations->includes(self.specification)

[5] If the realized Operation has been overridden one or more times in the ancestors of the
owner of the Method, then the Method must realize the latest overriding (that is, all other
Operations with the same signature must be owned by ancestors of the owner of the rea
ized Operation).

self.specification.owner.allOperations->includesAll(
(self.owner.allOperations->select(op |

self.hasSameSignature(op)))

ModelElement

That part of the model owned by a template is not subject to all well-formedness rules. A tem
plate is not directly usable in a well-formed model. The results of binding a template are
subject to well-formedness rules.

(not expressed in OCL)

Additional operations

[1] The operation supplier results in a Set containing all direct suppliers of the
 ModelElement.

supplier : Set(ModelElement);
UML V1.3 June 1999 2-53

2 UML Semantics
supplier = self.clientDependency.supplier

[2] The operation allSuppliers results in a Set containing all the ModelElements that
 are suppliers of this ModelElement, including the suppliers of these Model
 Elements. This is the transitive closure.

allSuppliers : Set(ModelElement);

allSuppliers = self.supplier->union(self.supplier.allSuppliers)

[3] The operation “model” results in the set of Models to which the ModelElement belongs.

model : Set(Model);

model = self.namespace->union(self.namespace.allSurroundingNamespaces)

->select(ns|

ns.oclIsKindOf (Model))

[4] A ModelElement is a template when it has parameters.

isTemplate : Boolean;

isTemplate = (self.templateParameter->notEmpty)

[5] A ModelElement is an instantiated template when it is related to a template by a
 Binding relationship.

isInstantiated : Boolean;

isInstantiated = self.clientDependency->select(
oclIsKindOf(Binding))->notEmpty

 [6] The templateArguments are the arguments of an instantiated template, which
 substitute for template parameters.

templateArguments : Set(ModelElement);

templateArguments = self.clientDependency->

select(oclIsKindOf(Binding)).oclAsType(Binding).argument

Namespace

[1] If a contained element, which is not an Association or Generalization has a name,
 then the name must be unique in the Namespace.

self.allContents->forAll(me1, me2 : ModelElement |

(not me1.oclIsKindOf (Association) and not me2.oclIsKindOf
(Association) and

me1.name <‘’ and me2.name <‘’ and me1.name = me2.name

) implies

me1 = me2)

[2] All Associations must have a unique combination of name and associated
 Classifiers in the Namespace.
2-54 UML V1.3 June 1999

2.5 Core
self.allContents -> select(oclIsKindOf(Association))->
forAll(a1, a2 |

a1.name = a2.name and
a1.connection.type = a2.connection.type
implies a1 = a2)

Additional operations

[1] The operation contents results in a Set containing all ModelElements contained by the
Namespace.

contents : Set(ModelElement)

contents = self.ownedElement -> union(self.namespace, contents)

[2] The operation allContents results in a Set containing all ModelElements contained
 by the Namespace.

allContents : Set(ModelElement);

allContents = self.contents

[3] The operation allVisibleElements results in a Set containing all ModelElements
 visible outside of the Namespace.

allVisibleElements : Set(ModelElement)

allVisibleElements = self.allContents -> select(e |

e.elementOwnership.visibility = #public)

[4] The operation allSurroundingNamespaces results in a Set containing all
 surrounding Namespaces.

allSurroundingNamespaces : Set(Namespace)

allSurroundingNamespaces =

self.namespace->union(self.namespace.allSurroundingNamespaces)

Node

No extra well-formedness rules.

Operation

No additional well-formedness rules.

Parameter

No additional well-formedness rules.

PresentationElement

No extra well-formedness rules.
UML V1.3 June 1999 2-55

2 UML Semantics

due to

. It is
iation.
StructuralFeature

[1] The connected type should be included in the owner’s Namespace.

self.owner.namespace.allContents->includes(self.type)

[2] The type of a StructuralFeature must be a Class, DataType or Interface.

self.type.oclIsKindOf(Class) or
self.type.oclIsKindOf(DataType) or
self.type.oclIsKindOf(Interface)

Trace

A trace is an Abstraction with the «trace» stereotype. These are the additional constraints
the stereotype.

[1] The client ModelElements of a Trace must all be from the same Model.

self.client->forAll(e1, e2 | e1.model = e2.model)

[2] The supplier ModelElements of a Trace must all be from the same Model.

self.supplier->forAll(e1, e2 | e1.model = e2.model)

[3] The client and supplier ModelElements must be from two different Models.

self.client.model <self.supplier.model

[4] The client and supplier ModelElements must all be from models of the same system.

self.client.model.intersection(self.supplier.model) <Set{}

Type (stereotype of Class)

[1] A Type may not have any Methods.

not self.feature->exists(oclIsKindOf(Method))

[2] The parent of a type must be a type.

self.parent->forAll(stereotype.name = "type")

Usage

No extra well-formedness rules.

2.5.4 Semantics

This section provides a description of the dynamic semantics of the elements in the Core
structured based on the major constructs in the core, such as interface, class, and assoc
2-56 UML V1.3 June 1999

2.5 Core

s (e.g.,
ier and

d (the
ier at
states
 the
tion.
ction

ed to
ute
have an

 not
does

e
erent
of
gate

, the
nd of

a part
s sole

y all
umes
te
t live

me of
 is
t one
Association

An association declares a connection (link) between instances of the associated classifier
classes). It consists of at least two association ends, each specifying a connected classif
a set of properties which must be fulfilled for the relationship to be valid. The multiplicity
property of an association end specifies how many instances of the classifier at a given en
one bearing the multiplicity value) may be associated with a single instance of the classif
the other end. A multiplicity is a range of nonnegative integers. The association end also
whether or not the connection may be traversed towards the instance playing that role in
connection (isNavigable), for instance, if the instance is directly reachable via the associa
An association-end also specifies whether or not an instance playing that role in a conne
may be replaced by another instance. It may state

• that no constraints exist (changeable),

• that the link cannot be modified once it has been initialized (frozen), or

• that new links of the association may be added but not removed or altered (addOnly).

These constraints do not affect the modifiability of the objects themselves that are attach
the links. Moreover, t) the classifier, or (a child of) the classifier itself. The ordering attrib
of association-end states that if the instances related to a single instance at the other end
ordering that must be preserved, the order of insertion of new links must be specified by
operations that add or modify links. Note that sorting is a performance optimization and is
an example of a logically ordered association, because the ordering information in a sort
not add any information.

In UML, Associations can be of three different kinds: 1) ordinary association, 2) composit
aggregate, and 3) shared aggregate. Since the aggregate construct can have several diff
meanings depending on the application area, UML gives a more precise meaning to two
these constructs (i.e., association and composite aggregate) and leaves the shared aggre
more loosely defined in between.

An association may represent an aggregation (i.e., a whole/part relationship). In this case
association-end attached to the whole element is designated, and the other association-e
the association represents the parts of the aggregation. Only binary associations may be
aggregations. Composite aggregation is a strong form of aggregation which requires that
instance be included in at most one composite at a time and that the composite object ha
responsibility for the disposition of its parts. This means that the composite object is
responsible for the creation and destruction of the parts. In implementation terms, it is
responsible for their memory allocation. If a composite object is destroyed, it must destro
of its parts. It may remove a part and give it to another composite object, which then ass
responsibility for it. If the multiplicity from a part to composite is zero-to-one, the composi
may remove the part and the part may assume responsibility for itself, otherwise it may no
apart from a composite.

A consequence of these rules is that a composite implies propagation semantics (i.e., so
the dynamic semantics of the whole is propagated to its parts). For example, if the whole
copied or destroyed, then so are the parts as well (because a part may belong to at mos
composite).
UML V1.3 June 1999 2-57

2 UML Semantics

ed
ted.
es
rest).

ce at

 and
ed by

d
 into

he
..*, it

 access

d.
ut
e

lifier
 must
h as
ge of

elong
n is
and a
such an

el
). Since
-ends)
ubclass
f the

f

ssifier
A shared aggregation denotes weak ownership (i.e., the part may be included in several
aggregates) and its owner may also change over time. However, the semantics of a shar
aggregation does not imply deletion of the parts when an aggregate referencing it is dele
Both kinds of aggregations define a transitive, antisymmetric relationship (i.e., the instanc
form a directed, non-cyclic graph). Composition instances form a strict tree (or rather a fo

A qualifier declares a partition of the set of associated instances with respect to an instan
the qualified end (the qualified instance is at the end to which the qualifier is attached). A
qualifier instance comprises one value for each qualifier attribute. Given a qualified object
a qualifier instance, the number of objects at the other end of the association is constrain
the declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and designates at most one associate
object. In the general case of multiplicity 0..*, the set of associated instances is partitioned
subsets, each selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, t
qualifier has both semantic and implementation consequences. In the case of multiplicity 0
has no real semantic consequences but suggests an implementation that facilitates easy
of sets of associated instances linked by a given qualifier value.

Note that the multiplicity of a qualifier is given assuming that the qualifier value is supplie
The “raw” multiplicity without the qualifier is assumed to be 0..*. This is not fully general b
it is almost always adequate, as a situation in which the raw multiplicity is 1 would best b
modeled without a qualifier.

Note also that a qualified multiplicity whose lower bound is zero indicates that a given qua
value may be absent, while a lower bound of 1 indicates that any possible qualifier value
be present. The latter is reasonable only for qualifiers with a finite number of values (suc
enumerated values or integer ranges) that represent full tables indexed by some finite ran
values.

AssociationClass

An association may be refined to have its own set of features (i.e., features that do not b
to any of the connected classifiers) but rather to the association itself. Such an associatio
called an association class. It will be both an association, connecting a set of classifiers,
class, and as such have features and be included in other associations. The semantics of
association is a combination of the semantics of an ordinary association and of a class.

The AssociationClass construct can be expressed in a few different ways in the metamod
(e.g., as a subclass of Class, as a subclass of Association, or as a subclass of Classifier
an AssociationClass is a construct being both an association (having a set of association
and a class (declaring a set of features), the most accurate way of expressing it is as a s
of both Association and Class. In this way, AssociationClass will have all the properties o
other two constructs. Moreover, if new kinds of associations containing features (e.g.,
AssociationDataType) are to be included in UML, these are easily added as subclasses o
Association and the other Classifier.

The terms child, subtype, and subclass are synonyms and mean that an instance of a cla
being a subtype of another classifier can always be used where an instance of the latter
classifier is expected. The neutral terms parent and child, with the transitive closures ancestor
and descendant, are the preferred terms in this document.
2-58 UML V1.3 June 1999

2.5 Core

t fully
ve

ions
asses
eclared
 be an

 The
r.

but

nce

or of a
rs.
e used
nnot be
bclass

 of the
ould
e:

 of the

d to:

(s) are
n of

 with

e
 The
Class

The purpose of a class is to declare a collection of methods, operations, and attributes tha
describe the structure and behavior of objects. All objects instantiated from a class will ha
attribute values matching the attributes of the full class descriptor and support the operat
found in the full class descriptor. Some classes may not be directly instantiated. These cl
are said to be abstract and exist only for other classes to inherit and reuse the features d
by them. No object may be a direct instance of an abstract class, although an object may
indirect instance of one through a subclass that is non-abstract.

When a class is instantiated to create a new object, a new instance is created, which is
initialized containing an attribute value for each attribute found in the full class descriptor.
object is also initialized with a connection to the list of methods in the full class descripto

Note – An actual implementation behaves as if there were a full class descriptor,
many clever optimizations are possible in practice.

Finally, the identity of the new object is returned to the creator. The identity of every insta
in a well-formed system is unique and automatic.

A class can have generalizations to other classes. This means that the full class descript
class is derived by inheritance from its own segment declaration and those of its ancesto
Generalization between classes implies substitutability (i.e., an instance of a class may b
whenever an instance of a superclass is expected). If the class is specified as a root, it ca
a subclass of other classes. Similarly, if it is specified as a leaf, no other class can be a su
of the class.

Each attribute declared in a class has a visibility and a type. The visibility defines if the
attribute is publicly available to any class, if it is only available inside the class and its
subclasses (protected), or if it can only be used inside the class (private). The targetScope
attribute declares whether its value should be an instance (of a child) of that type or if it sh
be (a child of) the type itself. There are two alternatives for the ownerScope of an attribut

• it may state that each object created by the class (or by its subclasses) has its own value
attribute, or

• that the value is owned by the class itself.

An attribute also declares how many attribute values should be connected to each owner
(multiplicity), what the initial values should be, and if these attribute values may be change

• none - no constraints exists,

• frozen - the value cannot be replaced or added to once it has been initialized, or

• addOnly - new values may be added to a set but not removed or altered.

For each operation, the operation name, the types of the parameters, and the return type
specified, as well as its visibility (see above). An operation may also include a specificatio
the effects of its invocation. The specification can be done in several different ways (e.g.,
pre- and post-conditions, pseudo-code, or just plain text). Each operation declares if it is
applicable to the instances, the class, or to the class itself (ownerScope). Furthermore, th
operation states whether or not its application will modify the state of the object (isQuery).
UML V1.3 June 1999 2-59

2 UML Semantics

 in a

dents
 Each
 same
 must
nd a

he
g

ration
tion,
 out
rently

ociated
o the
d

ame

 one

o

scope,
on and
inary
tor are

f the
dant.

r and
 or

 that
re the
 class
and

y
nces.
operation also states whether or not the operation may be realized by a different method
subclass (isPolymorphic). A method realizing an operation has the same signature as the
operation and a body implementing the specification of the operation. Methods in descen
override and replace methods inherited from ancestors (see “Inheritance” on page 2-60).
method implements an operation declared in the class or inherited from an ancestor. The
operation may be declared more than once in a full class descriptor, but their descriptions
all match, except that the generalization properties (isRoot, IsAbstract, isLeaf) may vary, a
child operation may strengthen query properties (the child may be a query even though t
parent is not). The specification of the method must match the specification of its matchin
operation, as defined above for operations. Furthermore, if the isQuery attribute of an ope
is true, then it must also be true in any realizing method. However, if it is false in the opera
it may still be true in the method if the method does not actually modify the state to carry
the behavior required by the operation (this can only be true if the operation does not inhe
modify state). The visibility of a method must match its operation.

Classes may have associations to each other. This implies that objects created by the ass
classes are semantically connected (i.e., that links exist between the objects, according t
requirements of the associations). See Association on the next page. Associations are inherite
by subclasses.

A class may realize a set of interfaces. This means that each operation found in the full
descriptor for any realized interface must be present in the full class descriptor with the s
specification (see Semantics section Inheritance on page 2-60). The relationship between
interface and class is not necessarily one-to-one; a class may offer several interfaces and
interface may be offered by more than one class. The same operation may be defined in
multiple interfaces that a class supports; if their specifications are identical then there is n
conflict; otherwise, the model is ill-formed. Moreover, a class may contain additional
operations besides those found in its interfaces.

A class acts as the namespace for various kinds of contained elements defined within its
including classes, interfaces and associations (note that this is purely a scoping constructi
does not imply anything about aggregation), the contained classifiers can be used as ord
classifiers in the container class. If a class inherits another class, the contents of the ances
available to its descendents if the visibility of an element is public or protected; however, i
visibility is private, then the element is not visible and therefore not available in the descen

Inheritance

To understand inheritance it is first necessary to understand the concept of a full descripto
a segment descriptor. A full descriptor is the full description needed to describe an object
other instance (see “Instantiation” on page 2-61). It contains a description of all of the
attributes, associations, and operations that the object contains. In a pre-object-oriented
language, the full descriptor of a data structure was declared directly in its entirety. In an
object-oriented language, the description of an object is built out of incremental segments
are combined using inheritance to produce a full descriptor for an object. The segments a
modeling elements that are actually declared in a model. They include elements such as
and other generalizable elements. Each generalizable element contains a list of features
other relationships that it adds to what it inherits from its ancestors. The mechanism of
inheritance defines how full descriptors are produced from a set of segments connected b
generalization. The full descriptors are implicit, but they define the structure of actual insta
2-60 UML V1.3 June 1999

2.5 Core

ent,
gnal
ble

ed).

nt
tains

 all of
ay be

wo or

 all of

In a
in the

. The
class
n
s in
s the
 value
sifier
ifier

riptor

tance
st
plicit

 of

 may
Each kind of generalizable element has a set of inheritable features. For any model elem
these include constraints. For classifiers, these include features (attributes, operations, si
receptions, and methods) and participation in associations. The ancestors of a generaliza
element are its parents (if any) together with all of their ancestors (with duplicates remov
For a Namespace (such as a Package or a Class with nested declarations), the public or
protected contents of the Namespace are available to descendants of the Namespace.

If a generalizable element has no parent, then its full descriptor is the same as its segme
descriptor. If a generalizable element has one or more parents, then its full descriptor con
the union of the features from its own segment descriptor and the segment descriptors of
its ancestors. For a classifier, no attribute, operation, or signal with the same signature m
declared in more than one of the segments (in other words, they may not be redefined). A
method may be declared in more than one segment. A method declared in any segment
supersedes and replaces a method with the same signature declared in any ancestor. If t
more methods nevertheless remain, then they conflict and the model is ill-formed. The
constraints on the full descriptor are the union of the constraints on the segment itself and
its ancestors. If any of them are inconsistent, then the model is ill-formed.

In any full descriptor for a classifier, each method must have a corresponding operation.
concrete classifier, each operation in its full descriptor must have a corresponding method
full descriptor.

The purpose of the full descriptor is explained under “Instantiation” on page 2-61.

Instantiation

The purpose of a model is to describe the possible states of a system and their behavior
state of a system comprises objects, values, and links. Each object is described by a full
descriptor. The class corresponding to this descriptor is the direct class of the object. If a
object is not completely described by a single class (multiple classification), then any clas
the minimal set of unrelated (by generalization) classes whose union completely describe
object is a direct class of the object. Similarly each link has a direct association and each
has a direct data type. Each of these instances is said to be a direct instance of the clas
from which its full descriptor was derived. An instance is an indirect instance of the class
or any of its ancestors.

The data content of an object comprises one value for each attribute in its full class desc
(and nothing more). The value must be consistent with the type of the attribute. The data
content of a link comprises a tuple containing a list of instances, one that is an indirect ins
of each participant classifier in the full association descriptor. The instances and links mu
obey any constraints on the full descriptors of which they are instances (including both ex
constraints and built-in constraints such as multiplicity).

The state of a system is a valid system instance if every instance in it is a direct instance
some element in the system model and if all of the constraints imposed by the model are
satisfied by the instances.

The behavioral parts of UML describe the valid sequences of valid system instances that
occur as a result of both external and internal behavioral effects.
UML V1.3 June 1999 2-61

2 UML Semantics

vice

tly
cifying
rface.
. The
es of

 the

on.
s,

states
 also

at a
ce

root, it
 can

taclass,

 of a
ent
n for

ms for

ead, it
erated
Interface

The purpose of an interface is to collect a set of operations that constitute a coherent ser
offered by classifiers. Interfaces provide a way to partition and characterize groups of
operations. An interface is only a collection of operations with a name. It cannot be direc
instantiated. Instantiable classifiers, such as class or use case, may use interfaces for spe
different services offered by their instances. Several classifiers may realize the same inte
All of them must contain at least the operations matching those contained in the interface
specification of an operation contains the signature of the operation (i.e., its name, the typ
the parameters and the return type). An interface does not imply any internal structure of
realizing classifier. For example, it does not define which algorithm to use for realizing an
operation. An operation may, however, include a specification of the effects of its invocati
The specification can be done in several different ways (e.g., with pre and post-condition
pseudo-code, or just plain text).

Each operation declares if it applies to the instances of the classifier declaring it or to the
classifier itself (e.g., a constructor on a class (ownerScope)). Furthermore, the operation
whether or not its application will modify the state of the instance (isQuery). The operation
states whether or not all the classes must have the same realization of the operation
(isPolymorphic).

An interface can be a child of other interfaces denoted by generalizations. This means th
classifier offering the interface must provide not only the operations declared in the interfa
but also those declared in the ancestors of the interface. If the interface is specified as a
cannot be a child of other interfaces. Similarly, if it is specified as a leaf, no other interface
be a child of the interface.

Operation

Operation is a conceptual construct, while Method is the implementation construct. Their
common features, such as having a signature, are expressed in the BehavioralFeature me
and the specific semantics of the Operation. The Method constructs are defined in the
corresponding subclasses of BehavioralFeature.

PresentationElement

The responsibility of presentation element is to provide a textual and graphical projection
collection of model elements. In this context, projection means that the presentation elem
represents a human readable notation for the corresponding model elements. The notatio
UML can be found in Chapter 3 of this document.

Presentation elements and model elements must be kept in agreement, but the mechanis
doing this are design issues for model editing tools.

Template

A template is a parameterized model element that cannot be used directly in a model. Inst
may be used to generate other model elements using the Binding relationship; those gen
model elements can be used in normal relationships with other elements.
2-62 UML V1.3 June 1999

2.5 Core

eration,

ments.
late
bound
ple, a

rough

directly

t serve
del,
e
ding
 name
 (it

cture,
plied

t
st be

 but the
.

del
d
el

rue. A
straint

nce of

 in

model,
. If a
ent
A template represents the parameterization of a model element, such as a class or an op
although conceptually any model element may be used (but not all may be useful). The
template element is attached by composite aggregation to an ordered list of parameter ele
Each parameter element has a name that represents an parameter name within the temp
element. Any use of the name within the scope of the template element represents an un
parameter that is to be replaced by an actual value in a Binding of the template. For exam
parameter may represent the type of an attribute of a class (for a class template). The
corresponding attribute would have an association to the template parameter as its type.

Note that the scope of the template includes all of the elements recursively owned by it th
composite aggregation. For example, a parameterized class template owns its attributes,
operations, and so on. Neither the parameterized elements nor its contents may be used
in a model without binding.

A template element has the templateParameter association to a list of ModelElements tha
as its parameters. To avoid introducing metamodel (M2) elements in an ordinary (M1) mo
the model contains a representative of each parameter element, rather than the type of th
parameter element. For example, a frequent kind of parameter is a class. Instead of inclu
the metaclass Class in the (M1) ordinary model, a dummy class must be declared whose
is the name of the parameter. This dummy element is meaningful only within the template
may not be used within the wider model) and it has no features (such as attributes and
operations), because the features are part of an actual element that is supplied when the
template is bound. Because a template parameter is only a dummy that lacks internal stru
it may violate well-formedness constraints of elements of its kind; the actual elements sup
during binding must satisfy ordinary well-formedness constraints.

Note also that when the template is bound, the bound element does not show the explici
structure of a element of its kind; it is a stub. Its semantics and well-formedness rules mu
evaluated as if the actual substitutions of actual elements for parameters had been made;
expansions are not explicitly shown in a canonical model as they are regarded as derived

A template element is therefore effectively isolated from the directly-usable part of the mo
and is indirectly connected to its ultimate instances through Binding associations to boun
elements. The bound elements may be used in ordinary models in places where the mod
element underlying the template could be used.

Miscellaneous

A constraint is a Boolean expression over one or several elements which must always be t
constraint can be specified in several different ways (e.g., using natural language or a con
language).

A dependency specifies that the semantics of a set of model elements requires the prese
another set of model elements. This implies that if the source is somehow modified, the
dependents probably must be modified. The reason for the dependency can be specified
several different ways (e.g., using natural language or an algorithm) but is often implicit.

A Usage or Binding dependency can be established only between elements in the same
since the semantics of a model cannot be dependent on the semantics of another model
connection is to be established between elements in different models, a Trace or Refinem
should be used. Refinement can connect elements in different or same models.
UML V1.3 June 1999 2-63

2 UML Semantics

y
nges
 taken
hange

itive

Whenever the supplier element of a dependency changes, the client element is potentiall
invalidated. After such invalidation, a check should be performed followed by possible cha
to the derived client element. Such a check should be performed after which action can be
to change the derived element to validate it again. The semantics of this validation and c
is outside the scope of UML.

A data type is a special kind of classifier, similar to a class, but whose instances are prim
values (not objects). For example, the integers and strings are usually treated as primitive
values. A primitive value does not have an identity, so two occurrences of the same value
cannot be differentiated. Usually, it is used for specification of the type of an attribute. An
enumeration type is a user-definable type comprising a finite number of values.
2-64 UML V1.3 June 1999

2.6 Extension Mechanisms

ts are

se

ately or
s, and

d

efined

the

t use

otype.
ilitate
er

 and
irectly

ts so

t the
,

ents or

2UML Semantics

2.6 Extension Mechanisms

2.6.1 Overview

The Extension Mechanisms package is the subpackage that specifies how model elemen
customized and extended with new semantics. It defines the semantics for stereotypes,
constraints, and tagged values.

The UML provides a rich set of modeling concepts and notations that have been carefully
designed to meet the needs of typical software modeling projects. However, users may
sometimes require additional features and/or notations beyond those defined in the UML
standard. In addition, users often need to attach non-semantic information to models. The
needs are met in UML by three built-in extension mechanisms that enable new kinds of
modeling elements to be added to the modeler’s repertoire as well as to attach free-form
information to modeling elements. These three extension mechanisms can be used separ
together to define new modeling elements that can have distinct semantics, characteristic
notation relative to the built in UML modeling elements specified by the UML metamodel.
Concrete constructs defined in Extension Mechanisms include Constraint, Stereotype, an
TaggedValue.

The UML extension mechanisms are intended for several purposes:

• To add new modeling elements for use in creating UML models.

• To define standard items that are not considered interesting or complex enough to be d
directly as UML metamodel elements.

• To define process-specific or implementation language-specific extensions.

• To attach arbitrary semantic and non-semantic information to model elements.

Although it is beyond the scope and intent of this document, it is also possible to extend
UML metamodel by explicitly adding new metaclasses and other meta constructs. This
capability depends on unique features of certain UML-compatible modeling tools, or direc
of a meta-metamodel facility, such as the CORBA Meta Object Facility (MOF).

The most important of the built-in extension mechanisms is based on the concept of Stere
Stereotypes provide a way of classifying model elements at the object model level and fac
the addition of "virtual" UML metaclasses with new metaattributes and semantics. The oth
built in extension mechanisms are based on the notion of property lists consisting of tags
values, and constraints. These allow users to attach additional properties and semantics d
to individual model elements, as well as to model elements classified by a Stereotype.

A stereotype is a UML model element that is used to classify (or mark) other UML elemen
that they behave in some respects as if they were instances of new "virtual" or "pseudo"
metamodel classes whose form is based on existing "base" classes. Stereotypes augmen
classification mechanism based on the built in UML metamodel class hierarchy; therefore
names of new stereotypes must not clash with the names of predefined metamodel elem
other stereotypes. Any model element can be marked by at most one stereotype, but any
stereotype can be constructed as a specialization of numerous other stereotypes.
UML V1.3 June 1999 2-65

2 UML Semantics

ped")
ociated
el

y have
s. The
s the

g.

ist
t

trary
uthor,
tional

to such

lue
 allow
user-

he
ved by

 of the

tion in
A stereotype may introduce additional values, additional constraints, and a new graphical
representation. All model elements that are classified by a particular stereotype ("stereoty
receive these values, constraints, and representation. By allowing stereotypes to have ass
graphical representations users can introduce new ways of graphically distinguishing mod
elements classified by a particular stereotype.

A stereotype shares the attributes, associations, and operations of its base class but it ma
additional well-formedness constraints as well as a different meaning and attached value
intent is that a tool or repository be able to manipulate a stereotyped element the same a
ordinary element for most editing and storage purposes, while differentiating it for certain
semantic operations, such as well-formedness checking, code generation, or report writin

Any modeling element may have arbitrary attached information in the form of a property l
consisting of tag-value pairs. A tag is a name string that is unique for a given element tha
selects an associated arbitrary value. Values may be arbitrary but for uniform information
exchange they should be represented as strings. The tag represents the name of an arbi
property with the given value. Tags may be used to represent management information (a
due date, status), code generation information (optimizationLevel, containerClass), or addi
semantic information required by a given stereotype.

It is possible to specify a list of tags (with default values, if desired) that are required by a
particular stereotype. Such required tags serve as "pseudoattributes" of the stereotype to
supplement the real attributes supplied by the base element class. The values permitted
tags can also be constrained.

It is not necessary to stereotype a model element in order to give it individually distinct
constraints or tagged values. Constraints can be directly attached to a model element
(stereotyped or not) to change its semantics. Likewise, a property list consisting of tag-va
pairs can be directly attached to any model element. The tagged values of a property list
characteristics to be assigned to model elements on a flexible, individual basis. Tags are
definable, certain ones are predefined and are listed in the Standard Elements appendix.

Constraints or tagged values associated with a particular stereotype are used to extend t
semantics of model elements classified by that stereotype. The constraints must be obser
all model elements marked with that stereotype.

The following sections describe the abstract syntax, well-formedness rules, and semantics
Extension Mechanisms package.

2.6.2 Abstract Syntax

The abstract syntax for the Extension Mechanisms package is expressed in graphic nota
Figure 2-10 on page 2-67.
2-66 UML V1.3 June 1999

2.6 Extension Mechanisms

ent.
guage
,

editor

type
Figure 2-10 Extension Mechanisms

Constraint

The constraint concept allows new semantics to be specified linguistically for a model elem
The specification is written as an expression in a designated constraint language. The lan
can be specially designed for writing constraints (such as OCL), a programming language
mathematical notation, or natural language. If constraints are to be enforced by a model
tool, then the tool must understand the syntax and semantics of the constraint language.
Because the choice of language is arbitrary, constraints are an extension mechanism.

In the metamodel a Constraint directly attached to a ModelElement describes semantic
restrictions that this ModelElement must obey. Also, any Constraints attached to a Stereo
apply to each ModelElement that bears the given Stereotype.

GeneralizableElement
(from Core)

TaggedValue

tag : Name
value : String

ModelElement

(from C ore)
0..1

*
0..1

+taggedValue

*

Stereotype

icon : Geometry

baseClass : Name

*

0..1

+requiredTag *

0..1

0..1

*

+stereotype

0..1

+extendedElement

*

Constraint

(from Core)

1..*

*

+ const rainedElement

1..* {ordered}

+constraint

*

1

*

+constrainedElement1

+ stereotypeCons tra int *

{xor}
UML V1.3 June 1999 2-67

2 UML Semantics

aking
h the

ay

,
Attributes

Associations

ModelElement (as extended)

Any model element may have arbitrary tagged values and constraints (subject to these m
sense). A model element may have at most one stereotype whose base class must matc
UML class of the modeling element (such as Class, Association, Dependency, etc.). The
presence of a stereotype may impose implicit constraints on the modeling element and m
require the presence of specific tagged values.

Associations

body A boolean expression defining the constraint. Expressions are
written as strings in a designated language. For the model to be
well formed, the expression must always yield a true value when
evaluated for instances of the constrained elements at any time
when the system is stable (i.e., not during the execution of an
atomic operation).

constrainedElement An ordered list of elements subject to the constraint. The
constraint applies to their instances. If the element is a stereotype
then the constraint applies to the elements classified using it.

constraint A constraint that must be satisfied for instances of the model
element. A model element may have a set of constraints. The
constraint is to be evaluated when the system is stable (i.e., not in
the middle of an atomic operation).

stereotype Designates at most one stereotype that further qualifies the UML
class (the base class) of the modeling element. The stereotype
does not alter the structure of the base class but it may specify
additional constraints and tagged values. All constraints and
tagged values on a stereotype apply to the model elements that are
classified by the stereotype. The stereotype acts as a "pseudo
metaclass" describing the model element.

taggedValue An arbitrary property attached to the model element. The tag is
the name of the property and the value is an arbitrary value. The
interpretation of the tagged value is outside the scope of the UML
metamodel. A model element may have a set of tagged values, but
a single model element may have at most one tagged value with a
given tag name. If the model element has a stereotype, then it may
specify that certain tags must be present, providing default values.
2-68 UML V1.3 June 1999

2.6 Extension Mechanisms

ave in
 have
nce of

lues

Values

ments

e, then
st
 it may
Stereotype

The stereotype concept provides a way of classifying (marking) elements so that they beh
some respects as if they were instances of new "virtual" metamodel constructs. Instances
the same structure (attributes, associations, operations) as a similar non-stereotyped insta
the same kind. The stereotype may specify additional constraints and required tagged va
that apply to instances. In addition, a stereotype may be used to indicate a difference in
meaning or usage between two elements with identical structure.

In the metamodel the Stereotype metaclass is a subtype of GeneralizableElement. Tagged
and Constraints attached to a Stereotype apply to all ModelElements classified by that
Stereotype. A stereotype may also specify a geometrical icon to be used for presenting ele
with the stereotype.

Stereotypes are GeneralizableElements. If a stereotype is a subtype of another stereotyp
it inherits all of the constraints and tagged values from its stereotype supertype and it mu
apply to the same kind of base class. A stereotype keeps track of the base class to which
be applied.

Attributes

Associations

baseClass Specifies the name of a UML modeling element to which the
stereotype applies, such as Class, Association, Refinement,
Constraint, etc. This is the name of a metaclass, that is, a class
from the UML metamodel itself rather than a user model class.

icon The geometrical description for an icon to be used to present an
image of a model element classified by the stereotype.

extendedElement Designates the model elements affected by the stereotype. Each
one must be a model element of the kind specified by the
baseClass attribute.

constraint (Inherited from ModelElement) Designates constraints that apply
to the stereotype itself.

requiredTag Specifies a set of tagged values, each of which specifies a tag that
an element classified by the stereotype is required to have. The
value part indicates the default value for the tagged value, that is,
the tagged value that an element will be presumed to have if it is
not overridden by an explicit tagged value on the element bearing
the stereotype. If the value is unspecified, then the element must
explicitly specify a tagged value with the given tag.

stereotypeConstraint Designates constraints that apply to elements bearing the
stereotype.
UML V1.3 June 1999 2-69

2 UML Semantics

ny

ven
t may

ed
s to

er-
TaggedValue

A tagged value is a (Tag, Value) pair that permits arbitrary information to be attached to a
model element. A tag is an arbitrary name, some tag names are predefined as Standard
Elements. At most, one tagged value pair with a given tag name may be attached to a gi
model element. In other words, there is a lookup table of values selected by tag strings tha
be attached to any model element.

The interpretation of a tag is (intentionally) beyond the scope of UML, it must be determin
by user or tool convention. It is expected that various model analysis tools will define tag
supply information needed for their operation beyond the basic semantics of UML. Such
information could include code generation options, model management information, or us
specified additional semantics.

Attributes

Associations

2.6.3 Well-Formedness Rules

The following well-formedness rules apply to the Extension Mechanisms package.

Constraint

[1] A Constraint attached to a Stereotype must not conflict with Constraints on any
 inherited Stereotype, or associated with the baseClass.

-- cannot be specified with OCL

[2] A Constraint attached to a stereotyped ModelElement must not conflict with any
 constraints on the attached classifying Stereotype, nor with the Class (the
 baseClass) of the ModelElement.

-- cannot be specified with OCL

tag A name that indicates an extensible property to be attached to
ModelElements. There is a single, flat space of tag names. UML
does not define a mechanism for name registry but model editing
tools are expected to provide this kind of service. A model
element may have at most one tagged value with a given name. A
tag is, in effect, a pseudoattribute that may be attached to model
elements.

value An arbitrary value. The value must be expressible as a string for
uniform manipulation. The range of permissible values depends
on the interpretation applied to the tag by the user or tool; its
specification is outside the scope of UML.

modelElement A model element that the tag belongs to

stereotype A tag that applies to elements bearing the stereotype.
2-70 UML V1.3 June 1999

2.6 Extension Mechanisms
[3] A Constraint attached to a Stereotype will apply to all ModelElements classified by
 that Stereotype and must not conflict with any constraints on the attached
 classifying Stereotype, nor with the Class (the baseClass) of the ModelElement.

-- cannot be specified with OCL

Stereotype

[1] Stereotype names must not clash with any baseClass names.

Stereotype.oclAllInstances->forAll(st | st.baseClass <> self.name)

[2] Stereotype names must not clash with the names of any inherited Stereotype.

self.allSupertypes->forAll(st : Stereotype | st.name <> self.name)

[3] Stereotype names must not clash in the (M2) meta-class namespace, nor with the
 names of any inherited Stereotype, nor with any baseClass names.

-- M2 level not accessible

[4] The baseClass name must be provided; icon is optional and is specified in an
 implementation specific way.

self.baseClass <> ''

[5] Tag names attached to a Stereotype must not clash with M2 meta-attribute
 namespace of the appropriate baseClass element, nor with Tag names of any
 inherited Stereotype.

-- M2 level not accessible

ModelElement

[1] Tags associated with a ModelElement (directly via a property list or indirectly via
 a Stereotype) must not clash with any metaattributes associated with the Model
 Element.

-- not specified in OCL

[2] A model element must have at most one tagged value with a given tag name.

self.taggedValue->forAll(t1, t2 : TaggedValue |

t1.tag = t2.tag implies t1 = t2)

[3] (Required tags because of stereotypes) If T in modelElement.stereotype.require
 Tag.such that T.value = unspecified, then the modelElement must have a tagged
 value with name = T.name.

self.stereotype.requiredTag->forAll(tag |

tag.value = Undefined implies self.taggedValue->exists(t |

t.tag = tag.tag))
UML V1.3 June 1999 2-71

2 UML Semantics

hey

nt
ht
t

agged
of a
odel

" that

l
ge.

ch tag
e for
e

ey can
idea is
se of
eration
nership

vel
ubtype
asses
ired

class
ints on
otype

l is ill-
o the
 of one
also
TaggedValue

No extra well-formedness rules.

2.6.4 Semantics

Constraints, stereotypes, and tagged values apply to model elements, not to instances. T
represent extensions to the modeling language itself, not extensions to the run-time
environment. They affect the structure and semantics of models. These concepts represe
metalevel extensions to UML. However, they do not contain the full power of a heavyweig
metamodel extension language and they are designed such that tools need not implemen
metalevel semantics to implement them.

Within a model, any user-level model element may have a set of constraints and a set of t
values. The constraints specify restrictions on the instantiation of the model. An instance
user-level model element must satisfy all of the constraints on its model element for the m
to be well-formed. Evaluation of constraints is to be performed when the system is "stable,
is, after the completion of any internal operations when it is waiting for external events.
Constraints are written in a designated constraint language, such as OCL, C++, or natura
language. The interpretation of the constraints must be specified by the constraint langua

A user-level model element may have at most one tagged value with a given tag name. Ea
name represents a user-defined property applicable to model elements with a unique valu
any single model element. The meaning of a tag is outside the scope of UML and must b
determined by convention among users and model analysis tools.

It is intended that both constraints and tagged values be represented as strings so that th
be edited, stored, and transferred by tools that may not understand their semantics. The
that the understanding of the semantics can be localized into a few modules that make u
the values. For example, a code generator could use tagged values to tailor the code gen
process and a process planning tool could use tagged values to denote model element ow
and status. Other modules would simply preserve the uninterpreted values (as strings)
unchanged.

A stereotype refers to a baseClass, which is a class in the UML metamodel (not a user-le
modeling element) such as Class, Association, Refinement, etc. A stereotype may be a s
of one or more existing stereotypes (which must all refer the same baseClass, or baseCl
that derive from the same baseClass), in which case it inherits their constraints and requ
tags and may add additional ones of its own. As appropriate, a stereotype may add new
constraints, a new icon for visual display, and a list of default tagged values.

If a user-level model element is classified by an attached stereotype, then the UML base
of the model element must match the base class specified by the stereotype. Any constra
the stereotype are implicitly attached to the model element. Any tagged values on the stere
are implicitly attached to the model element. If any of the values are unspecified, then the
model element must explicitly define tagged values with the same tag name or the mode
formed. (This behaves as if a copy of the tagged values from the stereotype is attached t
model element, so that the default values can be changed). If the stereotype is a subtype
or more other stereotypes, then any constraints or tagged values from those stereotypes
2-72 UML V1.3 June 1999

2.6 Extension Mechanisms

ny
 the

tances
 be
lected

utes of
itting a
of
e
apply to the model element (because they are inherited by this stereotype). If there are a
conflicts among multiple constraints or tagged values (inherited or directly specified), then
model is ill-formed.

2.6.5 Notes

From an implementation point of view, instances of a stereotyped class are stored as ins
of the base class with the stereotype name as a property. Tagged values can and should
implemented as a lookup table (qualified association) of values (expressed as strings) se
by tag names (represented as strings).

Attributes of UML metamodel classes and tag names should be accessible using a single
uniform string-based selection mechanism. This allows tags to be treated as pseudo-attrib
the metamodel and stereotypes to be treated as pseudo-classes of the metamodel, perm
smooth transition to a full metamodeling capability, if desired. See Section 5.2, “Mapping
UML Semantics to Facility Interfaces” for a discussion of the relationship of the UML to th
OMG Meta Object Facility (MOF).
UML V1.3 June 1999 2-73

2 UML Semantics
2-74 UML V1.3 June 1999

2.7 Data Types

e used
sumed

e 2-11
2UML Semantics

2.7 Data Types

2.7.1 Overview

The Data Types package is the subpackage that specifies the different data types that ar
to define UML. This chapter has a simpler structure than the other packages, since it is as
that the semantics of these basic concepts are well known.

2.7.2 Abstract Syntax

The abstract syntax for the Data Types package is expressed in graphic notation in Figur
on page 2-75 and Figure 2-12 on page 2-76.

Figure 2-11 Data Types Package - Main

MultiplicityRange

lower : Integer
upper : UnlimitedInteger

AggregationKind
<<enumeration>>

Boolean
<<enumeration>>

ChangeableKind
<<enumeration>>

Expression

language : Name
body : String

Name

body : String

Integer
<<primitive>>

ParameterDirectionKind
<<enumeration>>

MessageDirectionKind
<<enumeration>>

ScopeKind
<<enumeration>>

String
<<primitive>>

Time
<<primitive>>

VisibilityKind
<<enumeration>>

PseudostateKind
<<enumeration>>

CallConcurrencyKind
<<enumeration>>

Multiplicity

1..*1

+range

1..*1

Mapping

body : String
UnlimitedInteger
<<primitive>>

LocationReference

OrderingKind
<<enumeration>>
UML V1.3 June 1999 2-75

2 UML Semantics

. They
 sizes
pe

s to be
s

n a

t
Figure 2-12 Data Types Package - Expressions

In the metamodel the data types are used for declaring the types of the classes’ attributes
appear as strings in the diagrams and not with a separate ‘data type’ icon. In this way, the
of the diagrams are reduced. However, each occurrence of a particular name of a data ty
denotes the same data type.

Note that these data types are the data types used for defining UML and not the data type
used by a user of UML. The latter data types will be instances of the DataType metaclas
defined in the metamodel.

ActionExpression

An expression that whose evaluation results in the performance of an action.

AggregationKind

An enumeration that denotes what kind of aggregation an Association is. When placed o
target end, specifies the relationship of the target end to the source end. AggregationKind
defines an enumeration whose values are:

none The end is not an aggregate.

aggregate The end is an aggregate; therefore, the other end is a part and
must have the aggregation value of none. The part may be
contained in other aggregates.

composite The end is a composite; therefore, the other end is a part and mus
have the aggregation value of none. The part is strongly owned by
the composite and may not be part of any other composite.

BooleanExpression

Expression

language : Name
body : String

ObjectSetExpression TimeExpression

ActionExpression

IterationExpression

TypeExpression

ArgListsExpression

MappingExpression ProcedureExpression
2-76 UML V1.3 June 1999

2.7 Data Types

ect

alues

ce of

ive
ArgListsExpression

In the metamodel ArgListsExpression defines a statement which will result in a set of obj
lists when it is evaluated.

Boolean

In the metamodel, Boolean defines an enumeration that denotes a logicial condition. Its v
are:

BooleanExpression

In the metamodel BooleanExpression defines a statement which will evaluate to an instan
Boolean when it is evaluated.

CallConcurrencyKind

An enumeration that denotes the semantics of multiple concurrent calls to the same pass
instance (i.e., an Instance originating from a Classifier with isActive=false). It is an
enumeration with the values:

true The Boolean condition is satisfied.

false The Boolean condition is not satisfied.

sequential Callers must coordinate so that only one call to an Instance (on
any sequential Operation) may be outstanding at once. If
simultaneous calls occur, then the semantics and integrity of the
system cannot be guaranteed.

guarded Multiple calls from concurrent threads may occur simultaneously
to one Instance (on any guarded Operation), but only one is
allowed to commence. The others are blocked until the
performance of the first Operation is complete. It is the
responsibility of the system designer to ensure that deadlocks do
not occur due to simultaneous blocks. Guarded Operations must
perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot
be claimed.

concurrent Multiple calls from concurrent threads may occur simultaneously
to one Instance (on any concurrent Operation). All of them may
proceed concurrently with correct semantics. Concurrent
Operations must perform correctly in the case of a simultaneous
sequential or guarded Operation or concurrent semantics cannot
be claimed.
UML V1.3 June 1999 2-77

2 UML Semantics

ink or

pty)
ent in

t may
 and

d in

…).
ChangeableKind

In the metamodel ChangeableKind defines an enumeration that denotes how an AttributeL
LinkEnd may be modified. Its values are:

Expression

In the metamodel an Expression defines a statement which will evaluate to a (possibly em
set of instances when executed in a context. An Expression does not modify the environm
which it is evaluated. An expression contains an expression string and the name of an
interpretation language with which to evaluate the string.

Attributes

Predefined language names include the following:

Geometry

An uninterpreted type used to describe the geometrical shape of icons, such as those tha
be attached to stereotypes. The details of this specification are not currently part of UML
must therefore be supplied by the implementation of a model editing tool, with the
understanding that they will likely be tool-specific. This type is therefore not actually define
the metamodel but is used only as the type of attributes.

Integer

In the metamodel an Integer is an element in the (infinite) set of integers (…-2, -1, 0, 1, 2

changeable No restrictions on modification.

frozen The value may not be changed from the source end after the
creation and initialization of the source object. Operations on the
other end may change a value.

addOnly If the multiplicity is not fixed, values may be added at any time
from the source object, but once created a value may not be
removed from the source end. Operations on the other end may
change a value.

language Names the language in which the expression body is represented.
The interpretation of the expression depends on the language. If
the language name is omitted, no interpretation for the expression
can be assumed by UML.

body The text of the expression expressed in the given language.

OCL The Object Constraint Language (see Chapter 7, “Object
Constraint Language Specification).
2-78 UML V1.3 June 1999

2.7 Data Types

ntrol

ase.
some

or

hich
t

range
pper

h
uld be
IterationExpression

In the metamodel IterationExpression defines a string which will evaluate to a iteration co
construct in the interpretation language.

LocationReference

Designates a position within a behavior sequences for the insertion of an extension use c
May be a line or range of lines in code, or a state or set of states in a state machine, or
other means in a different kind of specification.

Mapping

In the metamodel a Mapping is an expression that is used for mapping ModelElements. F
exchange purposes, it should be represented as a String.

Attributes

MappingExpression

An expression that evaluates to a mapping.

MessageDirectionKind

This enumeration type is no longer used in UML.

Multiplicity

In the metamodel a Multiplicity defines a non-empty set of non-negative integers. A set w
only contains zero ({0}) is not considered a valid Multiplicity. Every Multiplicity has at leas
one corresponding String representation.

MultiplicityRange

In the metamodel a MultiplicityRange defines a range of integers. The upper bound of the
cannot be below the lower bound. The lower bound must be a nonnegative integer. The u
bound must be a nonnegative integer or the special value unlimited, which indicates there is no
upper bound on the range.

Name

In the metamodel a Name defines a token which is used for naming ModelElements. Eac
Name has a corresponding String representation. For purposes of exchange a name sho
represented as a String.

body A string describing the mapping. The format of the mapping is
currently unspecified in UML.
UML V1.3 June 1999 2-79

2 UML Semantics

f
 target
target

ed by

odify
ed by

e used

eter is
:

to the
Attributes

ObjectSetExpression

In the metamodel ObjectSetExpression defines a statement which will evaluate to a set o
instances when it is evaluated. ObjectSetExpressions are commonly used to designate the
instances in an Action. The expression may be the reserved word “all” when used as the
of a SendAction. It evaluates to all the instances that can receive the signal, as determin
the underlying runtime system.

OrderingKind

Defines an enumeration that specifies how the elements of a set are arranged. Used in
conjunction with elements that have a multiplicity in cases when the multiplicity value is
greater than one. The ordering must be determined and maintained by operations that m
the set. The intent is that the set of enumeration literals be open for new values to be add
tools for purposes of design, code generation, etc. For example, a value of sorted might b
for a design specification. Values are:

ParameterDirectionKind

In the metamodel ParameterDirectionKind defines an enumeration that denotes if a Param
used for supplying an argument and/or for returning a value. The enumeration values are

ProcedureExpression

In the metamodel ProcedureExpression defines a statement which will result in a change
values of its environment when it is evaluated.

body The name string.

unordered The elements of the set have no inherent ordering.

ordered The elements of the set have a sequential ordering.

Other possibilities (such as sorted) may be defined later by
declaring additional keywords. As with user-defined stereotypes,
this would be a private extension supported by particular editing
tools.

in An input Parameter (may not be modified).

out An output Parameter (may be modified to communicate
information to the caller).

inout An input Parameter that may be modified.

return A return value of a call.
2-80 UML V1.3 June 1999

2.7 Data Types

f

ngs to
PseudostateKind

In the metamodel, PseudostateKind defines an enumeration that discriminates the kind o
Pseudostate. See “PseudoState” on page 2-134 for details. The enumeration values are:

ScopeKind

In the metamodel ScopeKind defines an enumeration that denotes whether a feature belo
individual instances or an entire classifier. Its values are:

String

In the metamodel a String defines a stream of text.

choice Splits an incoming transition into several disjoint outgoing
transition. Each outgoing transition has a guard condition that is
evaluated after prior actions on the incoming path have been
completed. At least one outgoing transition must be enabled or the
model is ill-formed.

deepHistory When reached as the target of a transition, restores the full state
configuration that was active just before the enclosing composite
state was last exited.

fork Splits an incoming transition into several concurrent outgoing
transitions. All of the transitions fire together.

initial The default target of a transition to the enclosing composite state.

join Merges transitions from concurrent regions into a single outgoing
transition. All the transitions fire together.

junction Chains together transitions into a single run-to-completion path.
May have multiple input and/or output transitions. Each complete
path involving a junction is logically independent and only one
such path fires at one time. May be used to construct branches and
merges.

shallowHistory When reached as the target of a transition, restores the state
within the enclosing composite state that was active just before
the enclosing state was last exited. Does not restore any substates
of the last active state.

instance The feature pertains to Instances of a Classifier. For example, it is
a distinct Attribute in each Instance or an Operation that works on
an Instance.

classifier The feature pertains to an entire Classifier. For example, it is an
Attribute shared by the entire Classifier or an Operation that
works on the Classifier, such as a creation operation.
UML V1.3 June 1999 2-81

2 UML Semantics

time

 of

n the

tegers
.

d

hich
Time

In the metamodel a Time defines a value representing an absolute or relative moment in
and space. A Time has a corresponding string representation.

TimeExpression

In the metamodel TimeExpression defines a statement which will evaluate to an instance
Time when it is evaluated.

TypeExpression

In the metamodel TypeExpression defines a string that is a programming language type i
interpretation language.

UnlimitedInteger

In the metamodel UnlimitedInteger defines a data type whose range is the nonnegative in
augmented by the special value “unlimited”. It is used for the upper bound of multiplicities

Uninterpreted

In the metamodel an Uninterpreted is a blob, the meaning of which is domain-specific an
therefore not defined in UML.

VisibilityKind

In the metamodel VisibilityKind defines an enumeration that denotes how the element to w
it refers is seen outside the enclosing name space. Its values are:

public Other elements may see and use the target element.

protected Descendants of the source element may see and use the target
element.

private Only the source element may see and use the target element.
2-82 UML V1.3 June 1999

2.8 Behavioral Elements Package

mic

ty

lish a
e State
phs

se the
ts and

 of the
2UML Semantics
Part 3 - Behavioral Elements

This Behavioral Elements package is the language superstructure that specifies the dyna
behavior or models. The Behavioral Elements package is decomposed into the following
subpackages: Common Behavior, Collaborations, Use Cases, State Machines, and Activi
Graphs.

2.8 Behavioral Elements Package

Common Behavior specifies the core concepts required for behavioral elements. The
Collaborations package specifies a behavioral context for using model elements to accomp
particular task. The Use Case package specifies behavior using actors and use cases. Th
Machines package defines behavior using finite-state transition systems. The Activity Gra
package defines a special case of a state machine that is used to model proocesses.

Figure 2-13 Behavioral Elements Package

2.9 Common Behavior

2.9.1 Overview

The Common Behavior package is the most fundamental of the subpackages that compo
Behavioral Elements package. It specifies the core concepts required for dynamic elemen
provides the infrastructure to support Collaborations, State Machines and Use Cases.

The following sections describe the abstract syntax, well-formedness rules and semantics
Common Behavior package.

Use Cases State MachinesCollaborations

Com m on
Behavior

Ac tivity Grap hs
UML V1.3 June 1999 2-83

2 UML Semantics

in the
 and

h as
2.9.2 Abstract Syntax

The abstract syntax for the Common Behavior package is expressed in graphic notation
following figures. Figure 2-14 on page 2-84 shows the model elements that define Signals
Receptions.

Figure 2-14 Common Behavior - Signals

Figure 2-15 on page 2-85 illustrates the model elements that specify various actions, suc
CreateAction, CallAction and SendAction.

Exception

Reception

specif ication : String
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

BehavioralFeatu re
(from Core)

Signal

1

0..*

+signal

1

+reception

0..*

**

+context

*

+raisedSignal

*

Classifier
(from Core)
2-84 UML V1.3 June 1999

2.9 Common Behavior
Figure 2-15 Common Behavior - Actions

Figure 2-16 on page 2-86 shows the model elements that define Instances and Links.

DestroyAction

UninterpretedAction

Model
(from Core)

CreateAction

Clas

(from Core)

0..*

1

0..*

+instantiation1

ReturnAction TerminateAction

CallAction

Operation
(from Core)

*

1

*

+operation1

SendAction

Signal

*

1

*

+signal1

Argument

value : Expression

ActionSequence Action

recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean
script : ActionExpression

*

0..1

+actualArgument*

{ordered}

0..1

0..1 0..*0..1

+action

0..*

{ordered}
UML V1.3 June 1999 2-85

2 UML Semantics

alized

ation
ining

d (or
Figure 2-16 Common Behavior - Instances and Links

The following metaclasses are contained in the Common Behavior package.

Action

An action is a specification of an executable statement that forms an abstraction of a
computational procedure that results in a change in the state of the model, and can be re
by sending a message to an object or modifying a link or a value of an attribute.

In the metamodel an Action may be part of an ActionSequence and may contain a specific
of a target as well as a specification of the actual arguments, i.e. a list of Arguments conta
expressions for determining the actual Instances to be used when the Action is performe
executed).

LinkObject

DataValue Object

ModelElement
(from Core)

Association

(from Core)

NodeInstance

Action

recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean

script : ActionExpression

AssociationEnd

(from Core)
2..*1

+connection

2..*1

Link

1

*

+association1

*

Attribute

(from Core)

ComponentInstance

* 0..1

+resident

* 0..1

Stimulus

1

*

+dispatchAction1

*

* 0..1*

+communicationLink

0..1 LinkEnd

1

*

+associationEnd 1

*

1 2 .. *1

+connection

2 .. *{ordered}

Classifier

(from Core)

AttributeLink

*1 *

+attribute

1

Instance

*

0..1

+resident*

0..1

*

*

*

+argument *

{ordered}

*

1

*

+sender 11

*

+receiver 1

*

1

*

+instance

1

+linkEnd

*

1..* *

+classifier

1..* *

1

0..*

1

+slot 0..* *

1

*

+value1
2-86 UML V1.3 June 1999

2.9 Common Behavior

into
of a
en the

ns. It

, of
 is
The target metaattribute is of type ObjectSetExpression which, when executed, resolves
zero or more specific Instances that are the intended target of the Action, like a receiver
dispatched Signal. The recurrence metaattribute specifies how the target set is iterated wh
action is executed. It is not defined within UML if the action is applied sequentially or in
parallel to the target instances.

Action is an abstract metaclass.

Attributes

Associations

ActionSequence

An action sequence is a collection of actions.

In the metamodel an ActionSequence is an Action, which is an aggregation of other Actio
describes the behavior of the owning State or Transition.

Associations

Argument

An argument is an expression describing how to determine the actual values passed in a
dispatched request. It is aggregated within an action.

In the metamodel an Argument is a part of an Action and contains a metaattribute, value
type Expression. It states how the actual argument is determined when the owning Action
executed.

Attributes

isAsynchronous Indicates if a dispatched Stimulus is asynchronous or not.

recurrence An Expression stating how many times the Action should be
performed.

script An ActionExpression describing the effects of the Action.

target An ObjectSetExpression which determines the target of the
Action.

actualArgument A sequence of Expressions which determines the actual arguments
needed when evaluating the Action.

action A sequence of Actions performed sequentially as an atomic unit.

value An Expression determining the actual Instance when evaluated.
UML V1.3 June 1999 2-87

2 UML Semantics

of an

ction

s is
ment
ted

t. It
AttributeLink

An attribute link is a named slot in an instance, which holds the value of an attribute.

In the metamodel AttributeLink is a piece of the state of an Instance and holds the value
Attribute.

Associations

CallAction

A call action is an action resulting in an invocation of an operation on an instance. A call a
can be synchronous or asynchronous, indicating whether the operation is invoked
synchronously or asynchronously.

In the metamodel the CallAction is an Action. The designated Instance or set of Instance
specified via the target expression, and the actual arguments are designated via the argu
association inherited from Action. The Operation to be invoked is specified by the associa
Operation.

Attributes

Associations

ComponentInstance

A component instance is an instance of a component that resides on a node instance. A
component instance may have a state.

In the metamodel, a ComponentInstance is an Instance that originates from a Componen
may be associated with a set of Instance, and may reside on a NodeInstance.

Associations

value The Instance which is the value of the AttributeLink.

attribute The Attribute from which the AttributeLink originates.

isAsynchronous (inherited from Action) Indicates if a dispatched operation is
asynchronous or not.
• False - indicates that the caller waits for the completion of the

execution of the operation.
• True - Indicates that the caller does not wait for the completion

of the execution of the operation but continues immediately.

operation The operation which will be invoked when the Action is executed.

resident A collection of Instances that exist inside the ComponentInstance.
2-88 UML V1.3 June 1999

2.9 Common Behavior

nated
e.

.

arget

 used

.

which

ture

CreateAction

A create action is an action resulting in the creation of an instance of some classifier.

In the metamodel the CreateAction is an Action. The Classifier to be instantiated is desig
by the instantiation association of the CreateAction. A CreateAction has no target instanc

Associations

DestroyAction

A destroy action is an action results in the destruction of an object specified in the action

In the metamodel a DestroyAction is an Action. The designated object is specified by the t
association of the Action.

DataValue

A data value is an instance with no identity.

In the metamodel DataValue is a child of Instance that cannot change its state, i.e. all
Operations that are applicable to it are pure functions or queries. DataValues are typically
as attribute values.

Exception

An exception is a signal raised by behavioral features typically in case of execution faults

In the metamodel, Exception is derived from Signal. An Exception is associated with the
BehavioralFeatures that raise it.

Associations

Instance

The instance construct defines an entity to which a set of operations can be applied and
has a state that stores the effects of the operations.

In the metamodel Instance is connected to at least one Classifier which declares its struc
and behavior. It has a set of attribute values and is connected to a set of Links, both sets
matching the definitions of its Classifiers. The two sets implement the current state of the
Instance. Instance is an abstract metaclass.

instantiation The Classifier of which an Instance will be created of when the
CreateAction is performed.

context (Inherited from Signal) The set of BehavioralFeatures that raise
the exception.
UML V1.3 June 1999 2-89

2 UML Semantics

ches
nces.
Associations

Standard Constraints

Tagged Values

Link

The link construct is a connection between instances.

In the metamodel Link is an instance of an Association. It has a set of LinkEnds that mat
the set of AssociationEnds of the Association. A Link defines a connection between Insta

Associations

slot The set of AttributeLinks that holds the attribute values of the
Instance.

linkEnd The set of LinkEnds of the connected Links that are attached to
the Instance.

classifier The set of Classifiers that declare the structure of the Instance.

destroyed
Association

Destroyed is a constraint applied to an instance, specifying that the
instance is destroyed during the execution.

new
Association

New is a constraint applied to an instance, specifying that the instance is
created during the execution.

transient
Association

Transient is a constraint applied to an instance, specifying that the instance
is created and destroyed during the execution.

persistent
Association

Persistence denotes the permanence of the state of the instance, marking
it as transitory (its state is destroyed when the instance is destroyed) or
persistent (its state is not destroyed when the instance is destroyed).

association The Association that is the declaration of the link.

connection The tuple of LinkEnds that constitute the Link.
2-90 UML V1.3 June 1999

2.9 Common Behavior

ds to

may

ection
It is a
Standard Constraints

LinkEnd

A link end is an end point of a link.

In the metamodel LinkEnd is the part of a Link that connects to an Instance. It correspon
an AssociationEnd of the Link’s Association.

Associations

Stereotypes

LinkObject

A link object is a link with its own set of attribute values and to which a set of operations
be applied.

In the metamodel LinkObject is a connection between a set of Instances, where the conn
itself may have a set of attribute values and to which a set of Operations may be applied.
child of both Object and Link.

destroyed
Association

Destroyed is a constraint applied to a link, specifying that the link is
destroyed during the execution.

new
Association

New is a constraint applied to a link, specifying that the link is created
during the execution.

transient
Association

Transient is a constraint applied to a link, specifying that the link is
created and destroyed during the execution.

associationEnd The AssociationEnd that is the declaration of the LinkEnd..

instance The Instance connected to the LinkEnd.

qualifierValue The AttributeLinks that hold the values of the Qualifier associated
with the corresponding AssociationEnd.

association
Association

Association is a constraint applied to a link-end, specifying that the
corresponding instance is visible via association.

global
Association

Global is a constraint applied to a link-end, specifying that the
corresponding instance is visible because it is in a global scope relative to
the link.

local
Association

Local is a constraint applied to link-end, specifying that the corresponding
instance is visible because it is in a local scope relative to the link.

parameter
Association

Parameter is a constraint applied to a link-end, specifying that the
corresponding instance is visible because it is a parameter relative to the
link.

self Association Self is a constraint applied to a link-end, specifying that the corresponding
instance is visible because it is the dispatcher of a request.
UML V1.3 June 1999 2-91

2 UML Semantics

e on

t that

s. The
bject

ignal.
ption is

ier

assing.
NodeInstance

A node instance is an instance of a node. A collection of component instances may resid
the node instance.

In the metamodel NodeInstance is an Instance that originates from a Node. Each
ComponentInstance that resides on a NodeInstance must be an instance of a Componen
resides on the corresponding Node.

Associations

Object

An object is an instance that originates from a class.

In the metamodel Object is a subclass of Instance and it originates from at least one Clas
set of Classes may be modified dynamically, which means that the set of features of the O
may change during its life-time.

Reception

A reception is a declaration stating that a classifier is prepared to react to the receipt of a s
The reception designates a signal and specifies the expected behavioral response. A rece
a summary of expected behavior. The details of handling a signal are specified by a state
machine.

In the metamodel Reception is a child of BehavioralFeature and declares that the Classif
containing the feature reacts to the signal designated by the reception feature. The
isPolymorphic attribute specifies whether the behavior is polymorphic or not; a true value
indicates that the behavior is not always the same and may be affected by state or subcl
The specification indicates the expected response to the Signal.

resident A collection of ComponentInstances that reside on the
NodeInstances.
2-92 UML V1.3 June 1999

2.9 Common Behavior

he
tion

al can
cified

nd its
Attributes

Associations

ReturnAction

A return action is an action that results in returning a value to a caller.

In the metamodel ReturnAction is an Action, which causes values to be passed back to t
activator. The values are represented by the arguments inherited from Action. A ReturnAc
has no explicit target.

SendAction

A send action is an action that results in the (asynchronous) sending of a signal. The sign
be directed to a set of receivers via an objectSetExpression, or sent implicitly to an unspe
set of receivers, defined by some external mechanism. For example, if the signal is an
exception, the receiver is determined by the underlying runtime system mechanisms.

In the metamodel SendAction is an Action. It is associated with the Signal to be raised, a
actual arguments are specified by the argument association, inherited from Action.

Associations

isAbstract If true, then the reception does not have an implementation, and
one must be supplied by a descendant. If false, the reception must
have an implementation in the classifier or inherited from an
ancestor.

isLeaf If true, then the implementation of the reception may not be
overriden by a descendant classifier. If false, then the
implementation of the reception may be overridden by a
descendant classifier (but it need not be overridden).

isRoot If true, then the classifier must not inherit a declaration of the
same reception. If false, then the classifier may (but need not)
inherit a declaration of the same reception. (But the declaration
must match in any case; a classifier may not modify an inherited
declaration of a reception.)

specification A description of the effects of the classifier receiving a Signal,
stated by a String.

signal The Signal that the Classifier is prepared to handle.

signal The signal which will be invoked when the Action is executed.
UML V1.3 June 1999 2-93

2 UML Semantics

. The
nt and

hat a

es. A
ise it.

n
stances.

Signal

A signal is a specification of an asynchronous stimulus communicated between instances
receiving instance handles the signal by a state machine. Signal is a generalizable eleme
is defined independently of the classes handling the signal. A reception is a declaration t
class handles a signal, but the actual handling is specified by a state machine.

In the metamodel Signal is a child to Classifier, with the parameters expressed as Attribut
Signal is always asynchronous. A Signal is associated with the BehavioralFeatures that ra

Associations

Stimulus

A stimulus reifies a communication between two instances.

In the metamodel Stimulus is a communication, i.e. a Signal sent to an Instance, or an
invocation of an Operation. It can also be a request to create an Instance, or to destroy a
Instance It has a sender, a receiver, and may have a set of actual arguments, all being In

Associations

TerminateAction

A terminate action results in self-destruction of an object.

In the metamodel TerminateAction is a child of Action. The target of a TerminateAction is
implicitly the Instance executing the action, so there is no explicit target.

UninterpretedAction

An uninterpreted action represents an action that is not explicitly reified in the UML

context The set of BehavioralFeatures that raise the signal.

reception A set of Receptions that indicates Classes prepared to handle the
signal.

argument The sequence of Instances being the arguments of the
MessageInstance.

communicationLink The Link, which is used for communication.

dispatchAction The Action which caused the Stimulus to be dispatched when it
was executed.

receiver The Instance which receives the Stimulus.

sender The Instance which sends the Stimulus.
2-94 UML V1.3 June 1999

2.9 Common Behavior

ever,
tions
her
Taken to the extreme, any action is a call or raise on some instance, like in Smalltalk. How
in more practical terms, uninterpreted actions can be used to model language-specific ac
that are neither call actions nor send actions, and are not easily categorized under the ot
types of actions.

2.9.3 Well-Formedness Rules

The following well-formedness rules apply to the Common Behavior package.

Action

No extra well-formedness rules.

ActionSequence

No extra well-formedness rules.

Argument

No extra well-formedness rules.

AssignmentAction

No extra well-formedness rules.

AttributeLink

[1] The type of the Instance must match the type of the Attribute.

self.value.classifier->union (
self.value.classifier.allParents)->includes (

self.attribute.type)

CallAction

[1] The number of arguments be the same as the number of the Operation.

self.actualArgument->size = self.operation.parameter->size

ComponentInstance

[1] A ComponentInstance originates from exactly one Component.

self.classifier->size = 1

and

self.classifier.oclIsKindOf (Component)
UML V1.3 June 1999 2-95

2 UML Semantics
CreateAction

[1] A CreateAction does not have a target expression.

self.target->isEmpty

DestroyAction

[1] A DestroyAction should not have arguments

self.actualArgument->size = 0

DataValue

[1] A DataValue originates from exactly one Classifier, which is a DataType.

(self.classifier->size = 1)

and

self.classifier.oclIsKindOf(DataType)

[2] A DataValue has no AttributeLinks.

self.slot->isEmpty

Exception

No extra well-formedness rules.

Instance

[1] The AttributeLinks match the declarations in the Classifiers.

self.slot->forAll (al |

self.classifier->exists (c |

c.allAttributes->includes (al.attribute)))

[2] The Links matches the declarations in the Classifiers.

self.allLinks->forAll (l |

self.classifier->exists (c |

c.allAssociations->includes (l.association)))

[3] If two Operations have the same signature they must be the same.

self.classifier->forAll (c1, c2 |

c1.allOperations->forAll (op1 |

c2.allOperations->forAll (op2 |

op1.hasSameSignature (op2) implies op1 = op2)))

[3] There are no name conflicts between the AttributeLinks and opposite LinkEnds.

self.slot->forAll(al |

not self.allOppositeLinkEnds->exists(le | le.name = al.name))

and
2-96 UML V1.3 June 1999

2.9 Common Behavior

ds
self.allOppositeLinkEnds->forAll(le |

not self.slot->exists(al | le.name = al.name))

[4] For each Association in which an Instance is involved, the number of opposite LinkEn
must match the multiplicity of the AssociationEnd.

self.classifier.allOppositeAssociationEnds->forAll (ae |

ae.multiplicity.multiplicityRange->exists (mr |

self.selectedLinkEnds (ae)->size >= mr.lower and

(mr.upper = ‘unlimited’ or

(mr.upper <> ‘unlimited’ and

self.selectedLinkEnds (ae)->size <=

mr.upper.oclAsType (Integer)))))

[5] The number of associated AttributeLinks must match the multiplicity of the Attribute.

self.classifier.allAttributes->forAll (a |

a.multiplicity.multiplicityRange->exists (mr |

self.selectedAttributeLinks (a)->size >= mr.lower and

(mr.upper = ‘unlimited’ or

(mr.upper <> ‘unlimited’ and

self.selectedLinkEnds (a)->size <=

mr.upper.oclAsType (Integer)))))

Additional operations

[1] The operation allLinks results in a set containing all Links of the Instance itself.

allLinks : set(Link);

allLinks = self.linkEnd.link

[2] The operation allOppositeLinkEnds results in a set containing all LinkEnds of Links
connected to the Instance with another LinkEnd.

allOppositeLinkEnds : set(LinkEnd);

allOppositeLinkEnds = self.allLinks.connection->select (le |
le.instance <> self)

[3] The operation selectedLinkEnds results in a set containing all opposite LinkEnds
corresponding to a given AssociationEnd.

selectedLinkEnds (ae : AssociationEnd) : set(LinkEnd);

selectedLinkEnds (ae) = self.allOppositeLinkEnds->select (le |
le.associationEnd = ae)

[4] The operation selectedAttributeLinks results in a set containing all AttributeLinks
corresponding to a given Attribute.

selectedAttributeLinks (ae : Attribute) : set(AttributeLink);

selectedAttributeLinks (a) = self.slot->select (s |
s.attribute = a)
UML V1.3 June 1999 2-97

2 UML Semantics
Link

[1] The set of LinkEnds must match the set of AssociationEnds of the Association.

Sequence {1..self.connection->size}->forAll (i |

self.connection->at (i).associationEnd =

self.association.connection->at (i))

[2] There are not two Links of the same Association which connects the same set of
 Instances in the same way.

self.association.link->forAll (l |

Sequence {1..self.connection->size}->forAll (i |

self.connection->at (i).instance =

l.connection->at (i).instance)

implies self = l)

LinkEnd

[1] The type of the Instance must match the type of the AssociationEnd.

self.instance.classifier->union (
self.instance.classifier.allParents)->includes (

self.associationEnd.type)

LinkObject

[1] One of the Classifiers must be the same as the Association.

self.classifier->includes(self.association)

[2] The Association must be a kind of AssociationClass.

self.association.oclIsKindOf(AssociationClass)

NodeInstance

[1] A NodeInstance must have only one Classifier as its origin, and it must be a Node.

self.classifier->forAll (c | c.oclIsKindOf(Node))

and

self.classifier->size = 1

[2] Each ComponentInstance that resides on a NodeInstance must be an instance of a
Component that resides on the corresponding Node.

self.resident->forAll(n |

self.classifier.resident->includes(n.classifier))

Object

[1] Each of the Classifiers must be a kind of Class.

self.classifier->forAll (c | c.oclIsKindOf(Class))
2-98 UML V1.3 June 1999

2.9 Common Behavior
Reception

[1] A Reception can not be a query.

not self.isQuery

ReturnAction

No extra well-formedness rules.

SendAction

[1] The number of arguments is the same as the number of parameters of the Signal.

self.actualArgument->size = self.signal.allAttributes->size

[2] A Signal is always asynchronous.

self.isAsynchronous

 Signal

No extra well-formedness rules.

Stimulus

[1] The number of arguments must match the number of Arguments of the Action.

self.dispatchAction.actualArgument->size = self.argument->size

[2] The Action must be a SendAction, a CallAction, a CreateAction, or a DestroyAction.

self.dispatchAction.oclIsKindOf (SendAction) or

self.dispatchAction.oclIsKindOf (CallAction) or

self.dispatchAction.oclIsKindOf (CreateAction) or

self.dispatchAction.oclIsKindOf (DestroyAction)

TerminateAction

[1] A TerminateAction has no arguments.

self.actualArguments->size = 0

[2] A TerminateAction has no target expression.

self.target->isEmpty

UninterpretedAction

No extra well-formedness rules.
UML V1.3 June 1999 2-99

2 UML Semantics

avior

 to its
 each
lly a

on in
zation

ase,
d the
forms
ached.
 the
om
 and

data
es and
lues

several
ll. In

a link

 of the
the
nding
ds to
pposite

 may
ays be
2.9.4 Semantics

This section provides a description of the semantics of the elements in the Common Beh
package.

Object and DataValue

An object is an instance that originates from a class, it is structured and behaves according
class. All objects originating from the same class are structured in the same way, although
of them has its own set of attribute links. Each attribute link references an instance, usua
data value. The number of attribute links with the same name fulfills the multiplicity of the
corresponding attribute in the class. The set may be modified according to the specificati
the corresponding attribute, e.g. each referenced instance must originate from (a speciali
of) the type of the attribute, and attribute links may be added or removed according to the
changeable property of the attribute.

An object may have multiple classes (i.e., it may originate from several classes). In this c
the object will have all the features declared in all of these classes, both the structural an
behavioral ones. Moreover, the set of classes (i.e., the set of features that the object con
to) may vary over time. New classes may be added to the object and old ones may be det
This means that the features of the new classes are dynamically added to the object, and
features declared in a class which is removed from the object are dynamically removed fr
the object. No name clashes between attributes links and opposite link ends are allowed,
each operation which is applicable to the object should have a unique signature.

Another kind of instance is data value, which is an instance with no identity. Moreover, a
value cannot change its state; all operations that are applicable to a data value are queri
do not cause any side effects. Since it is not possible to differentiate between two data va
that appear to be the same, it becomes more of a philosophical issue whether there are
data values representing the same value or just one for each value-it is not possible to te
addition, a data value cannot change its data type.

Link

A link is a connection between instances. Each link is an instance of an association, i.e.
connects instances of (specializations of) the associated classifiers. In the context of an
instance, an opposite end defines the set of instances connected to the instance via links
same association and each instance is attached to its link via a link-end originating from
same association-end. However, to be able to use a particular opposite end, the correspo
link end attached to the instance must be navigable. An instance may use its opposite en
access the associated instances. An instance can communicate with the instances of its o
ends and also use references to them as arguments or reply values in communications.

A link object is a special kind of link, it is at the same time also an object. Since an object
change its classes this is also true for a link object. However, one of the classes must alw
an association class.
2-100 UML V1.3 June 1999

2.9 Common Behavior

y and
 done
 Other
en an
nces.
f
en the

o the
 or a
be
us are

 able
ption
ption
 the
 the
d

ation
l
ating

by the
State
chine
ration

a

he

voked

e

xist.
Signal, Exception and Stimulus

Several kinds of requests exist between instances, e.g. sending a signal and invoking an
operation. The former is used to trigger a reaction in the receiver in an asynchronous wa
without a reply, while the latter is applies an operation to an instance, which can be either
synchronously or asynchronously and may require a reply from the receiver to the sender.
kinds of requests are: create a new instance, or deleting an already existing instance. Wh
instance communicates with another instance a stimulus is passed between the two insta
Each stimulus has a sender instance and a receiver instance, and possibly a sequence o
arguments according to the specifying signal or operation. The stimulus uses a link betwe
sender and the receiver for communication. This link may be missing if the receiver is an
argument inside the current activation, a local or global variable, or if the stimulus is sent t
sender instance, itself. Moreover, a stimulus is dispatched by an action, e.g. a call action
send action. The action specifies the request made by the stimulus, like the operation to
invoked or the signal event to be raised, as well as how the actual arguments of the stimul
determined.

A signal may be attached to a classifier, which means that instances of the classifier will be
to receive that signal. This is facilitated by declaring a reception by the classifier. An exce
is a special kind of signal, typically used to signal fault situations. The sender of the exce
aborts execution and execution resumes with the receiver of the exception, which may be
sender itself. Unlike other signals, the receiver of an exception is determined implicitly by
interaction sequence during execution; it is not explicitly specified as the target of the sen
action.

The reception of a stimulus originating from a call action by an instance causes the invoc
of an operation on the receiver. The receiver executes the method that is found in the ful
descriptor of the class that corresponds to the operation. The reception of a stimulus origin
from a signal by an instance may cause a transition and subsequent effects as specified
state machine for the classifier of the recipient. This form of behavior is described in the
Machines package. Note that the invoked behavior is described by methods and state ma
transitions. Operations and receptions merely declare that a classifier accepts a given ope
invocation or signal but they do not specify the implementation.

Action

An action is a specification of a computable statement. Each kind of action is defined as
subclass of action. The following kinds of actions are defined:

• send action is an action in which a stimulus is created that causes a signal event for t
receiver(s).

• call action is an action in which a stimulus is created that causes an operation to be in
on the receiver.

• create action is an action in which an instance is created based on the definitions of th
specified set of classifiers.

• terminate action is an action in which an instance causes itself to cease to exist.

• destroy action is an action in which an instance causes another instance to cease to e

• return action is an action that returns a value to a caller.
UML V1.3 June 1999 2-101

2 UML Semantics

 of an
tion is
ecifies

does

hich
cted.

cuted.
ion, i.e.

pendent

n and
• assignment action is an action that assigns an instance to an attribute link or a link.

• uninterpreted action is an action that has no interpretation in UML.

Each action specifies the target of the action and the arguments of the action. The target
action is an object set expression which resolves into zero or more instances when the ac
executed, e.g the receiver of a stimulus or the instance to be destroyed. The action also sp
if it should iterate over the set of target instances (recurrence). Note, however, that UML
not define if the action is applied to the target instances sequentially or in parallel. The
recurrence can also (in the degenerated case) be used for specification of a condition, w
must be fulfilled if the action is to be applied to the target; otherwise, the request is negle

The arguments of the action resolve into a sequence of instances when the action is exe
These instances are the actual arguments of e.g. the stimulus being dispatched by the act
the instances passed with a signal or the instances used in an operation invocation. The
argument sequence may be dependent on the recurrence, i.e. the arguments may vary de
on the actual target.

An action is always executed within the context of an instance, so the target set expressio
the argument expressions are evaluated within an instance.
2-102 UML V1.3 June 1999

2.10 Collaborations

cifies
r from
e of

 how
cular
rs,
a

ch
eeded
ier or

ture

ram,

e
 in
e

on is
s, as

 also

 of the
2UML Semantics

2.10 Collaborations

2.10.1 Overview

The Collaborations package is a subpackage of the Behavioral Elements package. It spe
the concepts needed to express how different elements of a model interact with each othe
a structural point of view. The package uses constructs defined in the Foundation packag
UML as well as in the Common Behavior package.

A Collaboration defines a specific way to use the Model Elements in a Model. It describes
different kinds of Classifiers and their Associations are to be used in accomplishing a parti
task. The Collaboration defines a restriction of, or a projection of, a collection of Classifie
i.e. what properties Instances of the participating Classifiers must have when performing
particular collaboration. The same Classifier or Association can appear in several
Collaborations, and several times in one Collaboration, each time in a different role. In ea
appearance it is specified which of the properties of the Classifier or the Association are n
in that particular usage. These properties are a subset of all the properties of that Classif
Association. A set of Instances and Links conforming to the participants specified in the
Collaboration cooperate when the specified task is performed. Hence, the Classifier struc
implies the possible collaboration structures of conforming Instances. A Collaboration is a
GeneralizableElement. This implies that one Collaboration may specify a task which is a
specialization of another Collaboration’s task. A Collaboration may be presented in a diag
either showing the restricted views of the participating Classifiers and Associations, or by
showing Instances and Links conforming to the restricted views.

Collaborations can be used for expressing several different things, like how use cases ar
realized, actor structures of ROOM, OOFRam role models, and collaborations as defined
Catalysis. They are also used for setting up the context of Interactions and for defining th
mapping between the specification part and the realization part of a Subsystem.

An Interaction defined in the context of a Collaboration specifies the details of the
communications that should take place in accomplishing a particular task. A communicati
specified with a Message, which defines the roles of the sender and the receiver Instance
well as the Action that will cause the communication. The order of the communications is
specified by the Interaction.

The following sections describe the abstract syntax, well-formedness rules and semantics
Collaborations package.

2.10.2 Abstract Syntax

The abstract syntax for the Collaborations package is expressed in graphic notation in
Figure 2-17.
UML V1.3 June 1999 2-103

2 UML Semantics

.

Figure 2-17 Collaborations

AssociationEndRole

An association-end role specifies an endpoint of an association as used in a collaboration

In the metamodel an AssociationEndRole is part of an AssociationRole and specifies the
connection of an AssociationRole to a ClassifierRole. It is related to the AssociationEnd,
declaring the corresponding part in an Association.

Attributes

collaborationMultiplicity The number of LinkEnds playing this role in a Collaboration.

{xor}

GeneralizableElement

(from Core)

Association

(from Core)

Action

(from Common Behavior)

AssociationEnd

(from Core)

2..*

1

+connection2..*

1

Attribute

(from Core)

Operation

(from Core)

Interaction

AssociationRole

multiplicity : Multiplicity

0..1 *

+base

0..1 *

Feature

(from Core)

Message

*

0..1

*

+activator

0..1

*

*

*

+predecessor

*

1

1..*

1

+message1..*

1*

+action

1*

*0..1 *

+communicationConnection

0..1

AssociationEndRole

collaborationMultiplicity : Multiplicity

0..1 *

+base

0..1 *

1

2..*

1

+/connection2..*

*

*

*
+availableQualifier *

Classifier

(from Core)

Col laboration

* 0..1*

+represented
Operation

0..1

1

*

+context1

+interaction

*

1

*

1

+/ownedElement*

* 0..1*

+represented
Classi fier

0..1

ClassifierRole

multiplicity : Multiplicity

** *

+availableFeature

*

1

1..*

1

+/ownedElement1..*

1

*

+sender 1

* *

1

*

+receiver 1

* 1* +/type 1

*

1..*

*

+base1..*

ModelElement

(from Core)

*

*

* +constrainingElement

*

*

*

*

+availableContents *

Namespace

(from Core)
2-104 UML V1.3 June 1999

2.10 Collaborations

n a

se
ase

 a
atures
Associations

AssociationRole

An association role is a specific usage of an association needed in a collaboration.

In the metamodel an AssociationRole specifies a restricted view of an Association used i
Collaboration. An AssociationRole is a composition of a set of AssociationEndRoles
corresponding to the AssociationEnds of its base Association.

Attributes

Associations

ClassifierRole

A classifier role is a specific role played by a participant in a collaboration. It specifies a
restricted view of a classifier, defined by what is required in the collaboration.

In the metamodel a ClassifierRole specifies one participant of a Collaboration, i.e. a role
Instances conform to. A ClassifierRole defines a set of Features, which is a subset of tho
available in the base Classifiers, as well as a subset of ModelElements contained in the b
Classifiers, that are used in the role. The ClassifierRole may be connected to a set of
AssociationRoles via AssociationEndRoles. As ClassifierRole is a kind of Classifier, a
Generalization relationship may be defined between two ClassifierRoles. The child role is
specialization of the parent, i.e. the Features and the contents of the child includes the Fe
and contents of the parent.

Attributes

availableQualifier The subset of Qualifiers that are used in the Collaboration.

base The AssociationEnd which the AssociationEndRole is a projection
of.

multiplicity The number of Links playing this role in a Collaboration.

base The Association which the AssociationRole is a view of.

multiplicity The number of Instances playing this role in a Collaboration.
UML V1.3 June 1999 2-105

2 UML Semantics

 set of
 to be
ion

which
ed
used

e

ed
tions
es.

ify a
Associations

Collaboration

A collaboration describes how an operation or a classifier, like a use case, is realized by a
classifiers and associations used in a specific way. The collaboration defines a set of roles
played by instances and links, as well as a set of interactions that define the communicat
between the instances when they play the roles.

In the metamodel a Collaboration contains a set of ClassifierRoles and AssociationRoles,
represent the Classifiers and Associations that take part in the realization of the associat
Classifier or Operation. The Collaboration may also contain a set of Interactions that are
for describing the behavior performed by Instances conforming to the participating
ClassifierRoles.

A Collaboration specifies a view (restriction, slice, projection) of a model of Classifiers. Th
projection describes the required relationships between Instances that conform to the
participating ClassifierRoles, as well as the required subsets of the Features and contain
ModelElements of these Classifiers. Several Collaborations may describe different projec
of the same set of Classifiers. Hence, a Classifier can be a base for several ClassifierRol

A Collaboration may also reference a set of ModelElements, usually Classifiers and
Generalizations, needed for expressing structural requirements, such as Generalizations
required between the Classifiers themselves to fulfill the intent of the Collaboration.

A Collaboration is a GeneralizableElement which implies that one Collaboration may spec
task which is a specialization of the task of another Collaboration.

Associations

availableContents The subset of ModelElements contained in the base Classifier
which is used in the Collaboration.

availableFeature The subset of Features of the base Classifier which is used in the
Collaboration.

base The Classifiers which the ClassifierRole is a view of.

constrainingElement The ModelElements that add extra constraints, like Generalization
and Constraint, on the ModelElements participating in the
Collaboration.

interaction The set of Interactions that are defined within the Collaboration.

ownedElement (Inherited from Namespace) The set of roles defined by the
Collaboration. These are ClassifierRoles and AssociationRoles.

representedClassifier The Classifier the Collaboration is a realization of. (Used if the
Collaboration represents a Classifier.)

representedOperation The Operation the Collaboration is a realization of. Used if the
Collaboration represents an Operation.)
2-106 UML V1.3 June 1999

2.10 Collaborations

 Each

n
.

. A
 an
f the
 Link.
tion.
Interaction

An interaction specifies the communication between instances performing a specific task.
interaction is defined in the context of a collaboration.

In the metamodel an Interaction contains a set of Messages specifying the communicatio
between a set of Instances conforming to the ClassifierRoles of the owning Collaboration

Associations

Message

A message defines a particular communication between instances that is specified in an
interaction.

In the metamodel a Message defines one specific kind of communication in an Interaction
communication can be e.g. raising a Signal, invoking an Operation, creating or destroying
Instance. The Message specifies not only the kind of communication, but also the roles o
sender and the receiver, the dispatching Action, and the role played by the communication
Furthermore, the Message defines the relative sequencing of Messages within the Interac

Associations

2.10.3 Well-Formedness Rules

The following well-formedness rules apply to the Collaborations package.

context The Collaboration which defines the context of the Interaction.

message The Messages that specify the communication in the Interaction.

action The Action which causes a Stimulus to be sent according to the
Message.

activator The Message which invokes the behavior causing the dispatching
of the current Message.

communicationConnection The AssociationRole played by the Links used in the
communications specified by the Message.

interaction The Interaction of which the Message is a part.

receiver The role of the Instance that receives the communication and
reacts to it.

predecessor The set of Messages whose completion enables the execution of
the current Message. All of them must be completed before
execution begins.

 sender The role of the Instance that invokes the communication and
possibly receives a response.
UML V1.3 June 1999 2-107

2 UML Semantics

base

on.

AssociationEndRole

[1] The type of the ClassifierRole must conform to the type of the base AssociationEnd.

self.type.base = self.base.type

or

self.type.base.allParents->includes (self.base.type)

[2] The type must be a kind of ClassifierRole.

self.type.oclIsKindOf (ClassifierRole)

[3] The qualifiers used in the AssociationEndRole must be a subset of those in the base
AssociationEnd.

self.base.qualifier->includesAll (self.availableQualifier)

[4] In a collaboration an association may only be used for traversal if it is allowed by the
association.

self.isNavigable implies self.base.isNavigable

AssociationRole

[1] The AssociationEndRoles must conform to the AssociationEnds of the base Associati

Sequence{ 1..(self.connection->size) }->forAll (index |

self.connection->at(index).base =

self.base.connection->at(index))

[2] The endpoints must be a kind of AssociationEndRoles.

self.connection->forAll(r | r.oclIsKindOf (AssociationEndRole))

ClassifierRole

[1] The AssociationRoles connected to the ClassifierRole must match a subset of the
Associations connected to the base Classifiers.

self.allAssociations->forAll(ar |

self.base.allAssociations->exists (a | ar.base = a))

[2] The Features and contents of the ClassifierRole must be subsets of those of the base
Classifiers.

self.base.allFeatures->includesAll (self.allAvailableFeatures)

and

self.base.allContents->includesAll (self.allAvailableContents)

[3] A ClassifierRole does not have any Features of its own.

self.allFeatures->isEmpty

Additional operations

[1] The operation allAvailableFeatures results in the set of all Features contained in the
ClassifierRole together with those contained in the parents.
2-108 UML V1.3 June 1999

2.10 Collaborations

e

 only
allAvailableFeatures : Set(Feature);

allAvailableFeatures = self.availableFeature->union

(self.parent.allAvailableFeatures)

[2] The operation allAvailableContents results in the set of all ModelElements contained in th
ClassifierRole together with those contained in the parents.

allAvailableContents : Set(ModelElement);

allAvailableContents = self.availableContents->union

(self.parent.allAvailableContents)

Collaboration

[1] All Classifiers and Associations of the ClassifierRoles and AssociationRoles in the
Collaboration must be included in the namespace owning the Collaboration.

self.allContents->forAll (e |

(e.oclIsKindOf (ClassifierRole) implies

self.namespace.allContents->includes (

e.oclAsType(ClassifierRole).base))

and

(e.oclIsKindOf (AssociationRole) implies

self.namespace.allContents->includes (

e.oclAsType(AssociationRole).base)))

[2] All the constraining ModelElements must be included in the namespace owning the
Collaboration.

self.constrainingElement->forAll (ce |

self.namespace.allContents->includes (ce))

[3] If a ClassifierRole or an AssociationRole does not have a name then it should be the
one with a particular base.

self.allContents->forAll (p |

(p.oclIsKindOf (ClassifierRole) implies

p.name = '' implies

self.allContents->forAll (q |

q.oclIsKindOf(ClassifierRole) implies

(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies

p = q)))

and

(p.oclIsKindOf (AssociationRole) implies

p.name = '' implies

self.allContents->forAll (q |

q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =
UML V1.3 June 1999 2-109

2 UML Semantics

e a

ntext
q.oclAsType(AssociationRole).base implies

p = q)))

)

[4] A Collaboration may only contain ClassifierRoles and AssociationRoles, and the
Generalizations and the Constraints between them.

self.allContents->forAll (p |

p.oclIsKindOf (ClassifierRole) or

p.oclIsKindOf (AssociationRole) or

p.oclIsKindOf (Generalization) or

p.oclIsKindOf (Constraint))

[5] A role with the same name as one of the roles in a parent of the Collaboration must b
child (a specialization) of that role.

self.contents->forAll (c |

self.parent.allContents->forall (p |

c.name = p.name implies c.allParents->include (p)))

Additional operations

[1] The operation allContents results in the set of all ModelElements contained in the
Collaboration together with those contained in the parents except those that have been
specialized.

allContents : Set(ModelElement);

allContents = self.contents->union (

self.parent.allContents->reject (e |

self.contents.name->include (e.name)))

Interaction

[1] All Signals being sent must be included in the namespace owning the Collaboration in
which the Interaction is defined.

self.message->forAll (m |

m.action.oclIsKindOf(SendAction) implies

self.context.namespace.allContents->includes (

m.action->oclAsType (SendAction).signal))

Message

[1] The sender and the receiver must participate in the Collaboration which defines the co
of the Interaction.

self.interaction.context.ownedElement->includes (self.sender)

and

self.interaction.context.ownedElement->includes (self.receiver)
2-110 UML V1.3 June 1999

2.10 Collaborations

 the

cts as

rent

se, is
ations
ifier.
[2] The predecessors and the activator must be contained in the same Interaction.

self.predecessor->forAll (p | p.interaction = self.interaction)

and

self.activator->forAll (a | a.interaction = self.interaction)

[3] The predecessors must have the same activator as the Message.

self.allPredecessors->forAll (p | p.activator = self.activator)

[4] A Message cannot be the predecessor of itself.

not self.allPredecessors->includes (self)

[5] The communicationLink of the Message must be an AssociationRole in the context of
Message’s Interaction

self.interaction.context.ownedElement->includes (

self.communicationConnection)

[6] The sender and the receiver roles must be connected by the AssociationRole which a
the communication connection.

self.communicationConnection->size > 0 implies

self.communicationConnection.connection->exists (ar |

ar.type = self.sender)

and

self.communicationConnection.connection->exists (ar |

ar.type = self.receiver)

Additional operations

[1] The operation allPredecessors results in the set of all Messages that precede the cur
one.

allPredecessors : Set(Message);

allPredecessors = self.predecessor->union

(self.predecessor.allPredecessors)

2.10.4 Semantics

This section provides a description of the semantics of the elements in the Collaborations
package. It is divided into two parts: Collaboration and Interaction.

Collaboration

In the following text the term instance of a collaboration denotes the set of instances that
together participate in and perform one specific collaboration.

The purpose of a collaboration is to specify how an operation or a classifier, like a use ca
realized by a set of classifiers and associations. Together, the classifiers and their associ
participating in the collaboration meet the requirements of the realized operation or class
The collaboration defines a context in which the behavior of the realized element can be
UML V1.3 June 1999 2-111

2 UML Semantics

e a
 A

el. A
d

art in

ist

cause
hus,
f the
iew
ticular

may
tained
r,
)

ion
ter
e

 the

ole. As
n, all
in the
n, i.e.
the
stances
e, but

tion
versal
ion

an is
e the
y
of the
specified in terms of interactions between the participants of the collaboration. Thus, whil
model describes a whole system, a collaboration is a slice, or a projection, of that model.
collaboration defines a usage of a subset of the model’s contents.

A collaboration may be presented at two different levels: specification level or instance lev
diagram presenting the collaboration at the specification level will show classifier roles an
association roles, while a diagram at the instance level will show instances and links
conforming to the roles in the collaboration.

In a collaboration it is specified what properties instances must have to be able to take p
the collaboration, i.e. each participant specifies the required set of features a conforming
instance must have. Furthermore, the collaboration also states what associations must ex
between the participants, as well as what classifiers a participant, like a subsystem, must
contain. Neither all features nor all contents of the participating classifiers, and not all
associations between these classifiers are always required in a particular collaboration. Be
of this, a collaboration is not actually defined in terms of classifiers, but classifier roles. T
while a classifier is a complete description of instances, a classifier role is a description o
features required in a particular collaboration, i.e. a classifier role is a projection of, or a v
of, a classifier. The classifier so represented is referred to as the base classifier of that par
classifier role. In fact, since an instance may originate from several classifiers (multiple
classification), a classifier role may have several base classifiers. Several classifier roles
have the same base classifier, even in the same collaboration, but their features and con
elements may be different subsets of the features and contained elements of the classifie
respectively. These classifier roles then specify different roles played by (usually different
instances of the same classifier. When the collaboration represents a classifier, its base
classifiers can be classifiers of any kind, like classes or subsystems, while in a collaborat
specifying the realization of an operation, the base classifiers are the operation’s parame
types together with the attribute types and contained classifiers of the classifier owning th
operation.

In a collaboration the association roles define what associations are needed between the
classifiers in this context. Each association role represents the usage of an association in
collaboration, and it is defined between the classifier roles that represent the associated
classifiers. The represented association is called the base association of the association r
the association roles specify a particular usage of an association in a specific collaboratio
constraints expressed by the association ends are not necessarily required to be fulfilled
specified usage. The multiplicity of the association end may be reduced in the collaboratio
the upper and the lower bounds of the association end roles may be lower than those of
corresponding base association end, as it might be that only a subset of the associated in
participate in the collaboration instance. Similarly, an association may be traversed in som
perhaps not all, of the allowed directions in the specific collaboration, i.e. the isNavigable
property of an association end role may be false even if that property of the base associa
end is true. (However, the opposite is not true, i.e. an association may not be used for tra
in a direction which is not allowed according to the isNavigable properties of the associat
ends.) The changeability and ordering of an association end may be strengthened in an
association-end role, i.e. in a particular usage the end is used in a more restricted way th
defined by the association. Furthermore, if an association has a collection of qualifiers (se
Core), some of them may be used in a specific collaboration. An association end role ma
therefore include a subset of the qualifiers defined by the corresponding association end
base association.
2-112 UML V1.3 June 1999

2.10 Collaborations

 a
 role

these
le.

ust
ding

 roles

g a
ute

ltiple

s that
t the

ssifier
ion
e
 have
f the
 roles;

orm
he

es and
ow

vior
 all
 child
d into
rent’s
ons

tion.
, the

of

new
e
An instance participating in a collaboration instance plays a specific role, i.e. conforms to
classifier role, in the collaboration. The number of instances that should play one specific
in one instance of a collaboration is specified by the classifier role’s multiplicity. Different
instances may play the same role but in different instances of the collaboration. Since all
instances play the same role, they must all conform to the classifier role specifying the ro
Thus, they are often instances of the base classifier of the classifier role, or one of its
descendants. However, since the only requirement on conforming instances is that they m
offer operations according to the classifier role, as well as support attribute links correspon
to the attributes specified by the classifier role, and links corresponding to the association
connected to the classifier role, they may be instances of any classifier meeting this
requirement. The instances may, of course, have more attribute links than required by the
classifier role, which for example would be the case if they originate from a classifier bein
child of the base classifier. Moreover, a conforming instance may also support more attrib
links than required if it originates from multiple classifiers. Finally, one instance may play
different roles in different instances of one collaboration. In fact, the instance may play mu
roles in the same instance of a collaboration.

Collaborations may have generalization relationships to other collaborations, which mean
one collaboration specifies a specialization of another collaboration’s task. This implies tha
child collaboration not only contains all the roles of the parent collaboration but may also
contain new roles; the former roles may possibly be specialized with new features (as cla
roles are also generalizable elements). In this way it is possible to specialize a collaborat
both by adding new roles and by replacing existing roles with specializations of them. Th
specialized role, i.e. a role with a generalization relationship to the replaced role, may both
new features and replace (override) features of its parent. Note that the base classifiers o
specialized roles are not necessarily specializations of the base classifiers of the parent’s
it is enough that they contain all the required features.

How the instances conforming to the roles of a collaboration should interact to jointly perf
the behavior of the realized classifier is specified with a set of interactions (see below). T
collaboration thus specifies the context in which these interactions are performed. If the
collaboration represents an operation, the context includes things like parameters, attribut
classifiers contained in the classifier owning the operation. The interactions then specify h
the arguments, the attribute values, the instances etc. will cooperate to perform the beha
specified by the operation. If the collaboration is a specialization of another collaboration,
communications specified by the parent collaboration are also included in the child, as the
collaboration includes all the roles of the parent. However, new messages may be inserte
these sequences of communication, since the child may include specializations of the pa
roles as well as new roles. The child may of course also include completely new interacti
that do not exist in the parent.

Two or more collaborations may be composed in order to refine a superordinate collabora
For example, when refining a superordinate use case into a set of subordinate use cases
collaborations specifying each of the subordinate use cases may be composed into one
collaboration, which will be a (simple) refinement of the superordinate collaboration. The
composition is done by observing that at least one instance must participate in both sets
collaborating instances. This instance has to conform to one classifier role in each
collaboration. In the composite collaboration these two classifier roles are merged into a
one, which will contain all features included in either of the two original classifier roles. Th
UML V1.3 June 1999 2-113

2 UML Semantics

s
ces

ch a
y be
e

ut other
ration
 other

raining
ssing

red by
 base
nother
ciation

ments

g
he
rming

 on
ntial

 the
e
auses
r a
stated
ill

send
 create
ke an

e to be
new classifier role will, of course, be able to fulfill the requirements of both of the previou
collaborations, so the instance participating in both of the two sets of collaborating instan
will conform to the new classifier role.

A collaboration may be a specification of a template. There will not be any instances of su
template collaboration, but it can be used for generating ordinary collaborations, which ma
instantiated. Template collaborations may have parameters that act like placeholders in th
template. Usually, these parameters would be used as base classifiers and associations, b
kinds of model elements can also be defined as parameters in the collaboration, like ope
or signal. In a collaboration generated from the template these parameters are refined by
model elements that make the collaboration instantiable.

Moreover, a collaboration may also contain a set of constraining model elements, like
constraints and generalizations perhaps together with some extra classifiers. These const
model elements do not participate in the collaboration themselves, but are used for expre
the extra constraints on the participating elements in the collaboration that cannot be cove
the participating roles themselves. For example, in a template it might be required that the
classifiers of two roles must have a common ancestor, or one role must be a subclass of a
one. These kinds of requirements cannot be expressed with association roles, as the asso
roles express the required links between participating instances. An extra set of model ele
may therefore be included in the collaboration.

Interaction

The purpose of an interaction is to specify the communication between a set of interactin
instances performing a specific task. An interaction is defined within a collaboration, i.e. t
collaboration defines the context in which the interaction takes place. The instances perfo
the communication specified by the interaction conform to the classifier roles of the
collaboration.

An interaction specifies the sending of a set of stimuli. These are partially ordered based
which execution thread they belong to. Within each thread the stimuli are sent in a seque
order while stimuli of different threads may be sent in parallel or in an arbitrary order.

A message is a specification of a communication. It specifies the roles of the sender and
receiver instances, as well as which association role specifies the communication link. Th
message is connected to an action, which specifies the statement that, when executed, c
the communication specified by the message to take place. If the action is a call action o
send action, the signal to be sent or the operation to be invoked in the communication is
by the action. The action also contains the argument expressions that, when executed, w
determine the actual arguments being transmitted in the communication. Moreover, any
conditions or iterations of the communication are also specified by the action. Apart from
action and call action, the action connected to a message can also be of other kinds, like
action and destroy action. In these cases, the communication will not raise a signal or invo
operation, but cause a new instance to be created or an already existing instance to be
destroyed. In the case of a create action, the receiver specified by the message is the rol
played by the instance which is created when the action is performed.
2-114 UML V1.3 June 1999

2.10 Collaborations

the
ceiver
me as

ction or
ce, or

is the
essage
e set of
t

e
an one
Thus,
dure,
s may

ors and

se and
be
The stimuli being sent when an action is executed conforms to a message, implying that
sender and receiver instances of the stimuli are in conformance with the sender and the re
roles specified by the message. Furthermore, the action dispatching the stimulus is the sa
the action attached to the message. If the action connected to the message is a create a
destroy action, the receiver role of the message specify the role to be played by the instan
was played by the instance, respectively.

The interaction specifies the activator and predecessors of each message. The activator
message that invoked the procedure which in turn invokes the current message. Every m
except the initial message of an interaction thus has an activator. The predecessors are th
messages that must be completed before the current message may be executed. The firs
message in a procedure of course has no predecessors. If a message has more than on
predecessor, it represents the joining of two threads of control. If a message has more th
successor (the inverse of predecessor), it indicates a fork of control into multiple threads.
the predecessors relationship imposes a partial ordering on the messages within a proce
whereas the activator relationship imposes a tree on the activation of operations. Message
be executed concurrently subject to the sequential constraints imposed by the predecess
activator relationship.

2.10.5 Notes

Pattern is a synonym for a template collaboration that describes the structure of a design
pattern. Design patterns involve many nonstructural aspects, such as heuristics for their u
lists of advantages and disadvantages. Such aspects are not modeled by UML and may
represented as text or tables.
UML V1.3 June 1999 2-115

2 UML Semantics
2-116 UML V1.3 June 1999

2.11 Use Cases

s the
ses
r

entity,
n this

hen the
ts,
an
hese
 of the

Model
es and

 of the

e 2-18
2UML Semantics

2.11 Use Cases

2.11.1 Overview

The Use Cases package is a subpackage of the Behavioral Elements package. It specifie
concepts used for definition of the functionality of an entity like a system. The package u
constructs defined in the Foundation package of UML as well as in the Common Behavio
package.

The elements in the Use Cases package are primarily used to define the behavior of an
like a system or a subsystem, without specifying its internal structure. The key elements i
package are UseCase and Actor. Instances of use cases and instances of actors interact w
services of the entity are used. How a use case is realized in terms of cooperating objec
defined by classes inside the entity, can be specified with a Collaboration. A use case of
entity may be refined to a set of use cases of the elements contained in the entity. How t
subordinate use cases interact can also be expressed in a Collaboration. The specification
functionality of the system itself is usually expressed in a separate use-case model, i.e. a
stereotyped «useCaseModel» (see “Stereotypes and Notation” on page 4-5). The use cas
actors in the use-case model are equivalent to those of the top-level package.

The following sections describe the abstract syntax, well-formedness rules and semantics
Use Cases package.

2.11.2 Abstract Syntax

The abstract syntax for the Use Cases package is expressed in graphic notation in Figur
on page 2-118.
UML V1.3 June 1999 2-117

2 UML Semantics

with
e with

icate
on of
Figure 2-18 Use Cases

The following metaclasses are contained in the Use Cases package.

Actor

An actor defines a coherent set of roles that users of an entity can play when interacting
the entity. An actor may be considered to play a separate role with regard to each use cas
which it communicates.

In the metamodel Actor is a subclass of Classifier. An Actor has a Name and may commun
with a set of UseCases, and, at realization level, with Classifiers taking part in the realizati
these UseCases. An Actor may also have a set of Interfaces, each describing how other
elements may communicate with the Actor.

UseCaseInstance

Actor

Classif ier

(from Core)

Instance

(from Common Behavior)
1..* *

+classif ier

1..* *

ModelElement

(from Core)

Include

UseCase

*

1

+include*

+addition 1

*

1

*

+base1

ExtensionPoint

location : LocationRef erence
*1

+extensionPoint

*1

Extend

condition : BooleanExpression

1

*

+base1

*

1

*

+extension 1

+extend *

1..*

*

+extensionPoint
1..*

{ordered}

*

Relationship

(f rom Core)
2-118 UML V1.3 June 1999

2.11 Use Cases

ctor
et of

ior
e
 in the

e case

of
d into

se
An Actor may have generalization relationships to other Actors. This means that the child A
will be able to play the same roles as the parent Actor, i.e. communicate with the same s
UseCases, as the parent Actor.

Extend

An extend relationship defines that instances of a use case may be augmented with some
additional behavior defined in an extending use case.

In the metamodel an Extend relationship is a directed relationship implying that a
UseCaseInstance of the base UseCase may be augmented with the structure and behav
defined in the extending UseCase. The relationship consists of a condition, which must b
fulfilled if the extension is to take place, and a sequence of references to extension points
base UseCase where the additional behavior fragments are to be inserted.

Attributes

Associations

ExtensionPoint

An extension point references one or a collection of locations in a use case where the us
may be extended.

In the metamodel an ExtensionPoint has a name and one or a collection of descriptions
locations in the behavior of the owning use case, where a piece of behavior may be inserte
the owning use case.

Attributes

Include

An include relationship defines that a use case contains the behavior defined in another u
case.

condition an expression specifying the condition which must be fulfilled if
the extension is to take place.

base the UseCase to be extended.

extension the UseCase specifying the extending behavior.

extensionPoint a sequence of extension-points in the base UseCase specifying
where the additions are to be inserted.

location a reference to one location or a collection of locations where an
extension to the behavior of the use case may be inserted.
UML V1.3 June 1999 2-119

2 UML Semantics

s
se
efined
s and

ty
tions,

s

using
es.

n
f the
d

ase
tion
herits
.

ations

.

In the metamodel an Include relationship is a directed relationship between two UseCase
implying that the behavior in the addition UseCase is inserted into the behavior of the ba
UseCase. The base UseCase may only depend on the result of performing the behavior d
in the addition UseCase, but not on the structure, i.e. on the existence of specific attribute
operations, of the addition UseCase.

Associations

UseCase

The use case construct is used to define the behavior of a system or other semantic enti
without revealing the entity’s internal structure. Each use case specifies a sequence of ac
including variants, that the entity can perform, interacting with actors of the entity.

In the metamodel UseCase is a subclass of Classifier, specifying the sequences of action
performed by an instance of the UseCase. The actions include changes of the state and
communications with the environment of the UseCase. The sequences can be described
many different techniques, like Operation and Methods, ActivityGraphs, and StateMachin

There may be Associations between UseCases and the Actors of the UseCases. Such a
Association states that an instance of the UseCase and a user playing one of the roles o
Actor communicate. UseCases may be related to other UseCases by Extend, Include, an
Generalization relationships. An Include relationship means that a UseCase includes the
behavior described in another UseCase, while an Extend relationship implies that a UseC
may extend the behavior described in another UseCase, ruled by a condition. Generaliza
between UseCases means that the child is a more specific form of the parent. The child in
all Features and Associations of the parent, and may add new Features and Associations

The realization of a UseCase may be specified by a set of Collaborations, i.e. the Collabor
define how Instances in the system interact to perform the sequences of the UseCase.

Associations

UseCaseInstance

A use case instance is the performance of a sequence of actions specified in a use case

addition the UseCase specifying the additional behavior.

base the UseCase which is to include the addition.

extend a collection of Extend relationships to UseCases that the UseCase
extends.

extensionPoint defines a collection of ExtensionPoints where the UseCase may
be extended.

include a collection of Include relationships to UseCases that the UseCase
includes.
2-120 UML V1.3 June 1999

2.11 Use Cases

y a
ther

t
In the metamodel UseCaseInstance is a subclass of Instance. Each method performed b
UseCaseInstance is performed as an atomic transaction, i.e. it is not interrupted by any o
UseCaseInstance.

An explicitly described UseCaseInstance is called a scenario.

2.11.3 Well-FormednessRules

The following well-formedness rules apply to the Use Cases package.

Actor

[1] Actors can only have Associations to UseCases, Subsystems, and Classes and these
Associations
 are binary.

self.associations->forAll(a |

a.connection->size = 2 and

a.allConnections->exists(r | r.type.oclIsKindOf(Actor)) and

a.allConnections->exists(r |

r.type.oclIsKindOf(UseCase) or

r.type.oclIsKindOf(Subsystem) or

r.type.oclIsKindOf(Class)))

[2] Actors cannot contain any Classifiers.

self.contents->isEmpty

Extend

[1] The referenced ExtensionPoints must be included in set of ExtensionPoint in the targe
UseCase.

self.base.allExtensionPoints -> includesAll (self.location)

ExtensionPoint

[1] The name must not be the empty string

not self.name = ‘’

Include

No extra well-formedness rules.

UseCase

[1] UseCases can only have binary Associations.

self.associations->forAll(a | a.connection->size = 2)
UML V1.3 June 1999 2-121

2 UML Semantics

ckage,
[2] UseCases can not have Associations to UseCases specifying the same entity.

self.associations->forAll(a |

a.allConnections->forAll(s, o|

(s.type.specificationPath->isEmpty and

o.type.specificationPath->isEmpty)

or

(not s.type.specificationPath->includesAll(

o.type.specificationPath) and

not o.type.specificationPath->includesAll(

s.type.specificationPath))

))

[3] A UseCase cannot contain any Classifiers.

self.contents->isEmpty

[4] The names of the ExtensionPoints must be unique within the UseCase.

self.allExtensionPoints -> forAll (x, y |

x.name = y.name implies x = y)

Additional operations

[1] The operation specificationPath results in a set containing all surrounding
 Namespaces that are not instances of Package.

specificationPath : Set(Namespace)

specificationPath = self.allSurroundingNamespaces->select(n |

n.oclIsKindOf(Subsystem) or n.oclIsKindOf(Class))

[2] The operation allExtensionPoints results in a set containing all ExtensionPoints of the
UseCase.

allExtensionPoints : Set(ExtensionPoint)

allExtensionPoints = self.allSupertypes.extensionPoint -> union (

self.extensionPoint)

UseCaseInstance

[1] The Classifier of a UseCaseInstance must be a UseCase.

self.classifier->forAll (c | c.oclIsKindOf (UseCase))

2.11.4 Semantics

This section provides a description of the semantics of the elements in the Use Cases pa
and its relationship to other elements in the Behavioral Elements package.
2-122 UML V1.3 June 1999

2.11 Use Cases

nteract
n

one
 that
rs

stem or
e roles
s or

 the

 view
iving
bjects.

ermore,
e

cases

sed
Actor

Figure 2-19 Actor Illustration

Actors model parties outside an entity, such as a system, a subsystem, or a class, which i
with the entity. Each actor defines a coherent set of roles users of the entity can play whe
interacting with the entity. Every time a specific user interacts with the entity, it is playing
such role. An instance of an actor is a specific user interacting with the entity. Any instance
conforms to an actor can act as an instance of the actor. If the entity is a system the acto
represent both human users and other systems. Some of the actors of a lower level subsy
a class may coincide with actors of the system, while others appear inside the system. Th
defined by the latter kind of actors are played by instances of classifiers in other package
subsystems; in the latter case the classifier may belong to either the specification part or
realization part of the subsystem.

Since an actor is outside the entity, its internal structure is not defined but only its external
as seen from the entity. Actor instances communicate with the entity by sending and rece
message instances to and from use case instances and, at realization level, to and from o
This is expressed by associations between the actor and the use case or the class. Furth
interfaces can be connected to an actor, defining how other elements may interact with th
actor.

Two or more actors may have commonalities, i.e. communicate with the same set of use
in the same way. The commonality is expressed with generalizations to another (possibly
abstract) actor, which models the common role(s). An instance of a child can always be u
where an instance of the parent is expected.

Interface

Generalization

Association

AssociationEnd

Namespace

Actor
* 1

*

*

*

*

UML V1.3 June 1999 2-123

2 UML Semantics

 class

the
odel
h use
tity.

ts
again.
ponses

A use
ional
 use
an be

rnal)

ed
 its

 by
 level,
er level
d, the
e
ements
be
d

 actor.
UseCase

Figure 2-20 UseCase Illustration

In the following text the term entity is used when referring to a system, a subsystem, or a
and the terms model element and element denote a subsystem or a class.

The purpose of a use case is to define a piece of behavior of an entity without revealing
internal structure of the entity. The entity specified in this way may be a system or any m
element that contains behavior, like a subsystem or a class, in a model of a system. Eac
case specifies a service the entity provides to its users, i.e. a specific way of using the en
The service, which is initiated by a user, is a complete sequence. This implies that after i
performance the entity will in general be in a state in which the sequence can be initiated
A use case describes the interactions between the users and the entity as well as the res
performed by the entity, as these responses are perceived from the outside of the entity.
case also includes possible variants of this sequence, e.g. alternative sequences, except
behavior, error handling etc. The complete set of use cases specifies all different ways to
the entity, i.e. all behavior of the entity is expressed by its use cases. These use cases c
grouped into packages for convenience.

From a pragmatic point of view, use cases can be used both for specification of the (exte
requirements on an entity and for specification of the functionality offered by an (already
realized) entity. Moreover, the use cases also indirectly state the requirements the specifi
entity poses on its users, i.e. how they should interact so the entity will be able to perform
services.

Since users of use cases always are external to the specified entity, they are represented
actors of the entity. Thus, if the specified entity is a system or a subsystem at the topmost
the users of its use cases are modeled by the actors of the system. Those actors of a low
subsystem or a class that are internal to the system are often not explicitly defined. Instea
use cases relate directly to model elements conforming to these implicit actors, i.e. whos
instances play the roles of these actors in interaction with the use cases. These model el
are contained in other packages or subsystems, where in the subsystem case they may
contained in the specification part or the realization part. The distinction between actor an
conforming element like this is often neglected; thus, they are both referred to by the term

UseCase

Attribute

Operation

UseCaseInstance

AssociationEndAssociation

Namespace Interface

Include

Extend

ExtensionPoint

*

*

*
*

*

*

*
*

*

*

2-124 UML V1.3 June 1999

2.11 Use Cases

 the use
ral use
ase
ses
ually

e of a
faces

ibutes,
as
also be
y

 an
s as
he
nce and
t any
s an

 system
ems and
 cases,
the
ly,

h, that
pecify
inate

e case

ith this
rdinate
 actor of

es.
f those
ate use

ments
n
er
There may be associations between use cases and actors, meaning that the instances of
case and the actor communicate with each other. One actor may communicate with seve
cases of an entity, i.e. the actor may request several services of the entity, and one use c
communicates with one or several actors when providing its service. Note that two use ca
specifying the same entity cannot communicate with each other since each of them individ
describes a complete usage of the entity. Moreover, use cases always use signals when
communicating with actors outside the system, while they may use other communication
semantics when communicating with elements inside the system.

The interaction between actors and use cases can be defined with interfaces. An interfac
use case defines a subset of the entire interaction defined in the use case. Different inter
offered by the same use case need not be disjoint.

A use case can be described in plain text, using operations and methods together with attr
in activity graphs, by a state machine, or by other behavior description techniques, such
preconditions and postconditions. The interaction between a use case and its actors can
presented in collaboration diagrams for specification of the interactions between the entit
containing the use case and the entity’s environment.

A use-case instance is a performance of a use case, initiated by a message instance from
instance of an actor. As a response the use-case instance performs a sequence of action
specified by the use case, like communicating with actor instances, not necessarily only t
initiating one. The actor instances may send new message instances to the use-case insta
the interaction continues until the instance has responded to all input and does not expec
more input, when it ends. Each method performed by a use-case instance is performed a
atomic transaction, i.e. it is not interrupted by any other use-case instance.

In the case where subsystems are used to model the system’s containment hierarchy, the
can be specified with use cases at all levels, as use cases can be used to specify subsyst
classes. A use case specifying one model element is then refined into a set of smaller use
each specifying a service of a model element contained in the first one. The use case of
whole may be referred to as superordinate to its refining use cases, which, corresponding
may be called subordinate in relation to the first one. The functionality specified by each
superordinate use case is completely traceable to its subordinate use cases. Note, thoug
the structure of the container element is not revealed by the use cases, since they only s
the functionality offered by the element. The subordinate use cases of a specific superord
use case cooperate to perform the superordinate one. Their cooperation is specified by
collaborations and may be presented in collaboration diagrams. A specific subordinate us
may appear in several collaborations, i.e. play a role in the performances of several
superordinate use cases. In each such collaboration, other roles specify the cooperation w
specific subordinate use case. These roles are the roles played by the actors of that subo
use case. Some of these actors may be the actors of the superordinate use case, as each
a superordinate use case appears as an actor of at least one of the subordinate use cas
Furthermore, the interfaces of a superordinate use case are traceable to the interfaces o
subordinate use cases that communicate with actors that are also actors of the superordin
case.

The environment of subordinate use cases is the model element containing the model ele
specified by these use cases. Thus, from a bottom-up perspective, an interaction betwee
subordinate use cases results in a superordinate use case, i.e. a use case of the contain
element.
UML V1.3 June 1999 2-125

2 UML Semantics

ss in
the
 a
ss, and

mple,
realized
ements
ll

d
ribes
n of

stem
ng a
s

zation,
s that
s
. The
ior into
ent use

et use
 the
 another
e and

several
end in
ne use
ther use

e the
ral use
 the
se

havior
ase may
on of the
nce of
o take

e where
or
Use cases of classes are mapped onto operations of the classes, since a service of a cla
essence is the invocation of the operations of the class. Some use cases may consist of
application of only one operation, while others may involve a set of operations, usually in
well-defined sequence. One operation may be needed in several of the services of the cla
will therefore appear in several use cases of the class.

The realization of a use case depends on the kind of model element it specifies. For exa
since the use cases of a class are specified by means of operations of the class, they are
by the corresponding methods, while the use cases of a subsystem are realized by the el
contained in the subsystem. Since a subsystem does not have any behavior of its own, a
services offered by a subsystem must be a composition of services offered by elements
contained in the subsystem, i.e. eventually by classes. These elements will collaborate an
jointly perform the behavior of the specified use case. One or a set of collaborations desc
how the realization of a use case is made. Hence, collaborations are used for specificatio
both the refinement and the realization of a use case in terms of subordinate use cases.

The usage of use cases at all levels imply not only a uniform way of specification of
functionality at all levels, but also a powerful technique for tracing requirements at the sy
package level down to operations of the classes. The propagation of the effect of modifyi
single operation at the class level all the way up to the behavior of the system package i
managed in the same way.

Commonalities between use cases can be expressed in three different ways: with generali
include, and extend relationships. A generalization relationship between use cases implie
the child use case contains all the attributes, sequences of behavior, and extension point
defined in the parent use case, and participate in all relationships of the parent use case
child use case may also define new behavior sequences, as well as add additional behav
and specialize existing behavior of the inherited ones. One use case may have several par
cases and one use case may be a parent to several other use cases.

An include relationship between two use cases means that the behavior defined in the targ
case is included at one location in the sequence of behavior performed by an instance of
base use case. When a use-case instance reaches the location where the behavior of an
use case is to be included, it performs all the behavior described by the included use cas
then continues according to its original use case. This means that although there may be
paths through the included use case due to e.g. conditional statements, all of them must
such a way that the use-case instance can continue according to the original use case. O
case may be included in several other use cases and one use case may include several o
cases. The included use case may not be dependent on the base use case. In that sens
included use case represents encapsulated behavior which may easily be reused in seve
cases. Moreover, the base use case may only be dependent on the results of performing
included behavior and not on structure, like Attributes and Associations, of the included u
case.

An extend relationship defines that a use case may be augmented with some additional be
defined in another use case. One use case may extend several use cases and one use c
be extended by several use cases. The base use case may not be dependent of the additi
extending use case. The extend relationship contains a condition and references a seque
extension points in the target use case. The condition must be satisfied if the extension is t
place, and the references to the extension points define the locations in the base use cas
the additions are to be made. Once an instance of a use case is to perform some behavi
2-126 UML V1.3 June 1999

2.11 Use Cases

in an

e
s of the
ints in
only
ing
 or a
ip
s. All
sion

 other

ints,
. The
ent
 post

ses
 the
ntity.
f

rom
lization
ever,
ide the

hole
nd the

lasses.
tem, its
 for the
se-case

d only
 for

 of use
nt.

kind of
are
referenced by an extension point of its use case, and the extension point is the first one
extends relationship’s sequence of references to extension points, the condition of the
relationship is evaluated. If the condition is fulfilled, the sequence obeyed by the use-cas
instance is extended to include the sequence of the extending use case. The different part
extending use case are inserted at the locations defined by the sequence of extension po
the relationship -- one part at each referenced extension point. Note that the condition is
evaluated once: at the first referenced extension point, and if it is fulfilled all of the extend
use case is inserted in the original sequence. An extension point may define one location
set of locations in the behavior defined by the use case. However, if an extend relationsh
references a sequence of extension points, only the first one may define a set of location
other ones must define exactly one location each. Which of the locations of the first exten
point to use is determined by where the extension is triggered. This is not possible for the
ones. In other word, once the extension has been triggered, all location where to add the
different part of the extending use case must be uniquely defined. Hence, all extesion po
except for the first one, referenced by an extend relationship must define single locations
description of the location references by an extension point can be made in several differ
ways, like textual description of where in the behavior the addition should be made, pre-or
conditions, or using the name of a state in a state machine.

Note that the three kinds of relationships described above can only exist between use ca
specifying the same entity. The reason for this is that the use cases of one entity specify
behavior of that entity alone, i.e. all use-case instances are performed entirely within that e
If a use case would have a generalization, include, or extend relationship to a use case o
another entity, the resulting use-case instances would involve both entities, resulting in a
contradiction. However, generalization, include, and extend relationships can be defined f
use cases specifying one entity to use cases of another one if the first entity has a genera
to the second one, since the contents of both entities are available in the first entity. How
the contents of the second entity must be at least protected, so they become available ins
child entity.

As a first step when developing a system, the dynamic requirements of the system as a w
can be expressed with use cases. The entity being specified is then the whole system, a
result is a separate model called a use-case model, i.e. a model with the stereotype
«useCaseModel». Next, the realization of the requirements is expressed with a model
containing a system package, probably a package hierarchy, and at the bottom a set of c
If the system package, i.e. a package with the stereotype «topLevelPackage», is a subsys
abstract behavior is naturally the same as that of the system. Thus, if use cases are used
specification part of the system package, these use cases are equivalent to those in the u
model of the system, i.e. they express the same behavior but possibly slightly differently
structured. In other words, all services specified by the use cases of a system package, an
those, define the services offered by the system. Furthermore, if several models are used
modeling the realization of a system, e.g. an analysis model and a design model, the set
cases of all system packages and the use cases of the use-case model must be equivale

2.11.5 Notes

A pragmatic rule of use when defining use cases is that each use case should yield some
observable result of value to (at least) one of its actors. This ensures that the use cases
complete specifications and not just fragments.
UML V1.3 June 1999 2-127

2 UML Semantics
2-128 UML V1.3 June 1999

2.12 State Machines

cifies a
ition
ell as
er

ariant

ed. For
es) or

phs.

 of the

rs all
scribes

 order
2UML Semantics

2.12 State Machines

2.12.1 Overview

The State Machine package is a subpackage of the Behavioral Elements package. It spe
set of concepts that can be used for modeling discrete behavior through finite state-trans
systems. These concepts are based on concepts defined in the Foundation package as w
concepts defined in the Common Behavior package. This enables integration with the oth
subpackages in Behavioral Elements.

The state machine formalism described in this section is an object-based variant of Harel
statecharts. It incorporates several concepts similar to those defined in ROOMcharts, a v
of statechart defined in the ROOM modeling language. The major differences relative to
classical Harel statecharts are described on page 157.

State machines can be used to specify behavior of various elements that are being model
example, they can be used to model the behavior of individual entities (e.g., class instanc
to define the interactions (e.g., collaborations) between entities.

In addition, the state machine formalism provides the semantic foundation for activity gra
This means that activity graphs are simply a special form of state machines.

The following sections describe the abstract syntax, well-formedness rules, and semantics
State Machines package. Activity graphs are described in section 2.13.

2.12.2 Abstract Syntax

The abstract syntax for state machines is expressed graphically in figure 2-21, which cove
the basic concepts of state machine graphs such as states and transitions. Figure 2-22 de
the abstract syntax of events that can trigger state machine behavior.

The specifications of the concepts defined in these two diagrams are listed in alphabetical
following the figures.
UML V1.3 June 1999 2-129

2 UML Semantics
Figure 2-21 State Machines - Main

Pseudostate

kind : PseudostateKind

SimpleState

SynchState

bound : UnlimitedInteger

StubState

referenceState : Name

FinalStateCompositeState

isConcurent : Boolean

Guard

expression : BooleanExpression

StateVertex

0..*

0..1

+subvertex

0..*

+container

0..1

Event

Action

(from Common Behavior)

ModelElement
(from Core)

Transition

1

0..1

1

+guard0..1

0..1

*

+trigger0..1

*
1 *

+source

1

+outgoing

*

1 *

+target

1

+incoming

*

0..1

0..1

+effect0..1

0..1

State

0..*

0..*

0..* +deferrableEvent

0..*

*

0..1

+internal*

0..1

0..1 0..10..1

+entry

0..1

0..1

0..1

0..1 +exit

0..1

0..1

0..1

0..1 +doActivity

0..1

SubmachineState

StateMachine

*

0..1

+behavior *

+context 0..1

*

0..1

+transition*

0..1

1

0..1

+top1

0..1

*

1

*

+submachine

1

2-130 UML V1.3 June 1999

2.12 State Machines

n.
ed
r at a

vent.
Figure 2-22 State Machines - Events

CallEvent

A call event represents the reception of a request to synchronously invoke a specific operatio
(Note that a call event instance is distinct from the call action that caused it.) The expect
result is the execution of a sequence of actions which characterize the operation behavio
particular state.

Two special cases of CallEvent are the object creation event and the object destruction e

Associations

operation Designates the operation whose invocation raised the call event

ModelElement
(from Core)

TimeEvent

when : TimeExpression

ChangeEvent

changeExpression : BooleanExpression

Operation

(from Core)

CallEvent

1

*

1

+occurrence *

SignalEvent

Signal

(from Common Behavior)

*

1

+occurrence *

1

Parameter

(from Core)

Event

* 0..1

+parameter

*

{ordered}

0..1

+signal +operation
UML V1.3 June 1999 2-131

2 UML Semantics

es true
t is

me an
nge
s until

. The
on.

 as
Stereotypes

ChangeEvent

A change event models an event that occurs when an explicit boolean expression becom
as a result of a change in value of one or more attributes or associations. A change even
raised implicitly and is not the result of some explicit change event action.

The change event should not be confused with a guard. A guard is only evaluated at the ti
event is dispatched whereas, conceptually, the boolean expression associated with a cha
event is evaluated continuously until it becomes true. The event that is generated remain
it is consumed even if the boolean expression changes to false after that.

Attributes

CompositeState

A composite state is a state that contains other state vertices (states, pseudostates, etc.)
association between the composite and the contained vertices is a composition associati
Hence, a state vertex can be a part of at most one composite state.

Any state enclosed within a composite state is called a substate of that composite state. It is
called a direct substate when it is not contained by any other state; otherwise it is referred to
a transitively nested substate.

CompositeState is a child of State.

Associations

«create»
CallEvent

Create is a stereotyped call event denoting that the instance
receiving that event has just been created. For state machines, it
triggers the initial transition at the topmost level of the state
machine (and is the only kind of trigger that may be applied to an
initial transition).

«destroy»
CallEvent

Destroy is a stereotyped call event denoting that the instance
receiving the event is being destroyed.

changeExpression The boolean expression that specifies the change event.

subvertex The set of state vertices that are owned by this composite state.
2-132 UML V1.3 June 1999

2.12 State Machines

tes an

 type.
d to

d.

ver its
. If the

cts are
Attributes

Event

An event is a specification of a type of observable occurrence. The occurrence that genera
event instance is assumed to take place at an instant in time with no duration.

Strictly speaking, the term “event” is used to refer to the type and not to an instance of the
However, on occasion, where the meaning is clear from the context, the term is also use
refer to an event instance.

Event is a child of ModelElement.

Associations

FinalState

A special kind of state signifying that the enclosing composite state is completed. If the
enclosing state is the top state, then it means that the entire state machine has complete

A final state cannot have any outgoing transitions.

FinalState is a child of State.

Guard

A guard is a boolean expression that is attached to a transition as a fine-grained control o
firing. The guard is evaluated when an event instance is dispatched by the state machine
guard is true at that time, the transition is enabled, otherwise, it is disabled.

Guards should be pure expressions without side effects. Guard expressions with side effe
ill formed.

Guard is a child of ModelElement.

isConcurrent A boolean value that specifies the decomposition semantics. If
this attribute is true, then the composite state is decomposed
directly into two or more orthogonal conjunctive components
called regions (usually associated with concurrent execution). If
this attribute is false, then there are no direct orthogonal
components in the composite.

isRegion A derived boolean value that indicates whether a CompositeState
is a substate of a concurrent state. If it is true, then this composite
state is a direct substate of a concurrent state.

parameter The list of parameters defined by the event.
UML V1.3 June 1999 2-133

2 UML Semantics

e state
 state
 a set
et of

ion to
osite

 state
tate

of its
ost

lent

rent

 on
ards.

ition

. A
his

y

 its

y be
Attributes

PseudoState

A pseudostate is an abstraction that encompasses different types of transient vertices in th
machine graph. They are used, typically, to connect multiple transitions into more complex
transitions paths. For example, by combining a transition entering a fork pseudostate with
of transitions exiting the fork pseudostate, we get a compound transition that leads to a s
concurrent target states.

The following pseudostate kinds are defined:

• An initial pseudostate represents a default vertex that is the source for a single transit
the default state of a composite state. There can be at most one initial vertex in a comp
state.

• deepHistory is used as a shorthand notation that represents the most recent active
configuration of the composite state that directly contains this pseudostate; that is, the
configuration that was active when the composite state was last exited. A composite s
can have at most one deep history vertex. A transition may originate from the history
connector to the default deep history state. This transition is taken in case the composite
state had never been active before.

• shallowHistory is a shorthand notation that represents the most recent active substate
containing state (but not the substates of that substate). A composite state can have at m
one shallow history vertex. A transition coming into the shallow history vertex is equiva
to a transition coming into the most recent active substate of a state. A transition may
originate from the history connector to the initial shallow history state. This transition is
taken in case the composite state had never been active before.

• join vertices serve to merge several transitions emanating from source vertices in diffe
orthogonal regions. The transitions entering a join vertex cannot have guards.

• fork vertices serve to split an incoming transition into two or more transitions terminating
orthogonal target vertices. The segments outgoing from a fork vertex must not have gu

• junction vertices are semantic-free vertices that are used to chain together multiple
transitions. They are used to construct compound transition paths between states. For
example, a junction can be used to converge multiple incoming transitions into a single
outgoing transition representing a shared transition path (this is known as an merge).
Conversely, they can be used to split an incoming transition into multiple outgoing trans
segments with different guard conditions. This realizes a static conditional branch. (In the
latter case, outgoing transitions whose guard conditions evaluate to false are disabled
predefined guard denoted “else” may be defined for at most one outgoing transition. T
transition is enabled if all the guards labeling the other transitions are false.) Static
conditional branches are distinct from dynamic conditional branches that are realized b
choice vertices (described below).

• choice vertices which, when reached, result in the dynamic evaluation of the guards of
outgoing transitions. This realizes a dynamic conditional branch. It allows splitting of
transitions into multiple outgoing paths such that the decision on which path to take ma

expression The boolean expression that specifies the guard.
2-134 UML V1.3 June 1999

2.12 State Machines

 If
the

ery
re

cit)

such
nters
).
a function of the results of prior actions performed in the same run-to-completion step.
more than one of the guards evaluates to true, an arbitrary one is selected. If none of
guards evaluates to true, then the model is considered ill-formed. (To avoid this, it is
recommended to define one outgoing transition with the predefined “else” guard for ev
choice vertex.) Choice vertices should be distinguished from static branch points that a
based on junction points (described above).

PseudoState is a child of StateVertex.

Attributes

SignalEvent

A signal event represents the reception of a particular (asynchronous) signal. A signal event
instance should not be confused with the action (e.g., send action) that generated it.

SignalEvent is a child of Event.

Associations

SimpleState

A SimpleState is a state that does not have substates.

It is a child of State.

State

A state is an abstract metaclass that models a situation during which some (usually impli
invariant condition holds. The invariant may represent a static situation such as an object
waiting for some external event to occur. However, it can also model dynamic conditions
as the process of performing some activity (i.e., the model element under consideration e
the state when the activity commences and leaves it as soon as the activity is completed

State is a child of StateVertex.

Associations

kind Determines the precise type of the PseudoState and can be one of:
initial, deepHistory, shallowHistory, join, fork, junction, or
choice.

signal The specific signal that is associated with this event.

deferrableEvent A list of events that are candidates to be retained by the state
machine if they trigger no transitions out of the state (not
consumed). A deferred event is retained until the statemachine
reaches a state configuration where it is no longer deferred.
UML V1.3 June 1999 2-135

2 UML Semantics

model
one or
es.
us

e, and
. All
 the

cle of
StateMachine

A state machine is a specification that describes all possible behaviors of some dynamic
element. Behavior is modeled as a traversal of a graph of state nodes interconnected by
more joined transition arcs that are triggered by the dispatching of series of event instanc
During this traversal, the state machine executes a series of actions associated with vario
elements of the state machine.

StateMachine has a composition relationship to State, which represents the top-level stat
a set of transitions. This means that a state machine owns its transitions and its top state
remaining states are transitively owned through the state containment hierarchy rooted in
top state. The association to ModelElement provides the context of the state machine. A
common case of the context relation is where a state machine is used to specify the lifecy
a classifier.

Associations

entry An optional action that is executed whenever this state is entered
regardless of the transition taken to reach the state. If defined,
entry actions are always executed to completion prior to any
internal activity or transitions performed within the state.

exit An optional action that is executed whenever this state is exited
regardless of which transition was taken out of the state. If
defined, entry actions are always executed to completion only
after all internal activities and transition actions have completed
execution.

doActivity An optional activity that is executed while being in the state. The
execution starts when this state is entered, and stops either by
itself, or when the state is exited, whichever comes first.

internalTransition A set of transitions that, if triggered, occur without exiting or
entering this state. Thus, they do not cause a state change. This
means that the entry or exit condition of the State will not be
invoked. These transitions can be taken even if the state machine
is in one or more regions nested within this state.

context An association to the model element that whose behavior is
specified by this state machine. A model element may have more
than one state machine (although one is sufficient for most
purposes). Each state machine is owned by exactly one model
element.

top Designates the top-level state that is the root of the state
containment hierarchy. There is exactly one state in every state
machine that is the top state.
2-136 UML V1.3 June 1999

2.12 State Machines

source

ntained
 that
 state

s a
ally

xt of a
te
StateVertex

A StateVertex is an abstraction of a node in a statechart graph. In general, it can be the
or destination of any number of transitions.

StateVertex is a child of ModelElement.

Associations

StubState

A stub state can appear within a submachine state and represents an actual subvertex co
within the referenced state machine. It can serve as a source or destination of transitions
connect a state vertex in the containing state machine with a subvertex in the referenced
machine.

StubState is a child of State.

Associations

SubmachineState

A submachine state is a syntactical convenience that facilitates reuse and modularity. It i
shorthand that implies a macro-like expansion by another state machine and is semantic
equivalent to a composite state. The state machine that is inserted is called the referenced state
machine while the state machine that contains the submachine state is called the containing
state machine. The same state machine may be referenced more than once in the conte
single containing state machine. In effect, a submachine state represents a “call” to a sta
machine “subroutine” with one or more entry and exit points.

The entry and exit points are specified by stub states.

SubmachineState is a child of State.

transition The set of transitions owned by the state machine. Note that
internal transitions are owned by their containing states and not by
the state machine.

outgoing Specifies the transitions departing from the vertex.

incoming Specifies the transitions entering the vertex.

container The composite state that contains this state vertex.

referenceState Designates the referenced state as a pathname (a name formed by
the concatenation of the name of a state and the successive names
of all states that contain it, up to the top state).
UML V1.3 June 1999 2-137

2 UML Semantics

e. It is
tive),
egion
tes.

e of

 time

n is
the
nce is

rtex. It

rticular
Associations

SynchState

A synch state is a vertex used for synchronizing the concurrent regions of a state machin
different from a state in the sense that it is not mapped to a boolean value (active, not ac
but an integer. A synch sate is used in conjunction with forks and joins to insure that one r
leaves a particular state or states before another region can enter a particular state or sta

SynchState is a child of StateVertex.

Attributes

TimeEvent

A TimeEvent models the expiration of a specific deadline. Note that the time of occurrenc
a time event instance (i.e., the expiration of the deadline) is the same as the time of its
reception. However, it is important to note that there may be a variable delay between the
of reception and the time of dispatching (e.g., due to queueing delays).

The expression specifying the deadline may be relative or absolute. If the time expressio
relative and no explicit starting time is defined, then it is relative to the time of entry into
source state of the transition triggered by the event. In the latter case, the time event insta
generated only if the state machine is still in that state when the deadline expires.

Attributes

Transition

A transition is a directed relationship between a source state vertex and a target state ve
may be part of a compound transition, which takes the state machine from one state
configuration to another, representing the complete response of the state machine to a pa
event instance.

Transition is a child of ModelElement.

submachine The state machine that is to be substituted in place of the
submachine state.

bound A positive integer or the value “unlimited” specifying the
maximal count of the SynchState. The count is the difference
between the number of times the incoming and outgoing
transitions of the synch state are fired

when Specifies the corresponding time deadline
2-138 UML V1.3 June 1999

2.12 State Machines
Associations

2.12.3 Well-FormednessRules

The following well-formedness rules apply to the State Machines package.

CompositeState

[1] A composite state can have at most one initial vertex

self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #initial)->size <= 1

[2] A composite state can have at most one deep history vertex

self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #deepHistory)->size <= 1

[3] A composite state can have at most one shallow history vertex

self.subvertex->select(v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #shallowHistory)->size <= 1

[4] There have to be at least two composite substates in a concurrent composite state

(self.isConcurrent) implies

(self.subvertex->select
(v | v.oclIsKindOf(CompositeState))->size >= 2)

[5] A concurrent state can only have composite states as substates

(self.isConcurrent) implies
self.subvertex->forAll(s | (s.oclIsKindOf(CompositeState))

trigger Specifies the event that fires the transition. There can be at most
one trigger per transition

guard A boolean predicate that provides a fine-grained control over the
firing of the transition. It must be true for the transition to be
fired. It is evaluated at the time the event is dispatched. There can
be at most one guard per transition.

effect Specifies an optional action to be performed when the transition
fires.

source Designates the originating state vertex (state or pseudostate) of
the transition.

target Designates the target state vertex that is reached when the
transition is taken.
UML V1.3 June 1999 2-139

2 UML Semantics
[6] The substates of a composite state are part of only that composite state

self.subvertex->forAll(s | (s.container->size = 1) and (s.container =
self))

FinalState

[1] A final state cannot have any outgoing transitions

self.outgoing->size = 0

Guard

[1] A guard should not have side effects

self.transition->stateMachine->notEmpty implies
post: (self.transition.stateMachine->context =
self.transition.stateMachine->context@pre)

PseudoState

[1] An initial vertex can have at most one outgoing transition and no incoming
 transitions

(self.kind = #initial) implies

((self.outgoing->size <= 1) and (self.incoming->isEmpty))

[2] History vertices can have at most one outgoing transition

((self.kind = #deepHistory) or (self.kind = #shallowHistory)) implies

(self.outgoing->size <= 1)

[3] A join vertex must have at least two incoming transitions and exactly one outgoing
 transition.

(self.kind = #join) implies

((self.outgoing->size = 1) and (self.incoming->size >= 2))

[4] A fork vertex must have at least two outgoing transitions and exactly one incoming
 transition.

(self.kind = #fork) implies

((self.incoming->size = 1) and (self.outgoing->size >= 2))

[5] A junction vertex must have at least one incoming and one outgoing transition.

(self.kind = #junction) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

[6] A choice vertex must have at least one incoming and one outgoing transition.

(self.kind = #choice) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))
2-140 UML V1.3 June 1999

2.12 State Machines

oing
StateMachine

[1] A StateMachine is aggregated within either a classifier or a behavioral feature.

self.context.oclIsKindOf(BehavioralFeature) or
self.context.oclIsKindOf(Classifier)

[2] A top state is always a composite.

self.top.oclIsTypeOf(CompositeState)

[3] A top state cannot have any containing states

self.top.container->isEmpty

[4] The top state cannot be the source of a transition.

(self.top.outgoing->isEmpty)

[5] If a StateMachine describes a behavioral feature, it contains no triggers of type
 CallEvent, apart from the trigger on the initial transition (see OCL for Transition
 [8]).

self.context.oclIsKindOf(BehavioralFeature) implies

self.transitions->reject(

source.oclIsKindOf(Pseudostate) and

source.oclAsType(Pseudostate).kind= #initial).trigger-
>isEmpty

SynchState

[1] The value of the bound attribute must be a positive integer, or unlimited.

(self.bound > 0) or (self.bound = unlimited)

[2] All incoming transitions to a SynchState must come from the same region and all outg
transitions from a SynchState must go to the same region.

SubmachineState

[1] Only stub states allowed as substates of a submachine state.

self.subvertex->forAll (s | s.oclIsTypeOf(StubState))

[2] Submachine states are never concurrent.

self.isConcurrent = false

Transition

[1] A fork segment should not have guards or triggers.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies
UML V1.3 June 1999 2-141

2 UML Semantics
((self.guard->isEmpty) and (self.trigger->isEmpty)))

[2] A join segment should not have guards or triggers.

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[3] A fork segment should always target a state.

(self.stateMachine->notEmpty) implies

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

(self.target.oclIsKindOf(State)))

[4] A join segment should always originate from a state.

(self.stateMachine->notEmpty) implies

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

(self.source.oclIsKindOf(State)))

[5] Transitions outgoing pseudostates may not have a trigger.

self.source.oclIsKindOf(Pseudostate)
implies (self.trigger->isEmpty))

[6] Join segments should originate from orthogonal states.

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

(self.source.container.isConcurrent))

[7] Fork segments should target orthogonal states.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

(self.target.container.isComposite))

[8] An initial transition at the topmost level may have a trigger with the stereotype
 "create." An initial transition of a StateMachine modeling a behavioral feature has
 a CallEvent trigger associated with that BehavioralFeature. Apart from these
 cases, an initial transition never has a trigger.

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #initial) implies

(self.trigger->isEmpty or

((self.source.container = self.stateMachine.top) and

(self.trigger.stereotype.name = 'create')) or
2-142 UML V1.3 June 1999

2.12 State Machines

ents a
 free

nt

l
on.
wing

a
t be

sections
(self.stateMachine.context.oclIsKindOf(BehavioralFeature)
and

self.trigger.oclIsKindOf(CallEvent) and

(self.trigger.oclAsType(CallEvent).operation =

self.stateMachine.context))

))

self.source.oclIsKindOf(Pseudostate) implies

((self.source.kind = #initial) implies

(self.trigger.isEmpty or

((self.source.container = self.StateMachine.top) and

(self.trigger.stereotype.name = 'create')) or

(self.StateMachine.context.oclIsKindOf(BehaviouralFeature)
and

self.trigger.oclIsKindOf(CallEvent) and

(self.trigger.operation =
self.StateMachine.context))

))

2.12.4 Semantics

This section describes the execution semantics of state machines. For convenience, the
semantics are described in terms of the operations of a hypothetical machine that implem
state machine specification. This is for reference purposes only. Individual realizations are
to choose any form that achieves the same semantics.

In the general case, the key components of this hypothetical machine are:

• an event queue which holds incoming event instances until they are dispatched

• an event dispatcher mechanism that selects and de-queues event instances from the eve
queue for processing

• an event processor which processes dispatched event instances according to the genera
semantics of UML state machines and the specific form of the state machine in questi
Because of that, this component is simply referred to as the “state machine” in the follo
text.

Although the intent is to define the semantics of state machines very precisely, there are
number of semantic variation points to allow for different semantic interpretations that migh
required in different domains of application. These are clearly identified in the text.

The basic semantics of events, states, transitions, etc. are discussed first in separate sub
under the appropriate headings. The operation of the state machine as a whole are then
described in the state machine subsection.
UML V1.3 June 1999 2-143

2 UML Semantics

e
The
of
rs. In
y
c
pes

ing. At

 made
his

ly

e

ant
e the

e
te,

 state
 the
Event

Event instances are generated as a result of some action either within the system or in th
environment surrounding the system. An event is then conveyed to one or more targets.
means by which event instances are transported to their destination depend on the type
action, the target, the properties of the communication medium, and numerous other facto
some cases, this is practically instantaneous and completely reliable while in others it ma
involve variable transmission delays, loss of events, reordering, or duplication. No specifi
assumptions are made in this regard. This provides full flexibility for modeling different ty
of communication facilities.

An event is received when it is placed on the event queue of its target. An event is dispatched
when it is dequeued from the event queue and delivered to the state machine for process
this point, it is referred to as the current event. Finally, it is consumed when event processing is
completed. A consumed event is no longer available for processing. No assumptions are
about the time intervals between event reception, event dispatching, and consumption. T
leaves open the possibility of different semantic models such as zero-time semantics.

Any parameter values associated with the current event are available to all actions direct
caused by that event (transition actions, entry actions, etc.).

Event generalization may be defined explicitly by a signal taxonomy in the case of signal
events, or implicitly defined by event expressions, as in time events.

State

Active states

A state can be active or inactive during execution. A state becomes active when it is entered as
a result of some transition, and becomes inactive if it is exited as a result of a transition. A stat
can be exited and entered as a result of the same transition (e.g., self transition).

State entry and exit

Whenever a state is entered, it executes its entry action before any other action is executed.
Conversely, whenever a state is exited, it executes its exit action as the final step prior to
leaving the state.

If defined, the activity associated with a state is forked as a concurrent activity at the inst
when the entry action of the state is completed. Upon exit, the activity is terminated befor
exit action is executed.

Activity in state (do-activity)

The activity represents the execution of a sequence of actions, that occurs while the stat
machine is in the corresponding state. The activity starts executing upon entering the sta
following the entry action. If the activity completes while the state is still active, it raises a
completion event. In case where there is an outgoing completion transition (see below) the
will be exited. If the state is exited as a result of the firing of an outgoing transition before
completion of the activity, the activity is aborted prior to its completion.
2-144 UML V1.3 June 1999

2.12 State Machines

 event
until a
a

e
. If the
posite
ore,
e
oot

.

.

the
e is a

tate
 the
ly

e most
latter

e

Deferred events

A state may specify a set of event types that may be deferred in that state. An event instance
that does not trigger any transitions in the current state, will not be dispatched if its type
matches one of the types in the deferred event set of that state. Instead, it remains in the
queue while another non-deferred message is dispatched instead. This situation persists
state is reached where either the event is no longer deferred or where the event triggers
transition.

CompositeState

Active state configurations

When dealing with composite and concurrent states, the simple term “current state” can b
quite confusing. In a hierarchical state machine more than one state can be active at once
state machine is in a simple state that is contained in a composite state, then all the com
states that either directly or transitively contain the simple state are also active. Furtherm
since some of the composite states in this hierarchy may be concurrent, the current activ
“state” is actually represented by a tree of states starting with the single top state at the r
down to individual simple states at the leaves. We refer to such a state tree as a state
configuration.

Except during transition execution, the following invariants always apply to state
configurations:

• If a composite state is active and not concurrent, exactly one of its substates is active

• If the composite state is active and concurrent, all of its substates (regions) are active

Entering a non-concurrent composite state

Upon entering a composite state, the following cases are differentiated:

• Default entry: Graphically, this is indicated by an incoming transition that terminates on
outside edge of the composite state. In this case, the default transition is taken. If ther
guard on the transition it must be enabled (true). (A disabled initial transition is an ill-
defined execution state and its handling is not defined.) The entry action of the state is
executed before the action associated with the initial transition.

• Explicit entry: If the transition goes to a substate of the composite state, then that subs
becomes active and its entry code is executed after the execution of the entry code of
composite state. This rule applies recursively if the transition terminates on a transitive
nested substate.

• Shallow history entry: If the transition terminates on a shallow history pseudostate, the
active substate becomes the most recently active substate prior to this entry, unless th
recently active substate is the final state or if this is the first entry into this state. In the
two cases, the default history state is entered. This is the substate that is target of the
transition originating from the history pseudostate. (If no such transition is specified, th
situation is illegal and its handling is not defined.) If the active substate determined by
history is a composite state, then it proceeds with its default entry.
UML V1.3 June 1999 2-145

2 UML Semantics

 is

egions)
e

icitly
 others

s that
urrent

ions

ne. If

antics.
ternal
• Deep history entry: The rule here is the same as for shallow history except that the rule
applied recursively to all levels in the active state configuration below this one.

Entering a concurrent composite state

Whenever a concurrent composite state is entered, each one of its concurrent substates (r
is also entered, either by default or explicitly. If the transition terminates on the edge of th
composite state, then all the regions are entered using default entry. If the transition expl
enters one or more regions (in case of a fork), these regions are entered explicitly and the
by default.

Exiting non-concurrent state

When exiting from a composite state, the active substate is exited recursively. This mean
the exit actions are executed in sequence starting with the innermost active state in the c
state configuration.

Exiting a concurrent state

When exiting from a concurrent state, each of its regions is exited. After that, the exit act
of the regions are executed.

Deferred events

An event that is deferred in a composite state is automatically deferred in all directly or
transitively nested substates.

FinalState

When the final state is entered, its containing composite state is completed, which means that it
satisfies the completion condition. If the containing state is the top state, the entire state
machine terminates, implying the termination of the entity associated with the state machi
the state machine specifies the behavior of a classifier, it implies the “termination” of that
instance.

SubmachineState

A submachine state is a convenience that does not introduce any additional dynamic sem
It is semantically equivalent to a composite state and may have entry and exit actions, in
transitions, and activities.

Transitions

High-level transitions
2-146 UML V1.3 June 1999

2.12 State Machines

tion.
d

”
udo-
efer to

join,
ly a
me
 states

ltiple
or
d

en.
oice

d.

rd
re

s and

ns
Transitions originating from the boundary of composite states are called high-level or group
transitions. If triggered, they result in exiting of all the substates of the composite state
executing their exit actions starting with the innermost states in the active state configura
Note that in terms of execution semantics, a high-level transition does not add specialize
semantics, but rather reflects the semantics of exiting a composite state.

Compound transitions

A compound transition is a derived semantic concept, represents a “semantically complete
path made of one or more transitions, originating from a set of states (as opposed to pse
state) and targeting a set of states. The transition execution semantics described below, r
compound transitions.

In general, a compound transition is an acyclical unbroken chain of transitions joined via
junction, choice, or fork pseudostates that define path from a set of source states (possib
singleton) to a set of destination states, (possibly a singleton). For self-transitions, the sa
state acts as both the source and the destination set. A (simple) transition connecting two
is therefore a special common case of a compound transition.

The tail of a compound transition may have multiple transitions originating from a set of
mutually orthogonal concurrent regions that are joined by a join point.

The head of a compound transition may have multiple transitions originating from a fork
pseudostate targeted to a set of mutually orthogonal concurrent regions.

In a compound transition multiple outgoing transitions may emanate from a common junction
point. In that case, only one of the outgoing transition whose guard is true is taken. If mu
transitions have guards that are true, a transition from this set is chosen. The algorithm f
selecting such a transition is not specified. Note that in this case, the guards are evaluate
before the compound transition is taken.

In a compound transition where multiple outgoing transitions emanate from a common choice
point, the outgoing transition whose guard is true at the time the choice point is reached, will be
taken. If multiple transitions have guards that are true, one transition from this set is chos
The algorithm for selecting this transition is not specified. If no guards are true after the ch
point has been reached, the model is ill formed.

Internal transitions

An internal transition executes without exiting or re-entering the state in which it is define
This is true even if the state machine is in a nested state within this state.

Completion transitions and completion events

A completion transition is a transition without an explicit trigger, although it may have a gua
defined. When all transition and entry actions and activities in the currently active state a
completed, a completion event instance is generated. This event is the implicit trigger for a
completion transition. The completion event is dispatched before any other queued event
has no associated parameters. For instance, a completion transition emanating from a
concurrent composite state will be taken automatically as soon as all the concurrent regio
have reached their final state.
UML V1.3 June 1999 2-147

2 UML Semantics

gnals
ame

rget

ed is a

d.

ition
which

oint
ated if
 guard

ing of

all

d

licit
the
If multiple completion transitions are defined for a state, then they should have mutually
exclusive guard conditions.

Enabled (compound) transitions

A transition is enabled if and only if:

• All of its source states are in the active state configuration.

• The trigger of the transition is satisfied by the current event. An event instance satisfies a
trigger if it matches the event specified by the trigger. In case of signal events, since si
are generalized concepts, a signal event satisfies a signal event associated with the s
signal or a generalization of thereof.

• If there exists at least one full path from the source state configuration to either the ta
state configuration or to a dynamic choice point in which all guard conditions are true
(transitions without guards are treated as if their guards are always true).

Since more than one transition may be enabled by the same event instance, being enabl
necessary but not sufficient condition for the firing of a transition.

Guards

In a simple transition with a guard, the guard is evaluated before the transition is triggere

In compound transitions involving multiple guards, all guards are evaluated before a trans
is triggered, unless there are choice points along one or more of the paths. The order in
the guards are evaluated is not defined.

If there are choice points in a compound transition, only guards that precede the choice p
are evaluated according to the above rule. Guards downstream of a choice point are evalu
and when the choice point is reached (using the same rule as above). In other words, for
evaluation, a choice point has the same effect as a state.

Guards should not include expressions causing side effects. Models that violate this are
considered ill formed.

Transition execution sequence

Every transition, except for internal transitions, causes exiting of a source state, and enter
the target state. These two states, which may be composite, are designated as the main source
and the main target of a transition.

The least common ancestor state of a transition is the lowest composite state that contains
the explicit source states and explicit target states of the compound transition. In case of
junction segments, only the states related to the dynamically selected path are considere
explicit targets (bypassed branches are not considered).

The main source is a direct substate of the least common ancestor that contains the exp
source states. The main target is a substate of the least common ancestor that contains
explicit target states.

Examples:
2-148 UML V1.3 June 1999

2.12 State Machines

 in a

t is s2.

d the

order:

e

ly be
d.

lized
e. For
1. The common simple case: A transition t between two simple states s1 and s2,
composite state s.

Here least common ancestor of t is s, the main source is s1 and the main targe

2. A more esoteric case: An unstructured transition from one region to another.

Figure 2-23 Unstructured transition among regions

Here least common ancestor of t is the container of s, the main source is s1 an
main target is s2

Once a transition is enabled and is selected to fire, the following steps are carried out in

• The main source state is properly exited.

• Actions are executed in sequence following their linear order along the segments of th
transition: The closer the action to the source state, the earlier it is executed.

• If a choice point is encountered, the guards following that choice point are evaluated
dynamically and a path whose guards are true is selected.

• The main target state is properly entered.

StateMachine

Event processing - run-to-completion step

Events are dispatched and processed by the state machine, one at a time. The order of
dequeuing is not defined, leaving open the possibility of modeling different priority-based
schemes.

The semantics of event processing is based on the run-to-completion assumption, interpreted as
run-to-completion processing. Run-to-completion processing means that an event can on
dequeued and dispatched if the processing of the previous current event is fully complete

Run-to-completion may be implemented in various ways. For active classes, it may be rea
by an event-loop running in its own concurrent thread, and that reads events from a queu
passive classes it may be implemented as a monitor.

s

s1 s2
t

UML V1.3 June 1999 2-149

2 UML Semantics

ns
ed

ince
ine to

led for
nt

 the

cts a

 is

urrent
nt
nt

us,
-to-

event
n along

o be
ole
 such
fined
 the
 active

ortant
ion.

e
The processing of a single event by a state machine is known as an run-to-completion step.
Before commencing on a run-to-completion step, a state machine is in a stable state
configuration with all actions (but not necessarily activities) completed. The same conditio
apply after the run-to-completion step is completed. Thus, an event will never be process
while the state machine is in some intermediate and inconsistent situation. The run-to-
completion step is the passage between two state configurations of the state machine.

The run-to-completion assumption simplifies the transition function of the state machine, s
concurrency conflicts are avoided during the processing of event, allowing the state mach
safely complete its run-to-completion step.

When an event instance is dispatched, it may result in one or more transitions being enab
firing. If no transition is enabled and the event is not in the deferred event list of the curre
state configuration, the event is discarded and the run-to-completion step is completed.

In the presence of concurrent states it is possible to fire multiple transitions as a result of
same event — as many as one transition in each concurrent state in the current state
configuration. In case where one or more transitions are enabled, the state machine sele
subset and fires them. Which of the enabled transitions actually fire is determined by the
transition selection algorithm described below. The order in which selected transitions fire
not defined.

Each orthogonal region in the active state configuration that is not decomposed into conc
regions (i.e., “bottom-level” region) can fire at most one transition as a result of the curre
event. When all orthogonal regions have finished executing the transition, the current eve
instance is fully consumed, and the run-to-completion step is completed.

During a transition, a number of actions may be executed. If these actions are synchrono
then the transition step is not completed until the invoked objects complete their own run
completion steps.

An event instance can arrive at a state machine that is blocked in the middle of a run-to-
completion step from some other object within the same thread, in a circular fashion. This
instance can be treated by orthogonal components of the state machine that are not froze
transitions at that time.

Run-to-completion and concurrency

It is possible to define state machine semantics by allowing the run-to-completion steps t
applied concurrently to the orthogonal regions of a composite state, rather than to the wh
state machine. This would allow the event serialization constraint to be relaxed. However,
semantics are quite subtle and difficult to implement. Therefore, the dynamic semantics de
in this document are based on the premise that a single run-to-completion step applies to
entire state machine and includes the concurrent steps taken by concurrent regions in the
state configuration.

In case of active objects, where each object has its own thread of execution, it is very imp
to clearly distinguish the notion of run to completion from the concept of thread pre-empt
Namely, run-to-completion event handling is performed by a thread that, in principle, can be
pre-empted and its execution suspended in favor of another thread executing on the sam
processing node. (This is determined by the scheduling policy of the underlying thread
2-150 UML V1.3 June 1999

2.12 State Machines

 is
tion

 state

e
hen
em

t the
ally
active

state.

fire
ot
he
an a

tions

.

g

 (that
ith

ersed
e. For
environment — no assumptions are made about this policy.) When the suspended thread
assigned processor time again, it resumes its event processing from the point of pre-emp
and, eventually, completes its event processing.

Conflicting transitions

It was already noted that it is possible for more than one transition to be enabled within a
machine. If that happens, then such transitions may be in conflict with each other. For example,
consider the case of two transitions originating from the same state, triggered by the sam
event, but with different guards. If that event occurs and both guard conditions are true, t
only one transition will fire. In other words, in case of conflicting transitions, only one of th
will fire in a single run-to-completion step.

Two transitions are said to conflict if they both exit the same state, or, more precisely, tha
intersection of the set of states they exit is non-empty. Only transitions that occur in mutu
orthogonal regions may be fired simultaneously. This constraint guarantees that the new
state configuration resulting from executing the set of transitions is well formed.

An internal transition in a state conflicts only with transitions that cause an exit from that

Firing priorities

In situations where there are conflicting transitions, the selection of which transitions will
is based in part on an implicit priority. These priorities resolve some transition conflicts, but n
all of them. The priorities of conflicting transitions are based on their relative position in t
state hierarchy. By definition, a transition originating from a substate has higher priority th
conflicting transition originating from any of its containing states.

The priority of a transition is defined based on its source state. The priority of joined transi
is based on the priority of the transition with the most transitively nested source state.

In general, if t1 is a transition whose source state is s1, and t2 has source s2, then:

• If s1 is a direct or transitively nested substate of s2, then t1 has higher priority than t2

• If s1 and s2 are not in the same state configuration, then there is no priority difference
between t1 and t2.

Transition selection algorithm

The set of transitions that will fire is a maximal set of transitions that satisfies the followin
conditions:

• All transitions in the set are enabled.

• There are no conflicting transitions within the set.

• There is no transition outside the set that has higher priority than a transition in the set
is, enabled transitions with highest priorities are in the set while conflicting transitions w
lower priorities are left out).

This can be easily implemented by a greedy selection algorithm, with a straightforward
traversal of the active state configuration. States in the active state configuration are trav
starting with the innermost nested simple states and working outwards toward the top stat
UML V1.3 June 1999 2-151

2 UML Semantics

e
rivial
d by

e

y
ns do

tate.

ome
urce

in, it

oing

e
ition
 the
fired,
ter

set to

ch
et to
s,

chine.
“deep”)
stub
ncing
each state at a given level, all originating transitions are evaluated to determine if they ar
enabled. This traversal guarantees that the priority principle is not violated. The only non-t
issue is resolving transition conflicts across orthogonal states on all levels. This is resolve
terminating the search in each orthogonal state once a transition inside any one of its
components is fired.

Synch States

Synch states provide a means of synchronizing the execution of two concurrent regions.
Specifically, a synch state has incoming transitions from a fork (or forks) in one region, th
source region, and outgoing transitions to a join (or joins) in another, the target region. These
forks and joins are called synchronization forks and joins. The synch state itself is contained b
the least common ancestor of the two regions being synchronized. The synchronized regio
not need to be siblings in state decomposition, but they must have a common ancestor s

When the source region reaches a synchronization fork, the target states of that fork bec
active, including the synch state. Activation of the synch state is an indication that the so
region has completed some activity. This region can continue performing its remaining
activities in parallel. When the target region reaches the corresponding synchronization jo
is prevented from continuing unless all the states leading into the synchronization join are
active, including the synch states.

A synch state may have multiple incoming and outgoing transitions, used for multiple
synchronization points in each region. Alternatively, it may have single incoming and outg
transitions where the incoming transition is fired multiple times before the outgoing one is
fired. To support these applications, synch states keep count of the difference between th
number of times their incoming and outgoing transitions are fired. When an incoming trans
is fired, the count is incremented by one, unless its value is equal to the value defined in
bound attribute. In that case, the count is not incremented. When an outgoing transition is
the count is decremented by one. An outgoing transition may fire only if the count is grea
than zero, which prevents the count from becoming negative. The count is automatically
zero when its container state is exited.

The bound attribute is for limiting the number of times outgoing transitions fire from a syn
state. For a state, to realize the equivalent of a binary semaphore, the bound should be s
one. In this case multiple incoming transitions may fire before the outgoing transition doe
whereupon the outgoing transition can only fire once.

StubStates

Stub states are pseudostates signifying either entry points to or exit points from a subma
Since a submachine is encapsulated and represented as a submachine state, multi-level (
transitions may logically connect states in separate state machines. This is facilitated by
state, representing real states in a referenced machine to or form transitions in the refere
machine are incoming/outgoing. stub states are therefore can only be defined within a
submachine state, and are the only potential subvertices of a submachine state.
2-152 UML V1.3 June 1999

2.12 State Machines

bject
h the
ed by

he call
ard on
be
ation

event,
aller's
at the
cess
or all

ions

ibit
2.12.5 Notes

Protocol State Machines

One application area of state machines is in specifying object protocols, also known as o
life cycles. A 'protocol state machine' for a class defines the order (i.e. sequence) in whic
operations of that Class can be invoked. The behavior of each of these operations is defin
an associated method, rather than through action expressions on transitions.

A transition in a protocol state machine has as its trigger a call event that references an
operation of the class, and an empty action sequence. Such a transition indicates that if t
event occurs when an object of the class is in the source state of the transition and the gu
the transition is true, then the method associated with the operation of the call event will
executed (if one exists), and the object will enter the target state. Semantically, the invoc
of the method does not lead to a new call event being raised.

If a call event arrives when the state machine is not in an appropriate state to handle the
the event is discarded, conform the general RTC semantics. Strictly speaking, from the c
point of view this means that the call is completed. If instead the semantics are required th
caller should 'hang' (potentially infinitely) if the receiver's state machine is not able to pro
the call event immediately, then the event must be deferred explicitly. This can be done f
call events in a protocol state machine by deferring them at a superstate level.

In any practical application, a protocol state machine is made up exclusively of 'protocol'
transitions, and the entry and exit actions of its states are empty (i.e. no action specificat
exist other than for the methods). However, formally it is not prohibited to mix this kind of
transition with transitions with explicit actions (as it does not seem worth the effort to proh
this, and there may be some applications that might benefit from 'mixing').

Figure 2-24 Example of a Protocol State Machine for a Class ‘Account’.

Open Closed
close()

withdraw(amount)
[amount <= balance+overdraft]

deposit (amount)
UML V1.3 June 1999 2-153

2 UML Semantics

hine
chine

ments

,
.

Example: Modeling Class Behavior

In the software that is implemented as a result of a state modeling design, the state mac
may or may not be actually visible in the (generated or hand-crafted) code. The state ma
will not be visible if there is some kind of run-time system that supports state machine
behavior. In the more general case, however, the software code will contain specific state
that implement the state machine behavior.

A C++ example is shown below:

class bankAccount {

private:

int balance;

public:

void deposit (amount) {

 if (balance > 0)

balance = balance + amount’ // no change

 else

 balance = balance + amount - 1; // transaction fee

}

void withdrawal (amount) {

if (balance>0)

balance = balance - amount;

}

}

In the above example, the class has an abstract state manifested by the balance attribute
controlling the behavior of the class. This is modeled by the state machine in Figure 2-25

Figure 2-25 State Machine for Modeling Class Behavior

credit

debit

withdrawal

deposit/balance
+=amount

deposit

[amount>-balance]/

balance+=amount-1

else/balance -= amount

else/balance
+=amount-1

[amount>balance]/
balance -= amount
2-154 UML V1.3 June 1999

2.12 State Machines

er,
 other

te
chines.
ibute

chine
class

bstate
nt
 adds a
Sa. For

 the
tion.)

favor

the
Example: State machine refinement

Note – The following discussion provides some potentially useful heuristics on how state
machines can be refined. These techniques are all based on practical experience. Howev
readers are reminded that this topic is still the subject of research, and that it is likely that
approaches may be defined either now or in the future.

Since state machines describe behaviors of generalizable elements, primarily classes, sta
machine refinement is used capture the relationships between the corresponding state ma
State machines use refinement in three different mappings, specified by the mapping attr
of the refinement meta-class. The mappings are refinement, substitution, and deletion.

To illustrate state machine refinement, consider the following example where one state ma
attached to a class denoted ‘Supplier,’ is refined by another state machine attached to a
denoted as ‘Client.’

Figure 2-26 State Machine Refinement Example

In the example above, the client state (Sa(new)) in the subclass substitutes the simple su
(Sa1) by a composite substate (Sa1(new)). This new composite substate has a compone
substate (Sa11). Furthermore, the new version of Sa1 deletes the substate Sa2 and also
new substate Sa4. Substate Sa3 is inherited and is therefore common to both versions of
clarity, we have used a gray shading to identify components that have been inherited from
original. (This is for illustration purposes and is not intended as a notational recommenda

It is important to note that state machine refinement as defined here does not specify or
any specific policy of state machine refinement. Instead, it simply provides a flexible
mechanism that allows subtyping, (behavioral compatibility), inheritance (implementation
reuse), or general refinement policies.

We provide a brief discussion of potentially useful policies that can be implemented with
state machine refinement mechanism.

Sa

Sa2

Sa1

Sa3

Sa(new)

Sa4
Sa1(new)

Sa3
Sa11

- Sa2 deleted

- Sa4 added

- Sa1 refined
into composite

Supplier (refined) Client (refined)
UML V1.3 June 1999 2-155

2 UML Semantics

the
 the
re

set of

ied in
s.

ees

 have
e

rving
n be

ted.

 but a
nge its

, and

d the

Subtyping

The refinement policy for subtyping is based on the rationale that the subtype preserves
pre/post condition relationships of applying events/operations on the type, as specified by
state machine. The pre/post conditions are realized by the states, and the relationships a
realized by the transitions. Preserving pre/post conditions guarantee the substitutability
principle.

States and transitions are only added, not deleted. Refinement is interpreted as follows:

• A refined state has the same outgoing transitions, but may add others, and a different
incoming transitions. It may have a bigger set of substates, and it may change its
concurrency property from false to true.

• A refined transition may go to a new target state which is a substate of the state specif
the base class. This comes to guarantee the post condition specified by the base clas

• A refined guard has the same guard condition, but may add disjunctions. This guarant
that pre-conditions are weakened rather than strengthened.

• A refined action sequence contains the same actions (in the same sequence), but may
additional actions. The added actions should not hinder the invariant represented by th
target state of the transition.

Strict Inheritance

The rationale behind this policy is to encourage reuse of implementation rather than prese
behavior. Since most implementation environment utilize strict inheritance (i.e. features ca
replaced or added, but not deleted), the inheritance policy follows this line by disabling
refinements which may lead to non-strict inheritance once the state machine is implemen

States and transitions can be added. Refinement is interpreted as follows:

• A refined state has some of the same incoming transitions (i.e., drop some, add some)
greater or bigger set of outgoing transitions. It may have more substates, and may cha
concurrency attribute.

• A refined transition may go to a new target state but should have the same source.

• A refined guard may have a different guard condition.

• A refined action sequence contains some of the same actions (in the same sequence)
may have additional actions.

General Refinement

In this most general case, states and transitions can be added and deleted (i.e., ‘null’
refinements). Refinement is interpreted without constraints (i.e., there are no formal
requirements on the properties and relationships of the refined state machine element an
refining element):

• A refined state may have different outgoing and incoming transitions (i.e., drop all, add
some).

• A refined transition may leave from a different source and go to a new target state.

• A refined guard has may have a different guard condition.
2-156 UML V1.3 June 1999

2.12 State Machines

el,
pes as

lt from

vent

nts

 all
e

ny

 zero
ch step

on
• A refined action sequence need not contain the same actions (or it may change their
sequence), and may have additional actions.

The refinement of the composite state in the example above is an illustration of general
refinement.

It should be noted that if a type has multiple supertype relationships in the structural mod
then the default state machine for the type consists of all the state machines of its superty
orthogonal state machine regions. This may be explicitly overridden through refinement if
required.

Comparison to classical statecharts

The major difference between classical (Harel) statecharts and object state machines resu
the external context of the state machine. Object state machines, such as ROOMcharts,
primarily come to represent behavior of a type. Classical statechart specify behaviors of
processes. The following list of differences result from the above rationale:

• Events carry parameters, rather than being primitive signals.

• Call events (operation triggers) are supported to model behaviors of types.

• Event conjunction is not supported, and the semantics is given in respect to a single e
dispatch, to better match the type context as opposed to a general system context.

• Classical statecharts have an elaborated set of predefined actions, conditions and eve
which are not mandated by object state machines, such as entered(s), exited(s),
true(condition), tr!(c) (make true), fs!(c).

• Operations are not broadcast but can be directed to an object-set.

• The notion of activities (processes) does not exist in object state machines. Therefore
predefined actions and events that deal with activities are not supported, as well as th
relationships between states and activities.

• Transition compositions are constrained for practical reasons. In classical statecharts a
composition of pseudostates, simple transitions, guards and labels is allowed.

• Object state machine support the notion of synchronous communication between state
machines.

• Actions on transitions are executed in their given order.

• Classical statecharts do not support dynamic choice points.

• Classical statecharts are based on the zero-time assumption, meaning transitions take
time to execute. The whole system execution is based on synchronous steps where ea
produces new events that will be processed at the next step. In object-oriented state
machines, these assumptions are relaxed and replaced with these of software executi
model, based on threads of execution and that execution of actions may take time.
UML V1.3 June 1999 2-157

2 UML Semantics
2-158 UML V1.3 June 1999

2.13 Activity Graphs

nd

cific to
f its

olving
s that
ch a
then
n be

ell-

.

2UML Semantics

2.13 Activity Graphs

2.13.1 Overview

Activity graphs define an extended view of the State Machine package. State machines a
activity graphs are both essentially state transition systems, and share many metamodel
elements. This section describes the concepts in the State Machine package that are spe
activity graphs. It should be noted that the activity graphs extension has few semantics o
own. It should be understood in the context of the State Machine package, including its
dependencies on the Foundation package and the Common Behavior package.

An activity graph is a special case of a state machine that is used to model processes inv
one or more classifiers. Its primary focus is on the sequence and conditions for the action
are taken, rather than on which classifiers perform those actions. Most of the states in su
graph are action states that represent atomic actions (i.e., states that invoke actions and
wait for their completion). Transitions into action states are triggered by events, which ca

• the completion of a previous action state (completion events),

• the availability of an object in a certain state,

• the occurrence of a signal, or

• the satisfaction of some condition.

By defining a small set of additional subtypes to the basic state machine concepts, the w
formedness of activity graphs can be defined formally, and subsequently mapped to the
dynamic semantics of state machines. In addition, the activity specific subtypes eliminate
ambiguities that might otherwise arise in the interchange of activity graphs between tools

2.13.2 Abstract Syntax

The abstract syntax for activity graphs is expressed in graphic notation in Figure 2-28 on
page 2-160.
UML V1.3 June 1999 2-159

2 UML Semantics

ss in
 the

lving
g use
Figure 2-28 Activity Graphs

ActivityGraph

An activity graph is a special case of a state machine that defines a computational proce
terms of the control-flow and object-flow among its constituent actions. It does not extend
semantics of state machines in a major way but it does define shorthand forms that are
convenient for modeling control-flow and object-flow in computational and organizational
processes.

The primary basis for activity graphs is to describe the states of an activity or process invo
one or more classifiers. Activity graphs can be attached to packages, classifiers (includin
cases) and behavioral features. As in any state machine, if an outgoing transition is not

ActionState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

SimpleState

(from State Machines)

SubactivityState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultipli city : Multiplicity

SubmachineState
(from State Machines)

CompositeState

isConcurrent : Boolean

CallState

ActivityGraph Partition

1 0..*1

+partition

0..*

ModelElement
(from Core)

*

*

+contents*

*

StateMachine

(from State Machines)
0..1*

+context

0..1

+behavior

*

State

(from State Machines)

0..1

1

0..1

+top 1

ClassifierInState

0..*

1..*

0..*

+inState

1..*

Parameter

(from Core)

Classifier
(from Core)

1

*

+type
1

*

ObjectFlowState

isSynch : Boolean

*

*

+parameter *

+state *

1
*

+type

1
*

2-160 UML V1.3 June 1999

2.13 Activity Graphs

ned
ally

hical

ctivity.

teria,

ring
h as

d

n

d by

ed as

tate
explicitly triggered by an event then it is implicitly triggered by the completion of the contai
actions. A subactivity state represents a nested activity that has some duration and intern
consists of a set of actions or more subactivities. That is, a subactivity state is a “hierarc
action” with an embedded activity subgraph that ultimately resolves to individual actions.

Junctions, forks, joins, and synchs may be included to model decisions and concurrent a

Activity graphs include the concept of Partitions to organize states according to various cri
such as the real-world organization responsible for their performance.

Activity graphing can be applied to organizational modeling for business process enginee
and workflow modeling. In this context, events often originate from inside the system, suc
the finishing of a task, but also from outside the system, such as a customer call. Activity
graphs can also be applied to system modeling to specify the dynamics of operations an
system level processes when a full interaction model is not needed.

Associations

ActionState

An action state represents the execution of an atomic action, typically the invocation of a
operation.

An action state is a simple state with an entry action whose only exit transition is triggere
the implicit event of completing the execution of the entry action. The state therefore
corresponds to the execution of the entry action itself and the outgoing transition is activat
soon as the action has completed its execution.

An ActionState may perform more than one action as part of its entry action. An action s
may not have an exit action, do activity, or internal transitions.

Attributes

partition A set of Partitions each of which contains some of the model
elements of the model.

dynamicArguments An ArgListsExpression that determines at runtime the number of
parallel executions of the actions of the state. The value must be a
set of lists of objects, each list serving as arguments for one
execution. This attribute is ignored if the isDynamic attribute is
false.

dynamicMultiplicity A Multiplicity limiting the number of parallel executions of the
actions of state. This attribute is ignored if the isDynamic attribute
is false.

isDynamic A boolean value specifying whether the state's actions might be
executed concurrently. It is used in conjunction with the
dynamicArguments attribute.
UML V1.3 June 1999 2-161

2 UML Semantics

ful in

ate or
ugh

ts of a

 the
of an
n an

 flow

t flow
 a
Associations

CallState

A call state is an action state that has exactly one call action as its entry action. It is use
object flow modeling to reduce notational ambiguity over which action is taking input or
providing output.

ClassifierInState

A classifier-in-state characterizes instances of a given classifier that are in a particular st
states. In an activity graph, it may be used to specify input and/or output to an action thro
an object flow state.

ClassifierInState is a child of Classifier and may be used in static structural models and
collaborations (e.g., it can be used to show associations that are only relevant when objec
class are in a given state).

Associations

ObjectFlowState

An object flow state defines an object flow between actions in an activity graph. It signifies
availability of an instance of a classifier, possibly in a particular state, usually as the result
operation. An instance of a particular class, possibly in a particular state, is available whe
object flow state is occupied.

The generation of an object by an action in an action state may be modeled by an object
state that is triggered by the completion of the action state. The use of the object in a
subsequent action state may be modeled by connecting the output transition of the objec
state as an input transition to the action state. Generally each action places the object in
different state that is modeled as a distinct object flow state.

Attributes

entry (Inherited from State) Specifies the invoked actions.

type Designates a classifier that characterizes instances.

inState Designates a state that characterizes instances. The state must be a
valid state of the corresponding classifier. This may have multiple
states when referring to an object in orthogonal states.

isSynch A boolean value indicating whether an object flow state is used as
a synch state.
2-162 UML V1.3 June 1999

2.13 Activity Graphs

ns
te

hey

some
t is,

cuted.

 input

 final
n the

ty state.
Associations

Stereotypes

Partition

A partition is a mechanism for dividing the states of an activity graph into groups. Partitio
often correspond to organizational units in a business model. They may be used to alloca
characteristics or resources among the states of an activity graph.

Associations

It should be noted that Partitions do not impact the dynamic semantics of the model but t
help to allocate properties and actions for various purposes.

SubactivityState

A subactivity state represents the execution of a non-atomic sequence of steps that has
duration (i.e., internally it consists of a set of actions and possibly waiting for events). Tha
a subactivity state is a “hierarchical action,” where an associated subactivity graph is exe

A subactivity state is a submachine state that executes a nested activity graph. When an
transition to the subactivity state is triggered, execution begins with the initial state of the
nested activity graph. The outgoing transitions of a subactivity state are enabled when the
state of the nested activity graph is reached (i.e., when it completes its execution), or whe
trigger events occur on the transitions.

The semantics of a subactivity state are equivalent to the model obtained by statically
substituting the contents of the nested graph as a composite state replacing the subactivi

type Designates a classifier that specifies the classifier of the object. It
may be a classifier-in-state to specify the state and classifier of
the object.

parameter Designates parameters which provide the object as output or take
it as input.

«signalflow»
ObjectFlowState

Signalflow is a stereotype of ObjectFlowState with a Signal as its
type.

contents Specifies the states that belong to the partition. They need not
constitute a nested region.
UML V1.3 June 1999 2-163

2 UML Semantics
Attributes

Associations

2.13.3 Well-Formedness Rules

ActivityGraph

[1] An ActivityGraph specifies the dynamics of

(i) a Package, or

(ii) a Classifier (including UseCase), or

(iii) a BehavioralFeature.

(self.context.oclIsTypeOf(Package) xor

 self.context.oclIsKindOf(Classifier) xor

 self.context.oclIsKindOf(BehavioralFeature))

ActionState

[1] An action state has a non-empty entry action.

self.entry->size > 0

[2] An action state does not have an internal transition, exit action, or a do activity.

self.internalTransition->size = 0 and self.exit->size = 0 and
self.doActivity->size = 0

[3] Transitions originating from an action state have no trigger event.

dynamicArguments An ArgListsExpression that determines the number of parallel
executions of the submachines of the state. The value must be a
set of lists of objects, each list serving as arguments for one
execution. This attribute is ignored if the isDynamic attribute is
false.

dynamicMultiplicity A Multiplicity limiting the number of parallel executions of the
actions of state. This attribute is ignored if the isDynamic attribute
is false.

isDynamic A boolean value specifying whether the state's submachines might
be executed concurrently. It is used in conjunction with the
dynamicArguments attribute.

submachine (Inherited from SubmachineState) This designates an activity
graph that is conceptually nested within the subactivity state. The
subactivity state is conceptually equivalent to a composite state
whose contents are the states of the nested activity graph. The
nested activity graph must have an initial state and a final state.
2-164 UML V1.3 June 1999

2.13 Activity Graphs

sifier

w
ly,
tes. If
orm to

o the
eters

itions
ular
self.outgoing->forAll(trigger->size = 0)

CallState

[1] The entry action of a call state is a single call action.

self.entry->size = 1 and self.entry.oclIsKindOf(CallAction)

ObjectFlowState

[1] Parameters of an object flow state must have a type and direction compatible with clas
or classifier-in-state of the object flow state.

let osftype : Classifier =

(if self.type.IsKindOf(ClassifierInState)

then self.type.type else self.type);

self.parameter.forAll(

type = osftype

 or (parameter.kind = #in

 and osftype.allSupertypes->includes(type))

 or ((parameter.kind = #out or parameter.kind = #return)

 and type.allSupertypes->includes(osftype))

 or (parameter.kind = #inout

 and (osftype.allSupertypes->includes(type)

 or type.allSupertypes->includes(osftype))))

[2] Downstream states have entry actions that accept input conforming to the type of the
classifier or classifier-in-state. The entry actions use the input parameters of the object flo
state. Valid downstream states are calculated by traversing outgoing transitions transitive
skipping pseudo states, and entering and exiting subactivity states, looking for regular sta
the object flow state has no parameters, then the target of downstream actions must conf
the type of the classifier or classifier-in-state.

self.allnextleafstates.size > 0 and

self.allnextleafstates.forAll(self.isinputaction(entry))

[3] Upstream states have entry actions that provide output or return values conforming t
type of the classifier or classifier-in-state. The entry actions use the output or return param
of the object flow state. Valid upstream states are calculated by traversing incoming trans
transitively, skipping pseudo states, entering and exiting subactivity states, looking for reg
states.

self.allpreviousleafstates.size > 0 and

self.allpreviousleafstates.forAll(self.isoutputaction(entry))
UML V1.3 June 1999 2-165

2 UML Semantics

tes
tricted

l.
orks
ty

This
gions
 not
at

hey
.

ted.

te
ormal
PseudoState

[1] In activity graphs, transitions incoming to (and outgoing from) join and fork pseudosta
have as sources (targets) any state vertex. That is, joins and forks are syntactically not res
to be used in combination with composite states, as is the case in state machines.

self.stateMachine.oclIsTypeOf(ActivityGraph) implies

((self.kind = #join or self.kind = #fork) implies

(self.incoming->forAll(source.oclIsKindOf(State) or

 source.oclIsTypeOf(PseudoState)) and

(self.outgoing->forAll(source.oclIsKindOf(State) or

 source.oclIsTypeOf(PseudoState)))))

[2] All of the paths leaving a fork must eventually merge in a subsequent join in the mode
Furthermore, multiple layers of forks and joins must be well nested, with the exception of f
and joins leading to or from synch state. Therefore the concurrency structure of an activi
graph is in fact equally restrictive as that of an ordinary state machine, even though the
composite states need not be explicit.

SubactivityState

[1] A subactivity state is a submachine state that is linked to an activity graph.

self.submachine.oclIsKindOf(ActivityGraph)

2.13.4 Semantics

ActivityGraph

The dynamic semantics of activity graphs can be expressed in terms of state machines.
means that the process structure of activities formally must be equivalent to orthogonal re
(in composite states). That is, transitions crossing between parallel paths (or threads) are
allowed, except for transitions used with synch states. As such, an activity specification th
contains ‘unconstrained parallelism’ as is used in general activity graphs is considered
‘incomplete’ in terms of UML.

All events that are not relevant in a state must be deferred so they are consumed when t
become relevant. This is facilitated by the general deferral mechanism of state machines

ActionState

As soon as the incoming transition of an ActionState is triggered, its entry action starts
executing. Once the entry action has finished executing, the action is considered comple
When the action is complete then the outgoing transition is enabled.

The isDynamic attribute of an action state determines whether multiple invocations of sta
might be executed concurrently, depending on runtime information. This means that the n
activities of an action state, namely its actions, may execute multiple times in parallel. If
2-166 UML V1.3 June 1999

2.13 Activity Graphs

 is
 state.
uments

n error
 the
se.

 in the
ter to

r is
revious
t. As
n the
d.

ct
he
w

ust be

erposed

e first

larly

ration.

 set to
ng
oming

ns are
orm
 the

e an
n an
 and
isDynamic is true, then the dynamicArguments attribute is evaluated at the time the state
entered. The size of the resulting set determines the number of parallel executions of the
Each element of the set is a list, which is used as arguments for an execution. These arg
can be referred to within actions (e.g. by “object[i]” denoting the ith object in a list). If the
isDynamic attribute is false, dynamicArguments is ignored. If the dynamicArguments
expression evaluates to the empty set, then the state behaves as if it had no actions. It is a
if the dynamicArguments expression evaluates to a set with fewer or more elements than
number allowed by the dynamicMultiplicity attribute. The behavior is not defined in this ca

Dynamic states may be nested. In this case, you can't access the outer set of arguments
inner nesting. If this should be necessary, arguments can be passed explicitly from the ou
the inner dynamic state.

ObjectFlowState

The activation of an object flow state signifies that an instance of the associated classifie
available, perhaps in a specified state (i.e., a state change has occurred as a result of a p
operation). This may enable a subsequent action state that requires the instance as inpu
with all states in activity graphs, if the object flow state leads into a join pseudostate, the
object flow state remains activated until the other predecessors of the join have complete

Unless there is an explicit ‘fork’ that creates orthogonal object states, only one of an obje
flow state’s outgoing transitions will fire as determined by the guards of the transitions. T
invocation of the action state may result in a state change of the object, resulting in a ne
object flow state.

An object flow state may specify the parameter of an operation that provides its object as
output, and the parameter of an operation that takes its object as input. The operations m
called in actions of states immediately preceding and succeeding the object flow state,
respectively, although pseduostates, final states, synch states, and stub states may be int
between the object flow state and the acting state. For example, an object flow state may
transition to a subactivity state, which means at runtime the object is passed as input to th
state after the initial state of the subactivity graph. If no parameter is specified to take the
flowing object as input, then it is used as an action target instead. Call actions are particu
suited to be used in conjunction with this technique because they invoke exactly one ope

Object flow states may be used as synch states, indicated by the isSynch attribute being
true. In this case, outgoing transitions can fire only if an object has arrived on the incomi
transitions. Instead of a count, the state keeps a queue of objects as they arrive on the inc
transitions. These objects are pulled from the queue in FIFO fashion as outgoing transitio
fired. No outgoing transitions can fire if the queue is empty. All objects in the queue conf
to the classifier and state specified by the object flow state. The queue is not bounded as
count may be in synch states.

For applications requiring that actions or activities bring about an event as their result, us
object flow state with a signal as a classifier. This means the action or activity must retur
instance of a signal. For multiple resulting events, transition the action or activity to a fork,
target the fork transitions at multiple object flow states.
UML V1.3 June 1999 2-167

2 UML Semantics

te
g the
te.

n
the
(see
ine

dition
m

f

g.,
ow.
SubactivityState

The isDynamic, dynamicArguments, and dynamicMultiplicity attributes of a subactivity sta
have a similar meaning to the same attributes of action states. They provide for executin
submachine of the subactivity state multiple times in parallel. See semantics of ActionSta

Transition

In activity graphs, transitions outgoing from forks may have guards. This means the regio
initiated by a fork transition might not start, and therefore not be required to complete at
corresponding join. Forks and joins must be well-nested in the model to use this feature
rule #2 for PseudoState in Activity Graphs). The following mapping shows the state mach
meaning for such an activity graph:

If a conditional region synchronizes with another region using a synch state, and the con
fails, then these synch states have their counts set to infinity to prevent other regions fro
deadlocking.

2.13.5 Notes

Object flow states in activity graphs are a specialization of the general dataflow aspect o
process models. Object-flow activity graphs extend the semantics of standard dataflow
relationships in three areas:

1. The operations in action states in activity graphs are operations of classes or types (e.
‘Trade’ or ‘OrderEntryClerk’). They are not hierarchical ‘functions’ operating on a datafl

[guard]

Conditional
Activity
Model
Thread

Activity
Model

Thread 1

[guard][~guard]

Conditional
State

Machine
Fragment

Activity diagram
notation

Equivalent state
machine notation

Thread 1
2-168 UML V1.3 June 1999

2.13 Activity Graphs

 as in

 for
teless
2. The ‘contents’ of object flow states are typed. They are not unstructured data definitions
data stores.

3. The state of the object flowing as input and output between operations may be defined
explicitly. The event of the availability of an object in a specific state may form a trigger
the operation that requires the object as input. Object flow states are not necessarily sta
as are data stores.
UML V1.3 June 1999 2-169

2 UML Semantics
2-170 UML V1.3 June 1999

2.14 Model Management

ML
t
tems.

del,
nts.

nd of
l.

tem in

mple
are

 and
ond
ed in

 of the

 in
2UML Semantics
Part 4 - General Mechanisms

This section defines the mechanisms of general applicability to models. This version of U
contains one general mechanisms package, Model Management. The Model Managemen
package specifies how model elements are organized into models, packages, and subsys

2.14 Model Management

2.14.1 Overview

The Model Management package is dependent on the Foundation package. It defines Mo
Package, and Subsystem, which all serve mainly as grouping units for other ModelEleme

Packages are used within a Model to group ModelElements. A Subsystem is a special ki
Package that represents a behavioral unit in the physical system, and hence in the mode

In this section it is necessary to clearly distinguish between the physical system being modeled
(i.e., the subject of the model) and the subsystem elements that represent the physical sys
the model. For this reason, we consistently use the term physical system when we want to
indicate the former, and the terms subsystem when we want to indicate the latter. An exa
of a physical system is a credit card service, which includes software, hardware and wetw
(people). The UML model for this physical system might consist of a top-level subsystem
called CreditCardService which is decomposed into subsystems for Authorization, Credit,
Billing. An analogy with the construction of houses would be that the house would corresp
to the physical system, while a blueprint would correspond to a model, and an element us
a blue print would correspond to a model element.

The following sections describe the abstract syntax, well-formedness rules, and semantics
Model Management package.

2.14.2 Abstract Syntax

The abstract syntax for the Model Management package is expressed in graphic notation
Figure 2-29.
UML V1.3 June 1999 2-171

2 UML Semantics

ported

ame
Figure 2-29 Model Management

ElementImport

An element import defines the visibility and alias of a model element included in the
namespace of a package, as a result of the package importing another package.

In the metamodel an ElementImport reifies the relationship between a Package and an im
ModelElement. It allows redefinition of the name and the visibility for the imported
ModelElement, i.e. the ModelElement may be given another name (an alias) and/or a new
visibility to be used within the importing Package. The default is no alias, i.e. the original n
will be used, and private visibility relative to the importing Package.

ElementOwnership
(from Core)

ElementImport

visibility : VisibilityKind
alias : Name

GeneralizableElement
(from Core)

Subsystem

isInstantiable : Boolean

Model

Namespace
(from Core)

Package

ModelElement
(from Core)

*

0..1

+ownedElement

*

+namespace

0..1

*

*

*

+importedElement

*

Classifier
(from Core)
2-172 UML V1.3 June 1999

2.14 Model Management

mines
ribes
level of

f
f
 with

.

ackage
so

s» or
on
Attributes

Model

A model is an abstraction of a physical system, with a certain purpose. This purpose deter
what is to be included in the model and what is irrelevant. Thus the model completely desc
those aspects of the physical system that are relevant to the purpose of the model, at the
detail that is given by the purpose.

In the metamodel, Model is a subclass of Package. It contains a containment hierarchy o
ModelElements that together describe the physical system. A Model also contains a set o
ModelElements which represents the environment of the system, typically Actors, together
their interrelationships, such as Dependencies, Generalizations, and Constraints.

Different Models can be defined for the same physical system, specifying it from different
viewpoints, e.g. a logical model, a design model, a use-case model. Each Model is self-
contained within its viewpoint of the physical system and within its level of abstraction, i.e
within its purpose. Models may be nested, i.e. a Model may contain other Models.

Stereotypes

Package

A package is a grouping of model elements.

In the metamodel, Package is a subclass of Namespace and GeneralizableElement. A P
contains ModelElements like Packages, Classifiers, and Associations. A Package may al
contain Constraints and Dependencies between ModelElements of the Package.

Each ModelElement of a Package has a visibility relative to the Package stating if the
ModelElement is available to ModelElements in other Packages with a Permission («acces
«import») or Generalization relationship to the Package. An «access» or «import» Permissi

alias The alias defines a local name of the imported ModelElement, to
be used within the Package.

visibility An imported ModelElement is either public, protected, or private
relative to the importing Package.

«systemModel»Package A systemModel is a stereotyped model that contains a collection of
models of the same physical system. A systemModel also contains all
relationships and constraints between model elements contained in
different models.

«metamodel»Package A metamodel is a stereotyped model denoting that the model is an
abstraction of another model, i.e., it is a model of a model. Hence, if M2
is a model of the model M1, then M2 is a metamodel of M1. It follows
then that classes in M1 are instances of metaclasses in M2. The
stereotype can be recursively applied, as in the case of a 4-layer
metamodel architecture.
UML V1.3 June 1999 2-173

2 UML Semantics

renced

 a
ned and

ical
ts of a
r,
tter.

y have

ind
ps
nt
from one Package to another allows public ModelElements in the target Package to be refe
by ModelElements in the source Package. They differ in that all public ModelElements in
imported Packages are added to the Namespace of the importing Package, whereas the
Namespace of an accessing Package is not affected at all. The ModelElements available in
Package are those in the contents of the Namespace of the Package, which consists of ow
imported ModelElements, together with public ModelElements in accessed Packages.

Associations

Stereotypes

Subsystem

A subsystem is a grouping of model elements that represents a behavioral unit in a phys
system. A subsystem offers interfaces and has operations. In addition, the model elemen
subsystem can be partitioned into specification and realization elements, where the forme
together with the operations of the subsystem, are realized by, i.e. implemented by, the la

In the metamodel, Subsystem is a subclass of both Package and Classifier. As such it ma
a set of Features, which are constrained to be Operations and Receptions.

The contents of a Subsystem are divided into two subsets: specification elements and
realization elements. The former subset provides, together with the Operations of the
Subsystem, a specification of the behavior contained in the Subsystem, while the
ModelElements in the latter subset jointly provide a realization of the specification. Any k
of ModelElement can be a specification element or a realization element. The relationshi
between the specification elements and the realization elements can be defined in differe
ways, e.g. with Collaborations or «realize» dependencies.

importedElement The namespace defined by a package is extended by model
elements in other, imported packages.

«facade» Package A facade is a stereotyped package containing only references to
model elements owned by another package. It is used to provide a
‘public view’ of some of the contents of a package. A facade does
not contain any model elements of its own.

«framework»Package A framework is a stereotyped package consisting mainly of
patterns, where patterns are defined as template collaborations.

«stub» Package A stub is a stereotyped package representing a package that is
incompletely transferred; specifically, a stub provides the public parts of
the package, but nothing more.

«topLevel»Package TopLevel is a stereotype of package denoting the top-most package in a
containment hierarchy. The topLevel stereotype defines the outer limit for
looking up names, as namespaces “see” outwards. A topLevel subsystem
represents the top of the subsystem containment hierarchy, i.e., it is the
model element that represents the boundary of the entire physical system
being modeled.
2-174 UML V1.3 June 1999

2.14 Model Management

s,
Attributes

2.14.3 Well-Formedness Rules

The following well-formedness rules apply to the Model Management package.

ElementImport

No extra well-formedness rules.

Model

No extra well-formedness rules.

Package

[1] A Package may only own or reference Packages, Classifiers, Associations, Generalization
Dependencies, Constraints, Collaborations, StateMachines, and Stereotypes.

self.contents->forAll (c |

c.oclIsKindOf(Package) or

c.oclIsKindOf(Classifier) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(StateMachine) or

c.oclIsKindOf(Stereotype))

[2] No imported element (excluding Association) may have the same name or alias
as any element owned by the Package or one of its supertypes.

self.allImportedElements->reject(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementImport.alias <> ’’ implies

not (self.allContents - self.allImportedElements)->

reject(ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.elementImport.alias))

and

isInstantiable States whether a Subsystem is instantiable or not. If true, then the
instances of the model elements within the subsystem form an
implicit composition to an implicit subsystem instance, whether or
not it is actually implemented.
UML V1.3 June 1999 2-175

2 UML Semantics

ts
(re.elementImport.alias = ’’ implies

not (self.allContents - self.allImportedElements)->

reject (ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.name)))

[3] Imported elements (excluding Association) may not have the same name or alias.

self.allImportedElements->reject(re |

not re.oclIsKindOf (Association))->forAll(r1, r2 |

(r1.elementImport.alias <> ’’ and

r2.elementImport.alias <> ’’ and

r1.elementImport.alias = r2.elementImport.alias

implies r1 = r2)

and

(r1.elementImport.alias = ’’ and

r2.elementImport.alias = ’’ and

r1.name = r2.name implies r1 = r2)

and

(r1.elementImport.alias <> ’’ and

r2.elementImport.alias = ’’ implies

r1.elementImport.alias <> r2.name))

[4] No imported element (Association) may have the same name or alias combined with the
same set of associated Classifiers as any Association owned by the Package or one of i
supertypes.

self.allImportedElements->select(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementImport.alias <> ’’ implies

not (self.allContents - self.allImportedElements)->

select(ve |

ve.oclIsKindOf(Association))->exists(

ve : Association |

ve.name = re.elementImport.alias

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).type =

ve.connection->at(i).type)))

and

(re.elementImport.alias = ’’ implies

not (self.allContents - self.allImportedElements)->

select(ve |
2-176 UML V1.3 June 1999

2.14 Model Management
not ve.oclIsKindOf(Association))->exists(ve :

Association |

ve.name = re.name

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).type =

ve.connection->at(i).type))))

[5] Imported elements (Association) may not have the same name or alias
combined with the same set of associated Classifiers.

self.allImportedElements->select (re |

re.oclIsKindOf (Association))->forAll (r1, r2 : Association |

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).type =

r2.connection->at (i).type and

r1.elementImport.alias <> ’’ and

r2.elementImport.alias <> ’’ and

r1.elementImport.alias = r2.elementImport.alias

implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

 Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).type =

r2.connection->at (i).type and

r1.elementImport.alias = ’’ and

r2.elementImport.alias = ’’ and

r1.name = r2.name

implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).type =

r2.connection->at (i).type and

r1.elementImport.alias <> ’’ and

r2.elementImport.alias = ’’

implies r1.elementImport.alias <> r2.name)))

 Additional Operations

[1] The operation contents results in a Set containing the ModelElements owned by or
imported by the Package.
UML V1.3 June 1999 2-177

2 UML Semantics
contents : Set(ModelElement)

contents = self.ownedElement->union(self.importedElement)

[2] The operation allImportedElements results in a Set containing the Model

Elements imported by the Package or one of its supertypes.

allImportedElements : Set(ModelElement)

allImportedElements = self.importedElement->union(

self.supertype.oclAsType(Package).allImportedElements->select(re |

re.elementImport.visibility = #public or

re.elementImport.visibility = #protected))

[3] The operation allContents results in a Set containing the ModelElements owned by or
imported by the Package or one of its ancestors.

allContents : Set(ModelElement);

allContents = self.contents->union(

self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

Subsystem

[1] For each Operation in an Interface offered by a Subsystem, the Subsystem itself or
at least one contained specification element must have a matching Operation.

self.specification.allOperations->forAll(interOp |

self.allOperations->union

(self.allSpecificationElements->select(specEl|

specEl.oclIsKindOf(Classifier))->forAll(c|

c.allOperations))->exists

(op | op.hasSameSignature(interOp)))

[2] The Features of a Subsystem may only be Operations or Receptions.

self.feature->forAll(f | f.oclIsKindOf(Operation) or

f.oclIsKindOf(Reception))

Additional Operations

[1] The operation allSpecificationElements results in a Set containing the Model
Elements specifying the behavior of the Subsystem.

allSpecificationElements : Set(ModelElement)

allSpecificationElements = self.allContents->select(c |
c.elementOwnership.isSpecification)

[2] The operation contents results in a Set containing the ModelElements owned by or
imported by the Subsystem.

contents : Set(ModelElement)

contents = self.ownedElement->union(self.importedElement)
2-178 UML V1.3 June 1999

2.14 Model Management

ing

ge
efine

ts for
efined

ved
e
kages

n an
rds,

th the

oes for
f
 and by

ckage
e
used in
. A

ate
ailable
ents
does

ossible
ments
at
 name.
en a
2.14.4 Semantics

Package

Figure 2-30 Package illustration - shows Package and its environment in the metamodel by flatten
the inheritance hierarchy.

The purpose of the package construct is to provide a general grouping mechanism. A packa
cannot be instantiated, thus it has no runtime semantics. In fact, its only semantics is to d
a namespace for its contents. The package construct can be used for organizing elemen
any purpose; the criteria to use for grouping elements together into one package are not d
within UML.

A package owns a set of model elements, with the implication that if the package is remo
from the model, so are the elements owned by the package. Elements owned by the sam
package must have unique names within the package, although elements in different pac
may have the same name.

There may be relationships between elements contained in the same package, and betwee
element in one package and an element in a surrounding package at any level. In other wo
elements “see” all the way out through nested levels of packages. (Note that a package wi
stereotype «topLevel» defines the outer limit of this outward visibility.) Elements in peer
packages, however, are encapsulated and are not a priori visible to each other. The same g
elements in contained packages, i.e. packages do not see “inwards”. There are two ways o
making elements in other packages available: by importing/accessing these other packages,
defining generalizations to them.

An import dependency (a Permission dependency with the stereotype «import») from one pa
to another means that the first package imports all the elements with sufficient visibility in th
second package. Imported elements are not owned by the package; however, they may be
associations, generalizations, attribute types, and other relationships owned by the package
package defines the visibility of its contained elements to be private, protected, or public. Priv
elements are not available at all outside the containing package. Protected elements are av
only to packages with generalizations to the package owning the elements, and public elem
are available also to importing and accessing packages. Note that the visibility mechanism
not restrict the availability of an element to peer elements in the same package.

When an element is imported by a package it extends the namespace of that package. It is p
to give an imported element an alias to avoid name conflicts with the names of the other ele
in the namespace, including other imported elements. The alias will then be the name of th
element in the namespace; the element will not appear under both the alias and its original
An imported element is by default private to the importing package. It may, however, be giv
more permissive visibility relative to the importing package, i.e. the local visibility may be
defined as protected or public.

*

*
ModelElement

*
Package

*

*

*

Generalization
*

*

UML V1.3 June 1999 2-179

2 UML Semantics

f the
he

to the

espace
ssing
ge.

ted
sed in
ade

ame in
 they

rt from

m

 thus
the

of

intly

 cases
y the
tions
A package with an import dependency to another package imports all the public contents o
namespace defined by the supplier package, including elements of packages imported by t
supplier package that are given public visibility in the supplier.

The access dependency (a Permission dependency with the stereotype «access») is similar
import dependency in that it makes elements in the supplier package available to the client
package. However, in this case no elements in the supplier package are included in the nam
of the client. They are simply referred to by their full pathname when referenced in the acce
package. Clearly, they are not visible to packages in turn accessing or importing this packa

A package can have generalizations to other packages. This means that the public and protec
elements owned or imported by a package are also available to its children, and can be u
the same way as any element owned or imported by the children themselves. Elements m
available to another package by the use of a generalization are referred to by the same n
the child as they are in the parent. Moreover, they have the same visibility in the child as
have in the parent package.

A package can be used to define a framework, consisting of patterns in the form of
collaborations where (some of) the base elements are the parameters of the patterns. Apa
that, a framework package is described as an ordinary package.

Subsystem

Figure 2-31 Subsystem illustration - shows Subsystem and its environment in the metamodel by
flattening the inheritance hierarchy.

The purpose of the subsystem construct is to provide a grouping mechanism for specifying a
behavioral unit of a physical system. A subsystem may or may not be instantiable. Apart fro
defining a namespace for its contents, a non-instantiable subsystem serves merely as a
specification unit for the behavior of its contained model elements.

The contents of a non-instantiable subsystem have the same semantics as that of a package,
it consists of owned elements and imported elements, with unique names or aliases within
subsystem. The contents of a subsystem may be divided into two subsets: 1) specification
elements and 2) realization elements. The specification elements, together with the operations
the subsystem, are used for giving an abstract specification of the behavior offered by the
realization elements.

The specification of a subsystem thus consists of the specification subset of the contents
together with the subsystem’s features (operations). It specifies the behavior performed jo
by instances of classifiers in the realization subset, without revealing anything about the
contents of this subset. The specification is made in terms of model elements such as use
and/or operations, where use cases are used to specify complete sequences performed b
subsystem (i.e., by instances of its contents) interacting with its surroundings, while opera

*
In te rfa ce

*
O p e ra tio n

*

*

G e n e ra l iza tio n
*

S u b s ys te m

*

*

*

* *

Mo d e lE le m e n t
*

*

2-180 UML V1.3 June 1999

2.14 Model Management

f all

neral,
llows
e
tents.
ally

ation
r
r level
n
g to

fier
e. All
 sent by
f an
 which

ystems

 the

crete

 for

 a
rface
 and

.
del
nce,
only specify fragments. However, the specification subset may include model elements o
kinds, e.g. classes, interfaces, constraints, relationships between model elements, state
machines, etc.

A subsystem has no behavior of its own. All behavior defined in the specification of the
subsystem is jointly offered by the elements in the realization subset of the contents. In ge
since subsystems are classifiers, they can appear anywhere a classifier is expected. It fo
that, since the subsystem itself cannot be instantiated or have any behavior of its own, th
requirements posed on the subsystem in the context where it occurs is fulfilled by its con
The same is true for associations (i.e., any association connected to a subsystem is actu
connected to one of the classifiers it contains).

The correspondence between the specification and the realization of a subsystem can be
specified in several ways, including collaborations and «realize» dependencies. A collabor
specifies how instances of the realization elements cooperate to jointly perform the behavio
specified by a use case, an operation, etc. in the subsystem specification (i.e. how the highe
of abstraction is transformed into the lower level of abstraction). A stimulus received by a
instance of a use case (higher level of abstraction) corresponds to an instance conformin
one of the classifier roles in the collaboration receiving that stimulus (lower level of
abstraction). This instance communicates with other instances conforming to other classi
roles in the collaboration, and together they perform the behavior specified by the use cas
stimuli that can be received and sent by instances of the use cases are also received and
the conforming instances, although at a lower level of abstraction. Similarly, application o
operation of the subsystem actually means that a stimulus is sent to a contained instance
then performs a method.

Subsystems contained in the realization part represent subordinate subsystems, i.e. subs
at the level below in the containment hierarchy, hence owned by the current subsystem.

Importing and accessing subsystems is done in the same way as with packages, using the visibility
property to define whether elements are public, protected, or private to the subsystem. Both
specification part and the realization part of a subsystem may include imported elements.

A subsystem can have generalizations to other subsystems. This means that the public and
protected elements in the contents of a subsystem are also available to its heirs. In a con
(i.e., non-abstract) subsystem all elements in the specification, including elements from
ancestors, are completely realized by cooperating realization elements, as specified with,
example, a set of collaborations. This may not be true for abstract subsystems.

Subsystems may offer a set of interfaces. This means that for each operation defined in an
interface, the subsystem offering the interface must have a matching operation, either as
feature of the subsystem itself or of a specification element. The relationship between inte
and subsystem is not necessarily one-to-one. A subsystem may realize several interfaces
one interface may be realized by more than one subsystem.

The semantics of an instantiable subsystem is similar to the semantics of a composite class
However, there are no explicit instances of a subsystem; instead, the instances of the mo
elements within the subsystem form an implicit composition to an implicit subsystem insta
whether or not it is actually implemented.
UML V1.3 June 1999 2-181

2 UML Semantics

ermore,

he

gical
f

 a
odel.
those
e
ere is

he

e are
y may
ts and

.

tor

 case,
n the
per
tances

ges,

ent
t the
g
A subsystem can be used to define a framework, consisting of patterns in the form of
collaborations where some of the base elements are the parameters of the patterns. Furth
the specification of a framework subsystem may also be parameterized.

Model

Figure 2-32 Model illustration - shows Model and its environment in the metamodel by flattening t
inheritance hierarchy.

A model is a description of a physical system with a certain purpose, such as to give a lo
or a behavioral view of the physical system to a certain category of readers. Examples o
different kinds of models are ‘use case’, ‘analysis’, ‘design’, and ‘implementation’, or
‘computational’, ‘engineering’, and ‘organizational’.

Thus, a model is an abstraction of a physical system, specifying the physical system from
certain viewpoint and at a certain level of abstraction, both given by the purpose of the m
A model is complete in the sense that it covers the whole physical system, although only
aspects relevant to its purpose, i.e. within the given level of abstraction and viewpoint, ar
represented in the model. Furthermore, it describes the physical system only once, i.e. th
no overlapping; no part of the physical system is captured more than once in a model.

A model consists of a containment hierarchy where the top-most package or subsystem
represents the boundary of the physical system. This package/subsystem may be given t
stereotype «topLevel» to emphasize its role within the model.

The model may also contain model elements describing relevant parts of the system’s
environment. The environment is typically modeled by actors and their interfaces. As thes
external to the physical system, they reside outside the package/subsystem hierarchy. The
be collected in a separate package, or owned directly by the model. These model elemen
the model elements representing the physical system may be associated with each other

A model may be a specialization of another model. This implies that all elements in the ances
are also available in the specialized model under the same name and interrelated as in the
ancestor.

A model may import or access another model. The semantics is the same as for packages.
However, some of the actors of the supplier model may be internal to the client. This is the
for example, when the imported model represents a lower layer of the physical system tha
client model represents. Then some of the actors of the lower layer model represent the up
layer. The conformance requirement is that there must be classifiers in the client whose ins
may play the roles of such actors.

The contents of a model is the transitive closure of its owned model elements, like packa
classifiers, and relationships, together with inherited and imported elements.

There may be relationships between model elements in different models, such as refinem
and trace. A trace, i.e. an abstraction dependency with the stereotype «trace», indicates tha
connected (sets of) model elements represent the same concept. Trace is used for tracin

PackageModelElement Model

**
2-182 UML V1.3 June 1999

2.14 Model Management

odel
ps
ing in
en if
 have

d in a
ll
oint.
p a

r
lude:

s on

y also

 to

be

al
ed

 false

ls is

re
requirements between models, or tracing the impact on other models of a change to a m
element in one model. Thus traces are usually non-directional dependencies. Relationshi
between model elements in different models have no impact on the model elements’ mean
their containing models because of the self-containment of models. Note, though, that ev
inter-model relationships do not express any semantics in relation to the models, they may
semantics in relation to the reader or in deriving model elements as part of the overall
development process.

Models may be nested, e.g. several models of the same physical system may be collecte
model with the stereotype «systemModel». The models contained in the «systemModel» a
describe the physical system from different viewpoints, the viewpoints not necessarily disj
The «systemModel» also contains all inter-model relationships. A «systemModel» makes u
comprehensive specification of the physical system.

A physical system may be a composition of a set of subordinate physical systems, each
described by its own set of models collected in a separate «systemModel».

2.14.5 Notes

In UML, there are three different ways to model a group of elements contained in anothe
element; by using a package, a subsystem, or a class. Some pragmatics on their use inc

• Packages are used when nothing but a plain grouping of elements is required.

• Subsystems provide grouping suitable for top-down development, since the requirement
the behavior of their contents can be expressed before the realization of this behavior is
defined. Furthermore, from a bottom-up perspective, the specification of a subsystem ma
be seen as a provider of “high level APIs” of the subsystem.

• Classes are used when the container itself should have instances, so that it is possible
define composite objects.

As Subsystem and Model both are Packages in the metamodel, all three constructs can
combined arbitrarily to organize a containment hierarchy.

It is a tool issue to decide how many of the imported elements that must be explicitly
referenced by the importing package, i.e. how many ElementImport links to actually
implement. For example, if all elements have the default visibility (private) and their origin
names in the importing package, the information can be retrieved directly from the import
package.

If a tool does not support the separation of specification and realization elements for
Subsystem, then the value of the isSpecification attribute for ElementOwnership should be
by default. See the Core for package, where ElementOwnership is defined, for details.

Because this is a logical model of the UML, distribution or sharing of models between too
not described.

It is expected that tools will manage presentation elements, in particular diagrams, that a
attached to model elements.
UML V1.3 June 1999 2-183

2 UML Semantics
2-184 UML V1.3 June 1999

2UML Semantics

Index
A

abstract syntax section 9
Abstraction 18
access (Permission) 42, 178, 180
accessing elements 41
Action 86, 95, 101, 114
action (ActionSequence) 87
action (Message) 107
ActionExpression 76
ActionSequence 87, 95
ActionState 159, 162, 164
activator (Message) 107, 115
active class 27
active state 142
active state configuration 143
Activity Graphs Package 157
activity in a state 142
ActivityGraph 158, 162, 164
Actor 117, 120, 122
actualArgument (Action) 87
addition (Include) 119
addOnly (ChangeableKind) 21, 24, 78
aggregate (AggregationKind) 21, 76
aggregation (AssociationEnd) 21, 57
AggregationKind 76
alias (ElementImport) 171
annotatedElement (Comment) 28
architecture of metamodel 4
ArgListsExpression 77
Argument 87, 95
argument (Binding) 26
argument (Stimulus) 94
AssignmentAction 95, 102
Association 19, 44, 57
association (AssociationEnd) 23
association (Link) 90
association (LinkEnd) 91
AssociationClass 20, 44, 58
AssociationEnd 21, 45, 57

associationEnd (Attribute) 25
associationEnd (LinkEnd) 91
AssociationEndRole 104, 108
AssociationRole 105, 108, 112
Attribute 23, 45
attribute (AttributeLink) 88
AttributeLink 88, 95
availableContents (ClassifierRole) 106
availableFeature (ClassifierRole) 106
availableQualifier (AssociationEndRole) 105

B

base (AssociationEndRole) 105
base (AssociationRole) 105
base (ClassifierRole) 106
base (Extend) 118
base (Include) 119
baseClass (Stereotype) 69
become (Flow) 34
Behavioral Elements Package 83
BehavioralFeature 25, 45
Binding 26, 38, 46, 63
body (Constraint) 30, 68
body (Expression) 78
body (Mapping) 79
body (Method) 37
body (Name) 80
Boolean 77
BooleanExpression 77
bound (SynchState) 136, 150

C

call (Usage) 43
CallAction 88, 95, 101, 114
CallConcurrencyKind 77
CallEvent 129
UML V1.3 June 1999 2-185

2 UML Semantics
CallState 160, 163
changeability (AssociationEnd) 21
changeability (Attribute) 24
changeable (ChangeableKind) 21, 24, 78
ChangeableKind 78
ChangeEvent 130
changeExpression (ChangeEvent) 130
child (Generalization) 35
choice (PseudostateKind) 81, 132
Class 26, 46, 59
Classifier 27, 47
classifier (Instance) 90
classifier (ScopeKind) 24, 33, 81
ClassifierInState 160
ClassifierRole 105, 108, 112
client (Dependency) 31
clientDependency (ModelElement) 38
Collaboration 103, 106, 109, 111, 114
collaborationMultiplicity (AssociationEndRole) 104
Collaborations Package 103
Comment 28, 50
Common Behavior Package 83
communication relationship 119, 124
communicationConnection (Message) 107
communicationLink (Stimulus) 94
complete (Generalization) 36
completion event 145
completion transition 145
Component 29, 50
ComponentInstance 88, 95
composite (AggregationKind) 21, 57, 76
CompositeState 130, 137, 143
Compound transition 145
concurrency

in state machine 148
synchronizing 150

concurrency (Operation) 40
concurrent (CallConcurrencyKind) 40, 77
condition (Extend) 118
conflict 149
connection (Association) 20
connection (Link) 90
constrainedElement (Constraint) 30, 68
constraining model element 114
Constraint 29, 51, 63, 67, 70, 72
constraint (ModelElement) 38, 68
constraint (Stereotype) 69
constraint language 10, 72
container (StateVertex) 135
contents (Partition) 161
context (Exception) 89
context (Interaction) 107
context (Signal) 94
context (StateMachine) 134
copy (Flow) 34
copying composite 57
create (BehavioralFeature) 26
create (CallEvent) 130
create (Usage) 44
CreateAction 89, 96, 101, 114

D

data flow relationship 165
Data Types Foundation Package 75
DataType 30, 51, 64, 75
DataValue 89, 96, 100
deepHistory (PseudostateKind) 81, 132, 144
default entry 143
defaultElement (TemplateParameter) 43
defaultValue (Parameter) 41
deferrableEvent (State) 133
deferred event 143, 144
Dependency 30, 51, 63
deploymentLocation (Component) 29
Derivation 18
derive (Abstraction) 19
derived (ModelElement) 38
descriptor 60
destroy (BehavioralFeature) 26
destroy (CallEvent) 130
destroy action 101, 114
DestroyAction 89, 96
destroyed (Instance) 90
destroyed (Link) 91
destroying composite 57
discriminator 36
discriminator (Generalization) 35, 36
disjoint (Generalization) 36
dispatchAction (Stimulus) 94
do activity 142
doActivity (State) 134
document (Component) 29
documentation (Element) 31
dynamicArguments (ActionState) 159
dynamicArguments (SubactivityState) 162
dynamicMultiplicity (ActionState) 159
dynamicMultiplicity (SubactivityState) 162

E

effect (Transition) 137
Element 31, 51
ElementImport 170, 173
ElementOwnership 31, 51
ElementResidence 32, 51
enabled transition 146
entering a concurrent composite state 144
entry (ActionState) 160
entry (State) 134
entry action 142
Event 131, 142
event processing 147
Exception 89, 96, 101
executable (Component) 29
exit (State) 134
exit action 142
exiting a concurrent state 144
exiting a non-concurrent state 144
Expression 78
expression (Guard) 132
Extend 118, 120, 125
2-186 UML V1.3 June 1999

extend (UseCase) 119
extendedElement (Stereotype) 69
extension (Extend) 118
Extension Mechanisms Foundation Package 65
ExtensionPoint 118, 120
extensionPoint (Extend) 118
extensionPoint (UseCase) 119

F

facade (Package) 172
false (Boolean) 77
Feature 32, 52
feature (Classifier) 28
file (Component) 29
FinalState 131, 138, 144
fire a transition 148
Flow 33
fork (PseudostateKind) 81, 132
fork of control 115
formalism 8
Foundation package 13
four-layer metamodel architecture 4
framework (Package) 172, 178
friend (Permission) 42
frozen (ChangeableKind) 21, 24, 78
full descriptor 60

G

GeneralizableElement 34, 52, 60
Generalization 35, 52, 60

of package 178
of subsystem 179
of use case 125

generalization (GeneralizableElement) 35
Geometry 78
global (AssociationEnd) 23
global (LinkEnd) 91
Guard 131, 138, 146
guard (Transition) 137
guarded (CallConcurrencyKind) 40, 77

H

Harel statechart 155
high-level transition 144
history

deep 144
shallow 143

I

icon (Stereotype) 69
implementation (Generalization) 36
ImplementationClass 52
implementationClass (Class) 27
implementationLocation (ModelElement) 38
implicit (Association) 20
import (Permission) 42, 177, 180

importedElement (Package) 172
importing elements 41
in (ParameterDirectionKind) 41, 80
Include 118, 120, 125
include (UseCase) 119
incoming (StateVertex) 135
incomplete (Generalization) 36
Inheritance 60
inheritance relationship 35
initial (PseudostateKind) 81, 132
initialValue (Attribute) 24
inout (ParameterDirectionKind) 41, 80
Instance 89, 96
instance (LinkEnd) 91
instance (ScopeKind) 24, 33, 81
instantiate (Usage) 44
Instantiation 61
instantiation (CreateAction) 89
inState (ClassifierInState) 160
Integer 78
Interaction 107, 110, 113, 114
interaction (Collaboration) 106
interaction (Message) 107
Interface 36, 53, 62

use case 124
internal transition 145
internalTransition (State) 134
invariant (Constraint) 30
isAbstract (GeneralizableElement) 34
isAbstract (Operation) 40
isAbstract (Reception) 93
isActive (Class) 27
isAsynchronous (Action) 87
isAsynchronous (CallAction) 88
isConcurrent (CompositeState) 131
isDynamic (ActionState) 159
isDynamic (SubactivityState) 162
isInstantiable (Subsystem) 173
isLeaf (GeneralizableElement) 34
isLeaf (Operation) 40
isLeaf (Reception) 93
isNavigable (AssociationEnd) 22
isQuery (BehavioralFeature) 25
isRegion (CompositeState) 131
isRoot (GeneralizableElement) 34
isRoot (Operation) 40
isRoot (Reception) 93
isSpecification (ElementOwnership) 32
isSynch (ObjectFlowState) 160
IterationExpression 79

J

join (PseudostateKind) 81, 132
join of control 115
junction (PseudostateKind) 81, 132

K

kind (Parameter) 41
UML V1.3 June 1999 2–187

2 UML Semantics
kind (PseudoState) 133

L

language (Expression) 78
layer, metamodel 4
library (Component) 29
Link 90, 98, 100
LinkEnd 91, 98
linkEnd (Instance) 90
LinkObject 91, 98
local (AssociationEnd) 23
local (LinkEnd) 91
location (ExtensionPoint) 118
LocationReference 79

M

Mapping 79
mapping (Abstraction) 19
MappingExpression 79
Message 107, 110, 114
message (Interaction) 107
MessageDirectionKind 79
metaclass (Classifier) 28
meta-metamodel layer 5
metamodel (Model) 171
metamodel layer 5
Method 37, 53
Model 171, 173, 180
model layer 5
Model Management Package 169
ModelElement 37, 53, 68, 71
modelElement (TaggedValue) 70
Multiplicity 79
multiplicity (AssociationEnd) 22
multiplicity (AssociationRole) 105
multiplicity (Attribute) 24
multiplicity (ClassifierRole) 105
MultiplicityRange 79

N

Name 79
name (Association) 20
name (AssociationEnd) 22
name (BehavioralFeature) 25
name (Feature) 33
name (ModelElement) 37
name (Parameter) 41
Namespace 39, 54
namespace (ModelElement) 38
natural language 10, 72
navigability 57
new (Instance) 90
new (Link) 91
Node 39, 55
NodeInstance 92, 98
none (AggregationKind) 21, 76
Notes section 10

O

Object 92, 98, 100
ObjectFlowState 160, 163, 165
ObjectSetExpression 80
OCL 9, 72
OCL (Language) 78
Operation 39, 55, 62
operation (CallAction) 88
operation (CallEvent) 129
ordered (OrderingKind) 22, 80
ordering (AssociationEnd) 22
OrderingKind 80
out (ParameterDirectionKind) 41, 80
outgoing (StateVertex) 135
overlapping (Generalization) 36
ownedElement (Collaboration) 106
ownedElement (Namespace) 39
owner (Feature) 33
ownerScope (Feature) 33
ownership of elements 177

P

Package 171, 173, 177
package structure of UML 6
Parameter 41, 55
parameter (AssociationEnd) 23
parameter (BehavioralFeature) 25
parameter (Event) 131
parameter (LinkEnd) 91
parameter (ObjectFlowState) 161
ParameterDirectionKind 80
parent (Generalization) 35
participant (Classifier) 28
Partition 161
partition (ActivityGraph) 159
passive class 27
Pattern 115
Permission 41
persistence (Association) 20
persistence (Attribute) 25
persistence (Classifier) 28
persistent (Instance) 90
postcondition (Constraint) 30
powertype (Classifier) 28
powertype (Generalization) 35
powertypeRange (Classifier) 28
precondition (Constraint) 30
predecessor (Message) 107, 115
presentation (ModelElement) 38
PresentationElement 62
priority of transition 149
private (VisibilityKind) 23, 32, 33, 82
ProcedureExpression 80
process (Classifier) 28
propagation semantics 57
protected (VisibilityKind) 23, 32, 33, 82
protocol state machine 151
PseudoState 132, 138, 164
PseudostateKind 81
2–188 UML V1.3 June 1999

public (VisibilityKind) 23, 32, 33, 82

Q

qualifier 58
qualifier (AssociationEnd) 23
qualifierValue (LinkEnd) 91

R

Realization 18
realize (Abstraction) 19
receiver (Message) 107
receiver (Stimulus) 94
Reception 92, 99
reception (Signal) 94
recurrence (Action) 87
referenceState (StubState) 135
referencing elements 41
refine (Abstraction) 19
Refinement 18, 63
refinement of state machine 153
Relationship 30, 42
representedClassifier (Collaboration) 106
representedOperation (Collaboration) 106
requiredTag (Stereotype) 69
resident (Component) 29
resident (ComponentInstance) 88
resident (Node) 39
resident (NodeInstance) 92
responsibility (Comment) 29
return (ParameterDirectionKind) 41, 80
return action 101
ReturnAction 93, 99
run to completion 147

S

ScopeKind 81
script (Action) 87
segment descriptor 60
self (AssociationEnd) 23
self (LinkEnd) 91
Semantics 72, 177
semantics (Classifier) 28
semantics (Operation) 40
semantics of state machines 141
Semantics Package 177
semantics section 10
semaphore 150
send (Usage) 44
SendAction 93, 99, 101, 114
sender (Message) 107
sender (Stimulus) 94
sequential (CallConcurrencyKind) 40, 77
shallowHistory (PseudostateKind) 81, 132, 143
Signal 94, 99, 101
signal (Reception) 93
signal (SendAction) 93
signal (SignalEvent) 133

SignalEvent 133
signalflow (ObjectFlowState) 161
SimpleState 133
slot (Instance) 90
sorted (OrderingKind) 22, 80
source (Transition) 137
specialization (GeneralizableElement) 35
specification (AssociationEnd) 23
specification (Method) 37
specification (Reception) 93
standard elements section 10
State 133, 142
state machine refinement 153
State Machines Package 127
statechart 155
StateMachine 134, 138, 139, 147

semantics 141
StateVertex 135
Stereotype 69, 71, 72
stereotype (ModelElement) 68
stereotype (TaggedValue) 70
stereotypeConstraint (Stereotype) 69
Stimulus 94, 99, 101, 114
String 81
StructuralFeature 42, 56
stub (Package) 172
StubState 135, 150
SubactivityState 161, 164, 166
submachine (SubactivityState) 162
submachine (SubmachineState) 136
SubmachineState 135, 139, 144
subordinate use case 113, 124
Subsystem 172, 176, 178
subtyping and state machine 154
subvertex (CompositeState) 130
superordinate collaboration 113
superordinate use case 124
supplier (Dependency) 31
supplierDependency (ModelElement) 38
synchronization fork and join 150
SynchState 136, 139, 150
systemModel (Model) 171

T

table (Component) 29
tag (TaggedValue) 70
TaggedValue 70, 72
taggedValue (ModelElement) 68
target (Action) 87
target (Transition) 137
targetScope (AssociationEnd) 22
targetScope (Attribute) 24
taxonomic relationship 35
template 37, 38, 53, 62

collaboration 114, 115
TemplateParameter 43
templateParameter (ModelElement) 38
terminate action 101
TerminateAction 94, 99
UML V1.3 June 1999 2–189

2 UML Semantics
thread (Classifier) 28
thread of control 115
Time 82
TimeEvent 136
TimeExpression 82
top (StateMachine) 134
topLevel (Package) 172
Trace 18, 56, 63
trace (Abstraction) 19, 180
transient (Instance) 90
transient (Link) 91
Transition 136, 139, 144, 166

execution 146
firing rules 149

transition (StateMachine) 135
trigger (Transition) 137
true (Boolean) 77
Type 56
type (AssociationEnd) 23
type (Attribute) 25
type (Class) 27
type (ClassifierInState) 160
type (ObjectFlowState) 161
type (Parameter) 41
TypeExpression 82

U

Uninterpreted 82
UninterpretedAction 94, 99, 102
UnlimitedInteger 82
unordered (OrderingKind) 22, 80

Usage 43, 56, 63
Use Cases Package 116
UseCase 119, 120, 123

description 124
instance 124

UseCaseInstance 119, 121
user object layer 5
utility (Classifier) 28

V

value (Argument) 87
value (AttributeLink) 88
value (TaggedValue) 70
ViewElement 42, 55
visibility (AssociationEnd) 23
visibility (ElementImport) 171
visibility (ElementOwnership) 32
visibility (ElementResidence) 32
visibility (Feature) 33
VisibilityKind 82

W

well-formedness rules section 9
when (TimeEvent) 136

X

xor (Association) 20
2–190 UML V1.3 June 1999

UML Notation Guide 3
ling
tics
ails.
This guide describes the notation for the visual representation of the Unified Mode
Language (UML). This notation document contains brief summaries of the seman
of UML constructs, but the UML Semantics chapter must be consulted for full det

Contents

Part 1 - Background 3-5
3.1 Introduction 3-5

Part 2 - Diagram Elements 3-7
3.2 Graphs and Their Contents 3-7
3.3 Drawing Paths 3-8
3.4 Invisible Hyperlinks and the Role of Tools 3-8
3.5 Background Information 3-8
3.6 String 3-9
3.7 Name 3-10
3.8 Label 3-11
3.9 Keywords 3-12
3.10 Expression 3-12
3.11 Note 3-14
3.12 Type-Instance Correspondence 3-15

Part 3 - Model Management 3-17
3.13 Package 3-17
3.14 Subsystem 3-19
3.15 Model 3-24

Part 4 - General Extension Mechanisms 3-27
3.16 Constraint and Comment 3-27
3.17 Element Properties 3-29
3.18 Stereotypes 3-30

Part 5 - Static Structure Diagrams 3-33
3.19 Class Diagram 3-33
UML V1.3 June 1999 3-1

3 UML Notation Guide
3.20 Object Diagram 3-34
3.21 Classifier 3-34
3.22 Class 3-34
3.23 Name Compartment 3-36
3.24 List Compartment 3-37
3.25 Attribute 3-40
3.26 Operation 3-42
3.27 Type vs. Implementation Class 3-46
3.28 Interfaces 3-48
3.29 Parameterized Class (Template) 3-49
3.30 Bound Element 3-51
3.31 Utility 3-53
3.32 Metaclass 3-53
3.33 Enumeration 3-54
3.34 Stereotype 3-54
3.35 Powertype 3-55
3.36 Class Pathnames 3-55
3.37 Accessing or Importing a Package 3-56
3.38 Object 3-58
3.39 Composite Object 3-60
3.40 Association 3-61
3.41 Binary Association 3-61
3.42 Association End 3-65
3.43 Multiplicity 3-68
3.44 Qualifier 3-70
3.45 Association Class 3-71
3.46 N-ary Association 3-73
3.47 Composition 3-74
3.48 Link 3-78
3.49 Generalization 3-79
3.50 Dependency 3-83
3.51 Derived Element 3-86
3.52 InstanceOf 3-87

Part 6 - Use Case Diagrams 3-89
3.53 Use Case Diagram 3-89
3.54 Use Case 3-91
3.55 Actor 3-92
3.56 Use Case Relationships 3-92
3.57 Actor Relationships 3-94

Part 7 - Sequence Diagrams 3-97
3.58 Kinds of Interaction Diagrams 3-97
3.59 Sequence Diagram 3-98
3.60 Object Lifeline 3-103
3.61 Activation 3-104
3.62 Message and Stimulus 3-105
3.63 Transition Times 3-107

Part 8 - Collaboration Diagrams 3-109
3.64 Collaboration 3-109
3.65 Collaboration Diagram 3-111
3-2 UML V1.3 June 1999

3 Contents
3.66 Pattern Structure 3-114
3.67 Collaboration Contents 3-116
3.68 Interactions 3-117
3.69 Collaboration Roles 3-118
3.70 Multiobject 3-121
3.71 Active object 3-122
3.72 Message and Stimulus 3-124
3.73 Creation/Destruction Markers 3-128

Part 9 - Statechart Diagrams 3-131
3.74 Statechart Diagram 3-131
3.75 State 3-132
3.76 Composite States 3-135
3.77 Events 3-137
3.78 Simple Transitions 3-140
3.79 Transitions to and from Concurrent States 3-141
3.80 Transitions to and from Composite States 3-142
3.81 Factored Transition Paths 3-145
3.82 Submachine States 3-147
3.83 Synch States 3-149

Part 10 - Activity Diagrams 3-151
3.84 Activity Diagram 3-151
3.85 Action state 3-153
3.86 Subactivity state 3-154
3.87 Decisions 3-154
3.88 Swimlanes 3-155
3.89 Action-Object Flow Relationships 3-157
3.90 Control Icons 3-159
3.91 Synch States 3-162
3.92 Dynamic Invocation 3-162
3.93 Conditional Forks 3-163

Part 11 - Implementation Diagrams 3-165
3.94 Component Diagram 3-165
3.95 Deployment Diagram 3-166
3.96 Node 3-168
3.97 Component 3-170

Index 3-173
UML V1.3 June 1999 3-3

3 UML Notation Guide
3-4 UML V1.3 June 1999

3.1 Introduction

types.

agram.
re that
 other
ar:
e read

el
ther
 the

ping

ch as

rs do
tion”
e
itive

a
pick
ns of
 this

ming
ut
 C++

e
3UML Notation
Part 1 - Background

3.1 Introduction

This chapter is arranged in parts according to semantic concepts subdivided by diagram
Within each diagram type, model elements that are found on that diagram and their
representation are listed. Note that many model elements are usable in more than one di
An attempt has been made to place each description where it is used the most, but be awa
the document involves implicit cross-references and that elements may be useful in places
than the section in which they are described. Be aware also that the document is nonline
there are forward references in it. It is not intended to be a teaching document that can b
linearly, but a reference document organized by affinity of concept.

Each part of this chapter is divided into sections, roughly corresponding to important mod
elements and notational constructs. Note that some of these constructs are used within o
constructs; do not be misled by the flattened structure of the chapter. Within each section
following subsections may be found:

• Semantics: Brief summary of semantics. For a fuller explanation and discussion of fine
points, see the UML Semantics chapter in this document.

• Notation: Explains the notational representation of the semantic concept (“forward map
to notation”).

• Presentation options: Describes various options in presenting the model information, su
the ability to suppress or filter information, alternate ways of showing things, and
suggestions for alternate ways of presenting information within a tool.

Dynamic tools need the freedom to present information in various ways and the autho
not want to restrict this excessively. In some sense, we are defining the “canonical nota
that printed documents show, rather than the “screen notation.” The ability to extend th
notation can lead to unintelligible dialects, so we hope this freedom will be used in intu
ways. The authors have not sought to eliminate all the ambiguity that some of these
presentation options may introduce, because the presence of the underlying model in
dynamic tool serves to easily disambiguate things. Note that a tool is not supposed to
just one of the presentation options and implement it. Tools should offer users the optio
selecting among various presentation options, including some that are not described in
document.

• Style guidelines: Include suggestions for the use of stylistic markers, such as fonts, na
conventions, arrangement of symbols, etc., that are not explicitly part of the notation, b
that help to make diagrams more readable. These are similar to text indentation rules in
or Smalltalk. Not everyone will choose to follow these suggestions, but the use of som
consistent guidelines of your own choosing is recommended in any case.

• Example: Shows samples of the notation. String and code examples are given in the
following font: This is a string sample.
UML V1.3 June 1999 3-5

3 UML Notation

antic
hich

 is
 to a
• Mapping: Shows the mapping of notation elements to metamodel elements (“reverse
mapping from notation”). This indicates how the notation would be represented as sem
information. Note that, in general, diagrams are interpreted in a particular context in w
semantic and graphic information is gathered simultaneously. The assumption is that
diagrams are constructed by an editing tool that internalizes the model as the diagram
constructed. Some semantic constructs have no graphic notation and would be shown
user within a tool using a form or table.
3-6 UML V1.3 June 1999

3.2 Graphs and Their Contents

 by
ols
 are

the

s on a
e

old
lone

e

 or

th is a
ment
t both

at
rlying

trings
n lists
ls or
3UML Notation
Part 2 - Diagram Elements

3.2 Graphs and Their Contents

Most UML diagrams and some complex symbols are graphs containing nodes connected
paths. The information is mostly in the topology, not in the size or placement of the symb
(there are some exceptions, such as a sequence diagram with a metric time axis). There
three kinds of visual relationships that are important:

1. connection (usually of lines to 2-d shapes),

2. containment (of symbols by 2-d shapes with boundaries), and

3. visual attachment (one symbol being “near” another one on a diagram).

These visual relationships map into connections of nodes in a graph, the parsed form of
notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-
dimensional projections of 3-d shapes (such as cubes), but they are still rendered as icon
2-dimensional surface. In the near future, true 3-dimensional layout and navigation may b
possible on desktop machines; however, it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:

1. Icons - An icon is a graphical figure of a fixed size and shape. It does not expand to h
contents. Icons may appear within area symbols, as terminators on paths or as standa
symbols that may or may not be connected to paths.

2. 2-d Symbols - Two-dimensional symbols have variable height and width and they can
expand to hold other things, such as lists of strings or other symbols. Many of them ar
divided into compartments of similar or different kinds. Paths are connected to two-
dimensional symbols by terminating the path on the boundary of the symbol. Dragging
deleting a 2-d symbol affects its contents and any paths connected to it.

3. Paths - Sequences of line segments whose endpoints are attached. Conceptually a pa
single topological entity, although its segments may be manipulated graphically. A seg
may not exist apart from its path. Paths are always attached to other graphic symbols a
ends (no dangling lines). Paths may have terminators, that is, icons that appear in some
sequence on the end of the path and that qualify the meaning of the path symbol.

4. Strings - Present various kinds of information in an “unparsed” form. UML assumes th
each usage of a string in the notation has a syntax by which it can be parsed into unde
model information. For example, syntaxes are given for attributes, operations, and
transitions. These syntaxes are subject to extension by tools as a presentation option. S
may exist as singular elements of symbols or compartments of symbols, as elements i
(in which case the position in the list conveys information), as labels attached to symbo
paths, or as stand-alone elements on a diagram.
UML V1.3 June 1999 3-7

3 UML Notation

 a
nes.

input.
ther
f the

 kind

e
his is

be

creen
n be

or in

all in
amic

ly
, but

e its
nd

e style

ols,

all of
le as
3.3 Drawing Paths

A path consists of a series of line segments whose endpoints coincide. The entire path is
single topological unit. Line segments may be orthogonal lines, oblique lines, or curved li
Certain common styles of drawing lines exist: all orthogonal lines, or all straight lines, or
curves only for bevels. The line style can be regarded as a tool restriction on default line
When line segments cross, it may be difficult to know which visual piece goes with which o
piece; therefore, a crossing may optionally be shown with a small semicircular jog by one o
segments to indicate that the paths do not intersect or connect (as in an electrical circuit
diagram).

In some relationships (such as aggregation and generalization) several paths of the same
may connect to a single symbol. In some circumstances (described for the particular
relationship) the line segments connected to the symbol can be combined into a single lin
segment, so that the path from that symbol branches into several paths in a kind of tree. T
purely a graphical presentation option; conceptually the individual paths are distinct. This
presentation option may not be used when the modeling information on the segments to
combined is not identical.

3.4 Invisible Hyperlinks and the Role of Tools

A notation on a piece of paper contains no hidden information. A notation on a computer s
may contain additional invisible hyperlinks that are not apparent in a static view, but that ca
invoked dynamically to access some other piece of information, either in a graphical view
a textual table. Such dynamic links are as much a part of a dynamic notation as the visible
information, but this guide does not prescribe their form. We regard them as a tool
responsibility. This document attempts to define a static notation for the UML, with the
understanding that some useful and interesting information may show up poorly or not at
such a view. On the other hand, we do not know enough to specify the behavior of all dyn
tools, nor do we want to stifle innovation in new forms of dynamic presentation. Eventual
some of the dynamic notations may become well enough established to standardize them
we do not feel that we should do so now.

3.5 Background Information

3.5.1 Presentation Options

Each appearance of a symbol for a class on a diagram or on different diagrams may hav
own presentation choices. For example, one symbol for a class may show the attributes a
operations and another symbol for the same class may suppress them. Tools may provid
sheets attached either to individual symbols or to entire diagrams. The style sheets would
specify the presentation choices. (Style sheets would be applicable to most kinds of symb
not just classes.)

Not all modeling information is presented most usefully in a graphical notation. Some
information is best presented in a textual or tabular format. For example, much detailed
programming information is best presented as text lists. The UML does not assume that
the information in a model will be expressed as diagrams; some of it may only be availab
3-8 UML V1.3 June 1999

3.6 String

rms
 in the

ms.

ation

bout
he
an
ed

an be

ayed

 with

elf.
nt and

atic
ring
tables. This document does not attempt to prescribe the format of such tables or of the fo
that are used to access them, because the underlying information is adequately described
UML metamodel and the responsibility for presenting tabular information is a tool
responsibility. It is assumed that hidden links may exist from graphical items to tabular ite

3.6 String

A string is a sequence of characters in some suitable character set used to display inform
about the model. Character sets may include non-Roman alphabets and characters.

3.6.1 Semantics

Diagram strings normally map underlying model strings that store or encode information a
the model, although some strings may exist purely on the diagrams. UML assumes that t
underlying character set is sufficient for representing multibyte characters in various hum
languages; in particular, the traditional 8-bit ASCII character set is insufficient. It is assum
that the tool and the computer manipulate and store strings correctly, including escape
conventions for special characters, and this document will assume that arbitrary strings c
used without further fuss.

3.6.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be displ
directly. The display of nonprintable characters is unspecified and platform-dependent.
Depending on purpose, a string might be shown as a single-line entity or as a paragraph
automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the string its
They may code for various model properties, some of which are suggested in this docume
some of which are left open for the tool or the user.

3.6.3 Presentation Options

Tools may present long strings in various ways, such as truncation to a fixed size, autom
wrapping, or insertion of scroll bars. It is assumed that there is a way to obtain the full st
dynamically.

3.6.4 Example

BankAccount

integrate (f: Function, from: Real, to: Real)

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }
UML V1.3 June 1999 3-9

3 UML Notation

text.
ple,

 kind

ome
n this

rious
icular

e and
its on
han
The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks,
in which blocks of cards may stick together during several riffles, the operation is
actually simulated by cutting the deck and merging the cards with an imperfect
merge.

3.6.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on con
In some circumstances, the visual string is parsed into multiple model elements. For exam
an operation signature is parsed into its various fields. Further details are given with each
of symbol.

3.7 Name

3.7.1 Semantics

A name is a string that is used to identify a model element uniquely within some scope. A
pathname is used to find a model element starting from the root of the system (or from s
other point). A name is a selector (qualifier) within some scope—the scope is made clear i
document for each element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::’). There are va
kinds of pathnames described in this document, each in its proper place and with its part
delimiter.

3.7.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single lin
will not contain nonprintable characters. Tools and languages may impose reasonable lim
the length of strings and the character set they use for names, possibly more restrictive t
those for arbitrary strings, such as comments.

3.7.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very_long_name_with_underscores

Pathname:

MathPak::Matrices::BandedMatrix
3-10 UML V1.3 June 1999

3.8 Label

urther

.

e
tring
mbol)
tains

drags
t and

such
3.7.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with String. F
details are given with the particular element.

3.8 Label

A label is a string that is attached to a graphic symbol.

3.8.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational term

3.8.2 Notation

A label is a string that is attached graphically to another symbol on a diagram. Visually th
attachment normally is by containment of the string (in a closed region) or by placing the s
near the symbol. Sometimes the string is placed in a definite position (such as below a sy
but most of the time the statement is that the string must be “near” the symbol. A tool main
an explicit internal graphic linking between a label and a graphic symbol, so that the label
with the symbol, but the final appearance of the diagram is a matter of aesthetic judgmen
should be made so that there is no confusion about which symbol a label is attached to.
Although the attachment may not be obvious from a visual inspection of a diagram, the
attachment is clear and unambiguous at the graphic level (and poses no ambiguity in the
semantic mapping).

3.8.3 Presentation Options

A tool may visually show the attachment of a label to another symbol using various aids (
as a line in a given color, flashing of matched elements, etc.) as a convenience.

3.8.4 Example

Figure 3-1 Attachment by Containment and Attachment by Adjacency

BankAccount

account
UML V1.3 June 1999 3-11

3 UML Notation

use
odel
ements.
nd

reated
names.

mbers.
are

s

 into a
ions,

string
 that
 yield
ssion
 value.
nder
3.9 Keywords

The number of easily-distinguishable visual symbols is limited. The UML notation makes
of text keywords in places to distinguish variations on a common theme, including metam
subclasses of a base class, stereotypes of a metamodel base class, and groups of list el
From the user’s perspective, the metamodel distinction between metamodel subclasses a
stereotypes is often unimportant, although it is important to tool builders and others who
implement the metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):

«keyword»

Certain predefined keywords are described in the text of this document. These must be t
as reserved words in the notation. Others are available for users to employ as stereotype
The use of a stereotype name that matches a predefined keyword is ill-formed.

3.10 Expression

3.10.1 Semantics

Various UML constructs require expressions, which are linguistic formulas that yield values
when evaluated at run-time. These include expressions for types, boolean values, and nu
UML does not include an explicit linguistic analyzer for expressions. Rather, expressions
expressed as strings in a particular language. The OCL constraint language is used within the
UML semantic definition and may also be used at the user level; other languages (such a
programming languages) may also be used.

UML avoids specifying the syntax for constructing type expressions because they are so
language-dependent. It is assumed that the name of a class or simple data type will map
simple Classifier reference, but the syntax of complicated language-dependent type express
such as C++ function pointers, is the responsibility of the specification language.

3.10.2 Notation

An expression is displayed as a string defined in a particular language. The syntax of the
is the responsibility of a tool and a linguistic analyzer for the language. The assumption is
the analyzer can evaluate strings at run-time to yield values of the appropriate type, or can
semantic structures to capture the meaning of the expression. For example, a type expre
evaluates to a Classifier reference, and a boolean expression evaluates to a true or false
The language itself is known to a modeling tool but is generally implicit on the diagram, u
the assumption that the form of the expression makes its purpose clear.

3.10.3 Example

BankAccount

BankAccount * (*) (Person*, int)
3-12 UML V1.3 June 1999

3.10 Expression

 the

ell as

bjects.

e
.

t
array [1..20] of reference to range (-1.0..1.0) of Real

[i > j and self.size > i]

3.10.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of
Expression, such as ObjectSetExpression or TimeExpression).

3.10.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints within
UML metamodel itself. The OCL language may be supported by tools for user-written
expressions as well. Other possible languages include various computer languages as w
plain text (which cannot be parsed by a tool, of course, and is therefore only for human
information). The OCL language is defined in Chapter 7, Object Constraint Language
Specification.

3.10.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can be
chained together. The leftmost element must be an expression for an object or a set of o
The expressions are meant to work on sets of values when applicable.

3.10.7 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees−>select (title = “Manager” and self.reports−>size > 10)

item ‘.’ selector the selector is the name of an attribute in the item or the
name of the target end of a link attached to the item. Th
result is the value of the attribute or the related object(s)
The result is a value or a set of values depending on the
multiplicities of the item and the association.

item ‘.’ selector ‘[‘ qualifier-
value ‘]’

the selector designates a qualified association that
qualifies the item. The qualifier-value is a value for the
qualifier attribute. The result is the related object selected
by the qualifier. Note that this syntax is applicable to
array indexing as a form of qualification.

set ‘->’ ‘select’ ‘(‘ boolean-
expression ‘)’

the boolean-expression is written in terms of objects
within the set. The result is the subset of objects in the se
for which the boolean expression is true.
UML V1.3 June 1999 3-13

3 UML Notation

del,

deling

the
rt of a

 must
string
ent:
3.11 Note

A note is a graphical symbol containing textual information (possibly including embedded
images). It is a notation for rendering various kinds of textual information from the metamo
such as constraints, comments, method bodies, and tagged values.

3.11.1 Semantics

A note is a notational item. It shows textual information within some semantic element.

3.11.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It contains
arbitrary text. It appears on a particular diagram and may be attached to zero or more mo
elements by dashed lines.

3.11.3 Presentation Options

A note may have a stereotype.

A note with the keyword “constraint” or a more specific stereotype of constraint (such as
code body for a method) designates a constraint that is part of the model and not just pa
diagram view. Such a note is the view of a model element (the constraint).

3.11.4 Example

See also Figure 3-15 on page 28 for a note symbol containing a constraint.

Figure 3-2 Note

3.11.5 Mapping

A note may represent the textual information in several possible metamodel constructs; it
be created in context that is known to a tool, and the tool must maintain the mapping. The
in the note maps to the body of the corresponding modeling element. A note may repres

• a constraint,

• a tagged value,

• the body of a method, or

This model was built
by Alan Wright after
meeting with the
mission planning team.
3-14 UML V1.3 June 1999

3.12 Type-Instance Correspondence

fic

ents,

,

ame,

 There
L, the
ir of

nce
ven

ption,

y
ment
e that
nces.

rmits
• other string values within modeling elements.

It may also represent a comment attached directly to a diagram element.

3.12 Type-Instance Correspondence

A major purpose of modeling is to prepare generic descriptions that describe many speci
items. This is often known as the type-instance dichotomy. Many or most of the modeling
concepts in UML have this dual character, usually modeled by two paired modeling elem
one represents the generic descriptor and the other the individual items that it describes.
Examples of such pairs in UML include: Class-Object, Association-Link, Parameter-Value
Operation-Call, and so on.

Although diagrams for type-like elements and instance-like elements are not exactly the s
they share many similarities. Therefore, it is convenient to choose notation for each type-
instance pair of elements such that the correspondence is visually apparent immediately.
are a limited number of ways to do this, each with advantages and disadvantages. In UM
type-instance distinction is shown by employing the same geometrical symbol for each pa
elements and by underlining the name string (including type name, if present) of an insta
element. This visual distinction is generally easily apparent without being overpowering e
when an entire diagram contains instance elements.

Figure 3-3 Classes and Objects

A tool is free to substitute a different graphic marker for instance elements at the user’s o
such as color, fill patterns, or so on.

Roles (in collaborations) are somewhat between types and instances. Like instances, the
identify distinct occurrences of a single classifier. Like types, they describe a reusable ele
that can have many distinct instances. A role is a distinguishable use of a classifier, but on
is still part of a general description (a collaboration) that can be used to create many insta
A run-time object may correspond to zero or more classes and to zero or more roles. The
notation for a role permits indication of its base clasifiers. The notation for an instance pe
specification of its classifiers, its roles, or both.

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414
UML V1.3 June 1999 3-15

3 UML Notation

. An
nd
A role is indicated by a name, colon, and type, not underlined and part of a collaboration
instance is indicated by an optional name, optional slash followed by list of roles, colon, a
list of types.

Figure 3-4 Roles and objects

p1/lead: Point

x = 3.14
y = 2.718

p2/lead,tail:Point

x = 1
y = 1.414

lead: Point

tail: Point

roles objects
3-16 UML V1.3 June 1999

3.13 Package

ther

 and

using
etwork

re

ft side

o be
mple

of the

the

ntax.

e

me of
 drawn

ol. As
3UML Notation
Part 3 - Model Management

3.13 Package

3.13.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested within o
packages. A package may contain subordinate packages as well as other kinds of model
elements. All kinds of UML model elements can be organized into packages.

Note that packages own model elements and are the basis for configuration control, storage,
access control. Each element can be directly owned by a single package, so the package
hierarchy is a strict tree. However, packages can reference other packages, modeled by
one of the stereotypes «import» and «access» of Permission dependency, so the usage n
is a graph. Other kinds of dependencies between packages usually imply that one or mo
dependencies among the elements exists.

3.13.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the le
of the top of the large rectangle. It is the common folder icon.

The contents of the package may be shown within the large rectangle. Contents may als
shown by branching lines to contained elements, drawn outside of the package (see exa
below). A plus sign (+) within a circle is drawn at the end attached to the container.

• If the contents of the package are not shown within the large rectangle, then the name
package may be placed within the large rectangle.

• If the contents of the package are shown within the large rectangle, then the name of
package may be placed within the tab.

A keyword string may be placed above the package name. The predefined stereotypes facade,
framework, stub, and topLevel are notated within guillemets.

A list of properties may be placed in braces after or below the package name. Example:
{abstract}. See Section 3.17, “Element Properties,” on page 3-29 for details of property sy

The visibility of a package element outside the package may be indicated by preceding th
name of the element by a visibility symbol (‘+’ for public, ‘-’ for private, ‘#’ for protected).

Relationships may be drawn between package symbols to show relationships between so
the elements in the packages. An import or access relationship between two packages is
as a dashed arrow with open arrowhead, labeled with the string «import» or «access»,
respectively.

Elements from imported or accessed packages may be shown outside the package symb
(public) elements in imported packages are added to the client namespace, they may
alternatively be drawn inside the package symbol.
UML V1.3 June 1999 3-17

3 UML Notation

 may

s, in
3.13.3 Presentation Options

A tool may show visibility by a graphic marker, such as color or font.

A tool may also show visibility by selectively displaying those elements that meet a given
visibility level, e.g. all of the public elements only.

A diagram showing a package with contents must not necessarily show all its contents; it
show a subset of the contained elements according to some criterion.

3.13.4 Style Guidelines

It is expected that packages with large contents will be shown as simple icons with name
which the contents may be dynamically accessed by “zooming” to a detailed view.

3.13.5 Example

Figure 3-5 Packages and their access and import relationships.

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Microsoft
Windows

Motif

WindowsCore

MotifCore

Editor

«import»

«import»

«import»

«import»

«import»

«import»

«access»

«access»
3-18 UML V1.3 June 1999

3.14 Subsystem

e name
 or
here is

maps

 The
le
ed by
to one

 offers
Figure 3-6 Some of the contents of the Editor package shown in a tree structure.

3.13.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is th
of the Package element. If there is a string above the package name other than «model»
«subsystem», then it maps into a Package element with the corresponding stereotype. If t
a string «model» or «subsystem», then it maps into a Model or Subsystem element,
respectively.

A relationship icon drawn from the package symbol boundary to another package symbol
into a corresponding relationship to the other package element.

A symbol directly contained within the package symbol (i.e., not contained within another
symbol) maps into a model element either owned or referenced by the package element.
alias used for a referenced element is often its pathname, in which case it is directly visib
from the diagram that the element is not owned by the package. Only the reference is own
the current package. Alternatively, a symbol shown outside the package symbol, attached
of the symbols within the package symbol, denotes a referenced model element.

Symbols connected to the package symbol by branching lines with a plus sign at the end
attached to the package symbol, map to elements in the package.

3.14 Subsystem

3.14.1 Semantics

Whereas a package is a generic mechanism for organizing model elements, a subsystem
represents a behavioral unit in the physical system, and hence in the model. A subsystem
interfaces and has operations, and its contents may be partitioned into specification and
realization elements. The specification of the subsystem consists of operations on the
subsystem, together with specification elements such as use cases, state machines, etc.

Editor

Controller
Diagram
Elements

Domain
Elements
UML V1.3 June 1999 3-19

3 UML Notation

 as a

rk
m

subsets

t, the
t

ent

ple

r

hown
ample
Subsystems may or may not be instantiable. A non-instantiable subsystem serves merely
specification unit for the behavior of its contained model elements.

3.14.2 Notation

A subsystem is notated basically in the same way as a package, with the addition of a fo
symbol placed in the upper right corner of the large rectangle. The name of the subsyste
(together with optional keyword, stereotype, etc) is placed within the large rectangle.
Optionally, especially if contents of the subsystem is shown within the large rectangle, the
subsystem name and the fork are placed within the tab (the small rectangle).

An instantiable subsystem has the string «instantiable» above its name.

The large rectangle has three compartments, one for operations and one for each of the
specification elements and realization elements. These are usually shown by dividing the
rectangle by a vertical line, and then dividing the area to the left of this line into two
compartments by a horizontal line. The operations are shown in the upper left compartmen
specification elements in the compartment below, and the realization elements in the righ
compartment. The latter two compartments are labeled ‘Specification Elements’ and
‘Realization Elements’, respectively, to avoid potential ambiguity. The operations compartm
is unlabeled. This is the general pattern for subsystem notation, although there are many
different ways to customize it in a particular diagram, see Presentation Options and Exam
below.

Figure 3-7 The general pattern for subsystem notation, with three compartments.

The mapping from the realization part to the specification part, i.e. to operations and
specification elements, is drawn using dashed arrows with closed, hollow arrowheads. Fo
collaborations, the mapping may also be expressed textually.

When a subsystem is shown together with other, peer elements in a diagram, it is often s
without contents, in which case there are no compartments in the large rectangle. See Ex
below.

Specification Elements

Realization Elements
3-20 UML V1.3 June 1999

3.14 Subsystem

f the

 than
shows
 in a

ents,

ction
arate,
3.14.3 Presentation Options

The fork symbol may be replaced by the keyword «subsystem» placed above the name o
subsystem.

One or more of the compartments may be collapsed or suppressed. In cases where more
one diagram is used to show all information about a particular subsystem, each diagram
a subset of the subsystem’s features and/or contents. Hence, compartments not relevant
particular diagram are suppressed.

All contained elements in a subsystem may be shown together in one, non-labeled
compartment, i.e. no visual differentiating between specification elements and realization
elements is done.

Tools may provide alternative ways to differentiate specification elements from realization
elements, such as different colors, using the keyword «specification» for specification elem
etc.

As with packages, the contents of a subsystem may be shown using tree notation. Distin
between specification and realization elements may then be done e.g. by having two sep
labeled branches, or by showing the category separately for each element in the tree as
suggested above.

3.14.4 Example

Figure 3-8 An overview diagram showing subsystems with interfaces and their dependencies.

SS1

SS2 SS3
UML V1.3 June 1999 3-21

3 UML Notation

nts.

. The
on is
stem
g the

tion
ere no
re is
Figure 3-9 All contained elements of a subsystem shown together without division into compartme
Here, the subsystem offers operation1(...) although this is not explicitly shown.

In Figure 3-9 no visual separation between specification and realization elements is made
following three figures are schematic examples where the specification/realization distincti
explicit. Together these figures constitute an example of how the basic notation for subsy
can be used to show different “views” of a subsystem in different diagrams, together givin
whole picture of the subsystem.

Figure 3-10 The specification part of a subsystem; compartment for realization part is suppressed.
Implicit from the diagram is that the operation4(...) is either an operation of a specifica
element (UseCase1 or UseCase2) or of the subsystem itself. Furthermore, in cases wh
operations are used for the specification but only contained specification elements, the
no operations compartment, and vice versa.

operation1(...) : Type1

«Interface»

operation2(...) : Type2

operation3(...) : Type3

UseCase1

UseCase2

Specification Elements

operation1(...) : Type1

«Interface»

operation4(...) : Type4

«Interface»

operation1(...) : Type1
3-22 UML V1.3 June 1999

3.14 Subsystem

s and
n a

ous to

m,

le
Figure 3-11 The realization part of a subsystem; compartments for specification part (i.e. operation
specification elements) are suppressed. Alternatively, collaborations could be shown i
separate diagram.

Figure 3-12 The mapping between specification part and realization part shown using all three
compartments, but only those realization elements with relevance to the mapping are
shown. The figure also shows examples of different ways to express the mapping.

3.14.5 Mapping

A subsystem symbol maps into a Subsystem with the given name. The mapping is analog
that of package symbols, with the following addition:

A symbol within a compartment of the large rectangle labeled ‘Specification Elements’ or
‘Realization Elements’ is mapped to a specification or realization element of the subsyste
respectively. An operation signature string within a non-labeled compartment maps to an
operation of the subsystem. Note that a labeled compartment may coincide with the who
rectangle.

Realization Elements

Realization Elements

operation1(...) : Type1

operation2(...) : Type2

representedOperation:
operation2

Specification Elements

operation3(...) : Type3

operation4(...) : Type4

«Interface»

UseCase1

UseCase2
UML V1.3 June 1999 3-23

3 UML Notation

ps to

nt to
ip

ysical
ll the

al

l»
stem.

nts of
ng

right
 the

els are
s are

ord
A symbol, that is not an operation signature string, within a non-labeled compartment ma
an element contained in the subsystem.

A dashed arrow with closed, hollow arrowhead from a symbol denoting a realization eleme
a symbol denoting a specification element or an operation maps to a «realize» relationsh
between the corresponding elements.

3.15 Model

3.15.1 Semantics

A model is an abstraction of a physical system, with a certain purpose. It describes the ph
system from a specific viewpoint and at a certain level of abstraction. A model contains a
model elements needed to represent a physical system completely by the criteria of this
particular model. The model elements in a model are organized into a package/subsystem
hierarchy, where the top-most package/subsystem represents the boundary of the physic
system.

Different models of the same physical system show different aspects of the system, from
different viewpoints and/or levels of abstraction. The pre-defined stereotype «systemMode
can be applied to a model containing the entire set of models for the complete physical sy

Relationships between elements in different models have no semantic impact on the conte
the models because of the self-containment of models. However, they are useful for traci
refinements and for keeping track of requirements between models.

Relationships between models express refinement, import, etc.

3.15.2 Notation

A model is notated using the ordinary package symbol with a small triangle in the upper
corner of the large rectangle. Optionally, especially if contents of the model is shown within
large rectangle, the triangle may be drawn to the right of the model name in the tab.

Relationships between models as well as relationships between elements in different mod
shown using the notation for the given kind of relationship. In particular, trace dependencie
notated with a dashed line, with an optional open arrowhead, and the keyword «trace».

3.15.3 Presentation Options

A model may be notated as a package, using the ordinary package symbol with the keyw
«model» placed above the name of the model.
3-24 UML V1.3 June 1999

3.15 Model

 on

t of
3.15.4 Example

Figure 3-13 A «systemModel» containing an analysis model and a design model.

Figure 3-14 Two examples of containment hierarchies with models and subsystems shown using
branching lines. The left hierarchy is based on Model, whereas the right one is based
Subsystem.

3.15.5 Mapping

A model symbol maps to a Model with the given name. The mapping is analogous to tha
package symbols.

 «systemModel»

 Analysis Design
UML V1.3 June 1999 3-25

3 UML Notation
3-26 UML V1.3 June 1999

3.16 Constraint and Comment

y
r or an
y

d
del is
ts

ed. A

 to a

odel
e used

ual
e
uage
int is
gram

string

 a
all
e list.
nt, but

g may
3UML Notation
Part 4 - General Extension Mechanisms

The elements in this section are general purpose mechanisms that may be applied to an
modeling element. The semantics of a particular use depends on a convention of the use
interpretation by a particular constraint language or programming language; therefore, the
constitute an extensibility device for UML.

3.16 Constraint and Comment

3.16.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions an
propositions that must be maintained as true; otherwise, the system described by the mo
invalid (with consequences that are outside the scope of UML). Certain kinds of constrain
(such as an association “xor” constraint) are predefined in UML, others may be user-defin
user-defined constraint is described in words in a given language, whose syntax and
interpretation is a tool responsibility. A constraint represents semantic information attached
model element, not just to a view of it.

A comment is a text string (including references to human-readable documents) attached
directly to a model element. A comment can attach arbitrary textual information to any m
element of presumed general importance but it has no semantic force. Comments may b
for explaining the reasons for decisions, among other things.

3.16.2 Notation

A constraint is shown as a text string in braces ({ }). There is an expectation that individ
tools may provide one or more languages in which formal constraints may be written. On
predefined language for writing constraints is OCL (see Chapter 7, Object Constraint Lang
Specification); otherwise, the constraint may be written in natural language. Each constra
written in a specific language, although the language is not generally displayed on the dia
(the tool must keep track of it, however).

For an element whose notation is a text string (such as an attribute, etc.), the constraint
may follow the element text string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes within
class), a constraint string may appear as an element in the list. The constraint applies to
succeeding elements of the list until another constraint string list element or the end of th
A constraint attached to an individual list element does not supersede the general constrai
may augment or modify individual constraints within the constraint string.

For a single graphical symbol (such as a class or an association path), the constraint strin
be placed near the symbol, preferably near the name of the symbol, if any.
UML V1.3 June 1999 3-27

3 UML Notation

wn as

(tail
d to

 other
tion

for
cified

layed
For two graphical symbols (such as two classes or two associations), the constraint is sho
a dashed arrow from one element to the other element labeled by the constraint string (in
braces). The direction of the arrow is relevant information within the constraint. The client
of the arrow) is mapped to the first position and the supplier (head of the arrow) is mappe
the second position in the constraint.

For three or more graphical symbols, the constraint string is placed in a note symbol and
attached to each of the symbols by a dashed line. This notation may also be used for the
cases. For three or more paths of the same kind (such as generalization paths or associa
paths), the constraint may be attached to a dashed line crossing all of the paths.

A comment is shown as a text string (not enclosed in braces) within a note icon. Syntax
including comments within other elements (such as expressions or constraints) are not spe
by UML but may be provided by a tool as part of the expression syntax for a particular
language.

3.16.3 Example

Figure 3-15 Constraints and comment

3.16.4 Mapping

A constraint string is a string enclosed in braces ({ }).

The constraint string maps into the body expression in a Constraint element. The mapping
depends on the language of the expression, which is known to a tool but generally not disp
on a diagram.

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.
3-28 UML V1.3 June 1999

3.17 Element Properties

raint
til

idden
he
bol.

ents

to a

ition,

r-

nt,
y
would

t
a
el
nsibility
ed

 is
ke will

mited
A constraint string following a list entry maps into a Constraint attached to the element
corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate Const
attached to each succeeding model element corresponding to subsequent list entries (un
superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a h
link by a tool operating in context. The tool must maintain the graphical linkage implicitly. T
constraint string maps into a Constraint attached to the element corresponding to the sym

A constraint string attached to a dashed arrow maps into a constraint attached to the two
elements corresponding to the symbols connected by the arrow.

A string enclosed in braces in a note symbol maps into a Constraint attached to the elem
corresponding to the symbols connected to the note symbol by dashed lines.

A string (not enclosed in braces) in a note attached to the symbol for an element maps in
Comment attached to the corresponding element.

3.17 Element Properties

Many kinds of elements have detailed properties that do not have a visual notation. In add
users can define new element properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes
properties represented by attributes in the metamodel as well as both predefined and use
defined tagged values.

3.17.1 Semantics

Note that we use property in a general sense to mean any value attached to a model eleme
including attributes, associations, and tagged values. In this sense it can include indirectl
reachable values that can be found starting at a given element. Some kinds of properties
have syntax within expressions (not specified by UML) but no explicit UML notation.

A tagged value is a keyword-value pair that may be attached to any kind of model elemen
(including diagram elements as well as semantic model elements). The keyword is called tag.
Each tag represents a particular kind of property applicable to one or many kinds of mod
elements. Both the tag and the value are encoded as strings. Tagged values are an exte
mechanism of UML permitting arbitrary information to be attached to models. It is expect
that most model editors will provide basic facilities for defining, displaying, and searching
tagged values as strings but will not otherwise use them to extend the UML semantics. It
expected, however, that back-end tools such as code generators, report writers, and the li
read tagged values to guide their semantics in flexible ways.

3.17.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-deli
sequence of property specifications all inside a pair of braces ({ }).
UML V1.3 June 1999 3-29

3 UML Notation

ult
 the
pes

ues.

. For
ace,

usage

d
butes.

g
ibutes
A property specification has the form

name = value

where name is the name of a property (metamodel attribute or arbitrary tag) and value is an
arbitrary string that denotes its value. If the type of the property is Boolean, then the defa
value is true if the value is omitted. That is, to specify a value of true you may include just
keyword. To specify a value of false, you omit the name completely. Properties of other ty
require explicit values. The syntax for displaying the value is a tool responsibility in cases
where the underlying model value is not a string or a number.

Note that property strings may be used to display built-in attributes as well as tagged val

Boolean properties frequently have the form isName, where name is the name of some
condition that may be true or false. In these cases, the form “name” may usually appear by
itself, without a value, to mean “isName = true”. For example, {abstract} is the same as
{isAbstract = true}.

3.17.3 Presentation Options

A tool may present property specifications on separate lines with or without the enclosing
braces, provided they are marked appropriately to distinguish them from other information
example, properties for a class might be listed under the class name in a distinctive typef
such as italics or a different font family.

3.17.4 Style Guidelines

It is legal to use strings to specify properties that have graphical notations; however, such
may be confusing and should be used with care.

3.17.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

3.17.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a tagge
value (predefined or user-defined). A tool must enforce the correspondence to built-in attri

3.18 Stereotypes

3.18.1 Semantics

A stereotype is, in effect, a new class of metamodel element that is introduced at modelin
time. It represents a subclass of an existing metamodel element with the same form (attr
and relationships) but with a different intent. Generally a stereotype represents a usage
3-30 UML V1.3 June 1999

3.18 Stereotypes

y
t

ement

ges

 be

t
ase it
y

hic
t
and

e
 class
the

y the
nd
the
ong

and
distinction. A stereotyped element may have additional constraints on it from the base
metamodel class. It may also have required tagged values that add information needed b
elements with the stereotype. It is expected that code generators and other tools will trea
stereotyped elements specially. Stereotypes represent one of the built-in extensibility
mechanisms of UML.

3.18.2 Notation

The general presentation of a stereotype is to use the symbol for the metamodel base el
but to place a keyword string above the name of the element (if any). The keyword string
(Section 3.9, “Keywords,” on page 3-12) is the name of the stereotype within matched
guillemets, which are the quotation mark symbols used in French and certain other langua
(for example, «foo»).

Note – A guillemet looks like a double angle-bracket, but it is a single character in most
extended fonts. Most computers have a Character Map utility. Double angle-brackets may
used as a substitute by the typographically challenged.

The keyword string is generally placed above or in front of the name of the model elemen
being described. The keyword string may also be used as an element in a list, in which c
applies to subsequent list elements until another stereotype string replaces it, or an empt
stereotype string («») nullifies it. Note that a stereotype name should not be identical to a
predefined keyword applicable to the same element type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a grap
marker (such as texture or color) can be associated with a stereotype. The UML does no
specify the form of the graphic specification, but many bitmap and stroked formats exist (
their portability is a difficult problem). The icon can be used in one of two ways:

1. It may be used instead of, or in addition to, the stereotype keyword string as part of th
symbol for the base model element that the stereotype is based on. For example, in a
rectangle it is placed in the upper right corner of the name compartment. In this form,
normal contents of the item can be seen.

2. The entire base model element symbol may be “collapsed” into an icon containing the
element name or with the name above or below the icon. Other information contained b
base model element symbol is suppressed. More general forms of icon specification a
substitution are conceivable, but we leave these to the ingenuity of tool builders, with
warning that excessive use of extensibility capabilities may lead to loss of portability am
tools.

UML avoids the use of graphic markers, such as color, that present challenges for certain
persons (the color blind) and for important kinds of equipment (such as printers, copiers,
fax machines). None of the UML symbols require the use of such graphic markers. Users may
use graphic markers freely in their personal work for their own purposes (such as for
highlighting within a tool) but should be aware of their limitations for interchange and be
prepared to use the canonical forms when necessary.
UML V1.3 June 1999 3-31

3 UML Notation

agram,
y
s.

ent
 The
he
by the

,
odel

 the
The classification hierarchy of the stereotypes themselves can be displayed on a class di
as described in Section 3.34, “Stereotype,” on page 3-54. This capability is not required b
many modelers who must use existing stereotypes but not define new kinds of stereotype

3.18.3 Example

Figure 3-16 Varieties of Stereotype Notation

3.18.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the Elem
corresponding to the symbol containing the name and the Stereotype of the given name.
use of a stereotype icon within a symbol maps into the stereotype relationship between t
Element corresponding to the symbol containing the icon and the Stereotype represented
symbol. A tool must establish the connection when the symbol is created and there is no
requirement that an icon represent uniquely one stereotype. The use of a stereotype icon
instead of a symbol, must be created in a context in which a tool implies a corresponding m
element and a Stereotype represented by the icon. The element and the stereotype have
stereotype relationship.

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«call»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)
3-32 UML V1.3 June 1999

3.19 Class Diagram

such
s
s of
nces

lasses,
of

ships.
n
gram”

rams

nts.

 static

 the
er
3UML Notation
Part 5 - Static Structure Diagrams

Class diagrams show the static structure of the model, in particular, the things that exist (
as classes and types), their internal structure, and their relationships to other things. Clas
diagrams do not show temporal information, although they may contain reified occurrence
things that have or things that describe temporal behavior. An object diagram shows insta
compatible with a particular class diagram.

This section discusses classes and their variations, including templates and instantiated c
and the relationships between classes (association and generalization) and the contents
classes (attributes and operations).

3.19 Class Diagram

A class diagram is a graph of Classifier elements connected by their various static relation
Note that a “class” diagram may also contain interfaces, packages, relationships, and eve
instances, such as objects and links. Perhaps a better name would be “static structural dia
but “class diagram” is shorter and well established.

3.19.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class diag
do not represent divisions in the underlying model.

3.19.2 Notation

A class diagram is a collection of (static) declarative model elements, such as classes,
interfaces, and their relationships, connected as a graph to each other and to their conte
Class diagrams may be organized into packages either with their underlying models or as
separate packages that build upon the underlying model packages.

3.19.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within the
structural model may be represented by one or more class diagrams. The division of the
presentation into separate diagrams is for graphical convenience and does not imply a
partitioning of the model itself. The contents of a diagram map into elements in the static
semantic model. If a diagram is part of a package, then its contents map into elements in
same package (including possible references to elements accessed or imported from oth
packages).
UML V1.3 June 1999 3-33

3 UML Notation

ect
system
data

in
se is

d as
rd

ctions.

ips.
efine
tion
ays.

or
model
used in
 as

ure and

ust be

ontal
e class
t
3.20 Object Diagram

An object diagram is a graph of instances, including objects and data values. A static obj
diagram is an instance of a class diagram; it shows a snapshot of the detailed state of a
at a point in time. The use of object diagrams is fairly limited, mainly to show examples of
structures.

Tools need not support a separate format for object diagrams. Class diagrams can conta
objects, so a class diagram with objects and no classes is an “object diagram.” The phra
useful, however, to characterize a particular usage achievable in various ways.

3.21 Classifier

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these have
similar syntax and are therefore all notated using the rectangle symbol with keywords use
necessary. Because classes are most common in diagrams, a rectangle without a keywo
represents a class, and the other subclasses of Classifier are indicated with keywords. In the
sections that follow, the discussion will focus on Class, but most of the notation applies to the
other element kinds as semantically appropriate and as described later under their own se

3.22 Class

A class is the descriptor for a set of objects with similar structure, behavior, and relationsh
The model is concerned with describing the intension of the class, that is, the rules that d
it. The run-time execution provides its extension, that is, its instances. UML provides nota
for declaring classes and specifying their properties, as well as using classes in various w
Some modeling elements that are similar in form to classes (such as interfaces, signals,
utilities) are notated using keywords on class symbols; some of these are separate meta
classes and some are stereotypes of Class. Classes are declared in class diagrams and
most other diagrams. UML provides a graphical notation for declaring and using classes,
well as a textual notation for referencing classes within the descriptions of other model
elements.

3.22.1 Semantics

A class represents a concept within the system being modeled. Classes have data struct
behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name m
unique (among class names) within its package.

3.22.2 Basic Notation

A class is drawn as a solid-outline rectangle with three compartments separated by horiz
lines. The top name compartment holds the class name and other general properties of th
(including stereotype); the middle list compartment holds a list of attributes; the bottom lis
compartment holds a list of operations.
3-34 UML V1.3 June 1999

3.22 Class

 To

ng

or line
n be

d to

r user-
,
ings.
 tool

s

s

 with
s are

s

, to
y
See “Name Compartment” on page 3-36 and “List Compartment” on page 3-37 for more
details.

References

By default a class shown within a package is assumed to be defined within that package.
show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by chaini
together package names separated by double colons (::).

3.22.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A separat
is not drawn for a missing compartment. If a compartment is suppressed, no inference ca
drawn about the presence or absence of elements in it. Compartment names can be use
remove ambiguity, if necessary (“List Compartment” on page 3-37).

Additional compartments may be supplied as a tool extension to show other predefined o
defined model properties (for example, to show business rules, responsibilities, variations
events handled, exceptions raised, and so on). Most compartments are simply lists of str
More complicated formats are possible, but UML does not specify such formats; they are a
responsibility. Appearance of each compartment should preferably be implicit based on it
contents. Compartment names may be used, if needed.

Tools may provide other ways to show class references and to distinguish them from clas
declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype icon,
the name of the class either inside the class or below the icon. Other contents of the clas
suppressed.

3.22.4 Style Guidelines
• Center class name in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above clas
name.

• Begin class names with an uppercase letter.

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show the names of abstract classes or the signatures of abstract operations in italics.

As a tool extension, boldface may be used for marking special list elements (for example
designate candidate keys in a database design). This might encode some design propert
modeled as a tagged value, for example.
UML V1.3 June 1999 3-35

3 UML Notation

 name

e

e

nd/or
otype
Show full attributes and operations when needed and suppress them in other contexts or
references.

3.22.5 Example

Figure 3-17 Class Notation: Details Suppressed, Analysis-level Details, Implementation-level Details

3.22.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram. The
compartment contents map into the class name and into properties of the class (built-in
attributes or tagged values). The attribute compartment maps into a list of Attributes of th
Class. The operation compartment maps into a list of Operations of the Class.

The property string {location=name} maps into an implementationLocation association to a
Component. The name is the name of the containing Component.

3.23 Name Compartment

3.23.1 Notation

The name compartment displays the name of the class and other properties in up to thre
sections:

An optional stereotype keyword may be placed above the class name within guillemets, a
a stereotype icon may be placed in the upper right corner of the compartment. The stere
name must not match a predefined keyword.

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = invisible

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}
3-36 UML V1.3 June 1999

3.24 List Compartment

te that

d in
o

lean

rties of

a
erflow

The

f the
y be

orted
ying

of a
 but
The name of the class appears next. If the class is abstract, its name appears in italics. No
any explicit specification of generalization status takes precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be place
braces below the class name. The list may show class-level attributes for which there is n
UML notation and it may also show tagged values. The presence of a keyword for a Boo
type without a value implies the value true. For example, a leaf class shows the property
“{leaf}”.

The stereotype and property list are optional.

Figure 3-18 Name Compartment

3.23.2 Mapping

The contents of the name compartment map into the name, stereotype, and various prope
the Class represented by the class symbol.

3.24 List Compartment

3.24.1 Notation

A list compartment holds a list of strings, each of which is the encoded representation of
feature, such as an attribute or operation. The strings are presented one to a line with ov
to be handled in a tool-dependent manner. In addition to lists of attributes or operations,
optional lists can show other kinds of predefined or user-defined values, such as
responsibilities, rules, or modification histories. UML does not define these optional lists.
manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order o
elements is meaningful information and must be accessible within tools (for example, it ma
used by a code generator in generating a list of declarations). The list elements may be
presented in a different order to achieve some other purpose (for example, they may be s
in some way). Even if the list is sorted, the items maintain their original order in the underl
model. The ordering information is merely suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited section
list indicates that additional elements in the model exist that meet the selection condition,
that are not shown in that list. Such elements may appear in a different view of the list.

PenTracker

«controller»

{ leaf, author=”Mary Jones”}
UML V1.3 June 1999 3-37

3 UML Notation

the

erty

e is
seful
For a

of the

n of
at no
sence
ow
ence
tion

e of its
ny).
Group properties

A property string may be shown as a element of the list, in which case it applies to all of
succeeding list elements until another property string appears as a list element. This is
equivalent to attaching the property string to each of the list elements individually. The prop
string does not designate a model element. Examples of this usage include indicating a
stereotype and specifying visibility. Keyword strings may also be used in a similar way to
qualify subsequent list elements.

Compartment name

A compartment may display a name to indicate which kind of compartment it is. The nam
displayed in a distinctive font centered at the top of the compartment. This capability is u
if some compartments are omitted or if additional user-defined compartments are added.
Class, the predefined compartments are named attributes and operations. An example of a
user-defined compartment might be requirements. The name compartment in a class must
always be present; therefore, it does not require or permit a compartment name.

3.24.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent ordering
elements is not visible. A sort is based on some internal property and does not indicate
additional model information. Example sort rules include:

• alphabetical order,

• ordering by stereotype (such as constructors, destructors, then ordinary methods),

• ordering by visibility (public, then protected, then private), etc.

The elements in the list may be filtered according to some selection rule. The specificatio
selection rules is a tool responsibility. The absence of items from a filtered list indicates th
elements meet the filter criterion, but no inference can be drawn about the presence or ab
of elements that do not meet the criterion. However, the ellipsis notation is available to sh
that invisible elements exist. It is a tool responsibility whether and how to indicate the pres
of either local or global filtering, although a stand-alone diagram should have some indica
of such filtering if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or absenc
elements. An empty compartment indicates that no elements meet the selection filter (if a

Note that attributes may also be shown by composition (see Figure 3-36 on page 3-77).
3-38 UML V1.3 June 1999

3.24 List Compartment
3.24.3 Example

Figure 3-19 Stereotype Keyword Applied to Groups of List Elements

Figure 3-20 Compartments with Names

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card
UML V1.3 June 1999 3-39

3 UML Notation

. The

e
ntry

ces)
o each
operty

he
st one

tax is
f these

e

by the

ol
e
3.24.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list entry
ordering of the ModelElements matches the list compartment entries (unless the list
compartment is sorted in some way). In this case, no implication about the ordering of th
Elements can be made (the ordering can be seen by turning off sorting). However, a list e
string that is a stereotype indication (within guillemets) or a property indication (within bra
does not map into a separate ModelElement. Instead, the corresponding property applies t
subsequent ModelElement until the appearance of a different stand-alone stereotype or pr
indicator. The property specifications are conceptually duplicated for each list Element,
although a tool might maintain an internal mechanism to store or modify them together. T
presence of an ellipsis (“...”) as a list entry implies that the semantic model contains at lea
Element with corresponding properties that is not visible in the list compartment.

3.25 Attribute

Strings in the attribute compartment are used to show attributes in classes. A similar syn
used to specify qualifiers, template parameters, operation parameters, and so on (some o
omit certain terms).

3.25.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however, th
intent and usage is normally different.

The type of an attribute is a TypeExpression. It may resolve to a class name or it may be
complex, such as array[String] of Point. In any case, the details of the attribute type
expressions are not specified by UML. They depend on the expression syntax supported
particular specification or programming language being used.

3.25.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of an
attribute model element. The default syntax is:

visibility name [multiplicity] : type-expression = initial-value { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). A to
should assign visibilities to new attributes even if the visibility is not shown. Th
visibility marker is a shorthand for a full visibility property specification string.
3-40 UML V1.3 June 1999

3.25 Attribute

ntire

s,

 a

).

 of

rwise,

ing
. An

 be
le:

lue,
rmits

ility
Visibility may also be specified by keywords (public, protected, private). This form
is used particularly when it is used as an inline list element that applies to an e
block of attributes.

Additional kinds of visibility might be defined for certain programming language
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by
tool-specific convention.

• Where name is an identifier string that represents the name of the attribute.

• Where [multiplicity] shows the multiplicity of the attribute (Section 3.43, “Multiplicity,” on
page 3-68). The term may be omitted, in which case the multiplicity is 1..1 (exactly one

• Where type-expression is a language-dependent specification of the implementation type
an attribute.

• Where initial-value is a language-dependent expression for the initial value of a newly
created object. The initial value is optional (the equal sign is also omitted). An explicit
constructor for a new object may augment or modify the default initial value.

• Where property-string indicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string; othe
the attribute is instance-scope.

class-scope-attribute

The notation justification is that a class-scope attribute is an instance value in the execut
system, just as an object is an instance value, so both may be designated by underlining
instance-scope attribute is not underlined; that is the default.

There is no symbol for whether an attribute is changeable (the default is changeable). A
nonchangeable attribute is specified with the property “{frozen}”.

In the absence of a multiplicity indicator, an attribute holds exactly 1 value. Multiplicity may
indicated by placing a multiplicity indicator in brackets after the attribute name, for examp

colors [3]: Color
points [2..*]: Point

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence of a va
as opposed to a particular value from the range. For example, the following declaration pe
a distinction between the null value and the empty string:

name [0..1]: String

A stereotype keyword in guillemets precedes the entire attribute string, including any visib
indicators. A property list in braces follows the rest of the attribute string.

3.25.3 Presentation Options

The type expression may be suppressed (but it has a value in the model).
UML V1.3 June 1999 3-41

3 UML Notation

 or

tring.

 as

7).

the
, if
tance-

ation

. and

s a
The initial value may be suppressed, and it may be absent from the model. It is a tool
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon
by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a continuous s

The syntax of the attribute string can be that of a particular programming language, such
C++ or Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see “List Compartment” on page 3-3

3.25.4 Style Guidelines

Attribute names typically begin with a lowercase letter. Attribute names are in plain face.

3.25.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

3.25.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class
corresponding to the class symbol. The properties of the attribute map in accord with the
preceding descriptions. If the visibility is absent, then no conclusion can be drawn about
Attribute visibilities unless a filter is in effect (e.g., only public attributes shown). Likewise
the type or initial value are omitted. The omission of an underline always indicates an ins
scope attribute. The omission of multiplicity denotes a multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on the
Attribute. In addition, any properties specified on a previous stand-alone property specific
entry apply to the current Attribute (and to others).

3.26 Operation

Entries in the operation compartment are strings that show operations defined on classes
methods supplied by classes.

3.26.1 Semantics

An operation is a service that an instance of the class may be requested to perform. It ha
name and a list of arguments.
3-42 UML V1.3 June 1999

3.26 Operation

n

ntire

s,

 a

n
 are
may

ing

ed

ied by
is no
3.26.2 Notation

An operation is shown as a text string that can be parsed into the various properties of a
operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). This form
is used particularly when it is used as an inline list element that applies to an e
block of operations.

Additional kinds of visibility might be defined for certain programming language
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by
tool-specific convention.

• Where name is an identifier string.

• Where return-type-expression is a language-dependent specification of the implementatio
type or types of the value returned by the operation. The the colon and the return-type
omitted if the operation does not return a value (as for C++ void). A list of expressions
be supplied to indicate multiple return values.

• Where parameter-list is a comma-separated list of formal parameters, each specified us
the syntax:

kind name : type-expression = default-value

• where kind is in, out, or inout , with the default in if absent.

• where name is the name of a formal parameter.

• where type-expression is the (language-dependent) specification of an
implementation type.

• where default-value is an optional value expression for the parameter, express
in and subject to the limitations of the eventual target language.

• Where property-string indicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string. An
instance-scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is specif
the property “{query}”; otherwise, the operation may alter the system state, although there
guarantee that it will do so.
UML V1.3 June 1999 3-43

3 UML Notation

antics

and
s not

ature

a

tion

to that
 state
 error

ext of
ge (a

ility

 or

uage,
The concurrency semantics of an operation are specified by a property string of the form
“{concurrency = name}, where name is one of the names: sequential, guarded, concurrent. As
a shorthand, one of the names may be used by itself in a property string to indicate the
corresponding concurrency value. In the absence of a specification, the concurrency sem
are unspecified and must therefore be assumed to be sequential in the worst case.

The top-most appearance of an operation signature declares the operation on the class (
inherited by all of its descendents). If this class does not implement the operation (i.e., doe
supply a method), then the operation may be marked as “{abstract}” or the operation sign
may be italicized to indicate that it is abstract. A subordinate appearance of the operation
signature without the {abstract} property indicates that the subordinate class implements
method on the operation.

The actual text or algorithm of a method may be indicated in a note attached to the opera
entry.

If the objects of a class accept and respond to a given signal, an operation entry with the
keyword «signal» indicates that the class accepts the given signal. The syntax is identical
of an operation. The response of the object to the reception of the signal is shown with a
machine. Among other uses, this notation can show the response of objects of a class to
conditions and exceptions, which should be modeled as signals.

The specification of operation behavior is given as a note attached to the operation. The t
the specification should be enclosed in braces if it is a formal specification in some langua
semantic Constraint); otherwise, it should be plain text if it is just a natural-language
description of the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any visib
indicators. A property list in braces follows the entire operation string.

3.26.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a special icon
by sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming lang
such as C++ or Smalltalk. Specific tagged properties may be included in the string.
3-44 UML V1.3 June 1999

3.26 Operation

tment

e. An

 the
nce
nal

ing to

.

A method body may be shown in a note attached to the operation entry within the compar
(Figure 3-21 on page 45). The line is drawn to the string within the compartment. This
approach is useful mainly for showing small method bodies.

Figure 3-21 Note showing method body

3.26.4 Style Guidelines

Operation names typically begin with a lowercase letter. Operation names are in plain fac
abstract operation may be shown in italics.

3.26.5 Example

Figure 3-22 Operation List with a Variety of Operations

3.26.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method within
Class corresponding to the class symbol. The properties of the operation map in accorda
with the preceding descriptions. See the description of “Attribute” on page 3-40 for additio
details. Parameters without keywords map into Parameters with kind=in, otherwise accord
the keyword. Return value names may into Parameters with kind=return.

If the entry has the keyword «signal», then it maps into a Reception on the Class instead

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert ()

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)
UML V1.3 June 1999 3-45

3 UML Notation

ds. In
he
g use
ars
it has

eft
tions
ype
s. It

fying
tate

ns)
An
e
lass
s of
d that

. If
e
hich

is the
 of

ion
The topmost appearance of an operation specification in a class hierarchy maps into an
Operation definition in the corresponding Class or Interface. Interfaces do not have metho
a Class, each appearance of an operation entry maps into the presence of a Method in t
corresponding Class, unless the operation entry contains the {abstract} property (includin
of conventions such as italics for abstract operations). If an abstract operation entry appe
within a hierarchy in which the same operation has already been defined in an ancestor,
no effect but is not an error unless the declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

3.27 Type vs. Implementation Class

3.27.1 Semantics

Classes can be stereotyped as Types or Implementation Classes (although they can be l
undifferentiated as well). A Type is used to specify a domain of objects together with opera
applicable to the objects without defining the physical implementation of those objects. A T
may not include any methods, but it may provide behavioral specifications for its operation
may also have attributes and associations that aredefined solely for the purpose of speci
the behavior of the type's operations and do not represent any actual implementation of s
data.

An Implementation Class defines the physical data structure (for attributes and associatio
and methods of an object as implemented in traditional languages (C++, Smalltalk, etc.).
Implementation Class is said to realize a Type if it provides all of the operations defined for th
Type with the same behavior as specified for the Type's operations. An Implementation C
may realize a number of different Types. Note that the physical attributes and association
the Implementation Class do not have to be the same as those of any Type it realizes an
the Implementation Class may provide methods for its operations in terms of its physical
attributes and associations.

An object may have at most one Implementation Class, since this specifies the physical
implementation of the object. However, an object may conform to multiple different Types
the object has an Implementation Class, then that Implementation Class should realize th
Types to which the object conforms. If dynamic classification is used, then the Types to w
an object conforms may actually change dynamically. A Type may be used in this way to
characterize a changeable role that an object may adopt and later abandon.

Although the use of types and implementation classes is different, their internal structure
same and they are both classifiers of objects. Therefore they are modeled as stereotypes
classes. As such, they both fully support the usual generalization/specialization and the
inheritance of attributes, associations and operations. Note, however, the types may only
specialize other types and implementation classes may only specialize other implementat
classes. Types and implementation classes can be related only be realization.
3-46 UML V1.3 June 1999

3.27 Type vs. Implementation Class

e
. A
lass
pe.

n as a
bol
g

y of a
e
3.27.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the stereotyp
“«type»”. An implementation class is shown with the stereotype “«implementationClass»”
tool is also free to allow a default setting for an entire diagram, in which case all of the c
symbols without explicit stereotype indications map into Classes with the default stereoty
This might be useful for a model that is close to the programming level.

The implementation of a type by a class is modeled as the Realization relationship, show
dashed line with a solid triangular arrowhead (a dashed “generalization arrow”). This sym
implies the realizing class provides at least all the operations of the Type, with conformin
behavior, but it does not imply inheritance of structure (attributes or associations). The
generalization hierarchy of a set of classes frequently parallels the generalization hierarch
set of types that they realize, but this is not mandatory, as long as each class provides th
operations of the types that it realizes.

3.27.3 Example

Figure 3-23 Notation for Types and Implementation Classes

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

* elements

Object
«type»

HashTableSet
«implementationClass»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

1 body

HashTable
«implementationClass»

setTableSize(Integer)
UML V1.3 June 1999 3-47

3 UML Notation

a
 Class
or
wo

 and

ther
ften

An

rface
stract
rs).

e is
e it is

d
 This
ore).
ol to
erface
plies

lass is

the
his
 (the
(the
f the
3.27.4 Mapping

A class symbol with a stereotype (including “type” and “implementationClass”) maps into
Class with the corresponding stereotype. A class symbol without a stereotype maps into a
with the default stereotype for the diagram (if a default has been defined by the modeler
tool); otherwise, it maps into a Class with no stereotype. The realization arrow between t
symbols maps into an Abstraction relationship, with the «realize» stereotype, between the
Classifiers corresponding to the two symbols. Realization is usually used between a class
an interface, but may also be used between any two classifiers to show conformance of
behavior.

3.28 Interfaces

3.28.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component, or o
classifier (including subsystems) without specification of internal structure. Each interface o
specifies only a limited part of the behavior of an actual class. Interfaces do not have
implementation. They lack attributes, states, or associations; they only have operations. (
interface may be the target of a one-way association, however, but it may not have an
association that it can navigate.) Interfaces may have generalization relationships. An inte
is formally equivalent to an abstract class with no attributes and no methods and only ab
operations, but Interface is a peer of Class within the UML metamodel (both are Classifie

3.28.2 Notation

An interface is a Classifier and may be shown using the full rectangle symbol with
compartments and the keyword «interface». A list of operations supported by the interfac
placed in the operation compartment. The attribute compartment may be omitted becaus
always empty.

An interface may also be displayed as a small circle with the name of the interface place
below the symbol. The circle may be attached by a solid line to classifiers that support it.
indicates that the class provides all of the operations in the interface type (and possibly m
The operations provided are not shown on the circle notation; use the full rectangle symb
show the list of operations. A class that uses or requires the operations supplied by the int
may be attached to the circle by a dashed arrow pointing to the circle. The dashed arrow im
that the class requires no more than the operations specified in the interface; the client c
not required to actually use all of the interface operations.

The Realization relationship from a classifier to an interface that it supports is shown by a
dashed line with a solid triangular arrowhead (a “dashed generalization symbol”). This is
same notation used to indicate realization of a type by an implementation class. In fact, t
symbol can be used between any two classifier symbols, with the meaning that the client
one at the tail of the arrow) supports at least all of the operations defined in the supplier
one at the head of the arrow), but with no necessity to support any of the data structure o
supplier (attributes and associations).
3-48 UML V1.3 June 1999

3.29 Parameterized Class (Template)

s into

y with

dency

fines
cally,
r types,
the
values.
3.28.3 Example

Figure 3-24 Interface Notation on Class Diagram

3.28.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram, map
an Interface element with the name given by the symbol. The operation list of a rectangle
symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid line
connecting a class symbol and an interface circle, maps into a an Abstraction dependenc
the «realize» stereotype between the corresponding Classfier and Interface elements. A
dependency arrow from a class symbol to an interface symbol maps into a Usage depen
between the corresponding Classifier and Interface.

3.29 Parameterized Class (Template)

3.29.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters. It de
a family of classes, each class specified by binding the parameters to actual values. Typi
the parameters represent attribute types; however, they can also represent integers, othe
or even operations. Attributes and operations within the template are defined in terms of
formal parameters so they too become bound when the template itself is bound to actual

HashTable

Hashable

Comparable

String
. . .

isEqual(String):Boolean
hash():Integer

contents*

Comparable
«interface»

isEqual(String):Boolean
hash():Integer

. . .

«use»
UML V1.3 June 1999 3-49

3 UML Notation

rs must
erclass

at all

 entire
nts in

e for
s a
must
and
they
eters
tified

d
ion
plied

pplied
type).
A template is not a directly usable class because it has unbound parameters. Its paramete
be bound to actual values to create a bound form that is a class. Only a class can be a sup
or the target of an association (a one-way association from the template to another class is
permissible, however). A template may be a subclass of an ordinary class. This implies th
classes formed by binding it are subclasses of the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or even
Packages. The description given here for classes applies to other kinds of modeling eleme
the obvious way.

3.29.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the rectangl
the class (or to the symbol for another modeling element). The dashed rectangle contain
parameter list of formal parameters for the class and their implementation types. The list
not be empty, although it might be suppressed in the presentation. The name, attributes,
operations of the parameterized class appear as normal in the class rectangle; however,
may also include occurrences of the formal parameters. Occurrences of the formal param
can also occur inside of a context for the class, for example, to show a related class iden
by one of the parameters.

3.29.3 Presentation Options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, shown as strings with the syntax

name : type = default-value

• Where name is an identifier for the parameter with scope inside the template.

• Where type is a string designating a TypeExpression for the parameter.

• Where default-value is a string designating an Expression for a default value that is use
when the corresponding argument is omitted in a Binding. The equal sign and express
may be omitted, in which case there is no default value and the argument must be sup
in a Binding.

If the type name is omitted, the parameter type is assumed to be Classifier. The value su
for an argument in a Binding must be the name of a Classifier (including a class or a data
Other parameter types (such as Integer) must be explicitly shown. The value supplied for an
argument in a Binding must be an actual instance value of the given kind.
3-50 UML V1.3 June 1999

3.30 Bound Element

r
nding

tion to

at

n be
o
r
3.29.4 Example

Figure 3-25 Template Notation with Use of Parameter as a Reference

3.29.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the paramete
names in the list as ModelElements within the Namespace of the ModelElement correspo
to the base symbol (or to the Namespace containing a ModelElement that is not itself a
Namespace). Each of the parameter ModelElements has the templateParameter associa
the base ModelElement.

3.30 Bound Element

3.30.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or
association, because it has a free parameter that is not meaningful outside of a scope th
declares the parameter. To be used, a template’s parameters must be bound to actual values. The
actual value for each parameter is an expression defined within the scope of use. If the
referencing scope is itself a template, then the parameters of the referencing template ca
used as actual values in binding the referenced template. The parameter names in the tw
templates cannot be assumed to correspond because they have no scope outside of thei
respective templates.

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList
UML V1.3 June 1999 3-51

3 UML Notation

s:

ers for

rized
ol on a

t be
mple,

 by a
ses
plate.

,

dency
ent
 name

 of
ment
icitly
cribed
3.30.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as follow

Template-name ‘<‘ value-list ‘>’

• Where value-list is a comma-delimited non-empty list of value expressions.

• Where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template paramet
the template of the given name.

The bound element name may be used anywhere that an element name of the paramete
kind could be used. For example, a bound class name could be used within a class symb
class diagram, as an attribute type, or as part of an operation signature.

Note that a bound element is fully specified by its template; therefore, its content may no
extended. Declaration of new attributes or operations for classes is not permitted, for exa
but a bound class could be subclassed and the subclass extended in the usual way.

The relationship between the bound element and its template alternatively may be shown
Dependency relationship with the keyword «bind». The arguments are shown in parenthe
after the keyword. In this case, the bound form may be given a name distinct from the tem

3.30.3 Style Guidelines

The attribute and operation compartments are normally suppressed within a bound class
because they must not be modified in a bound template.

3.30.4 Example

See Figure 3-25 on page 3-51.

3.30.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding depen
between the dependent ModelElement (such as Class) corresponding to the bound elem
symbol and the provider ModelElement (again, such as Class) whose name matches the
part of the bound element without the arguments. If the name does not match a template
element or if the number of arguments in the bound element does not match the number
parameters in the template, then the model is ill formed. Each argument in the bound ele
maps into a ModelElement bearing an argument link to the Binding dependency. An expl
drawn «bind» dependency symbol mays to a Binding dependency with arguments as des
above.
3-52 UML V1.3 June 1999

3.31 Utility

n.

s and

type.
3.31 Utility

A utility is a grouping of global variables and procedures in the form of a class declaratio
This is not a fundamental construct, but a programming convenience. The attributes and
operations of the utility become global variables and procedures. A utility is modeled as a
stereotype of a class.

3.31.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global attribute
operations. It is inappropriate for a utility to declare class-scope attributes and operations
because the instance-scope members are already interpreted as being at class scope.

3.31.2 Notation

A utility is shown as the stereotype «utility» of Class. It may have both attributes and
operations, all of which are treated as global attributes and operations.

3.31.3 Example

Figure 3-26 Notation for Utility

3.31.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility» stereo

3.32 Metaclass

3.32.1 Semantics

A metaclass is a class whose instances are classes.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real
UML V1.3 June 1999 3-53

3 UML Notation

amed

dered
tions

ts on
3.32.2 Notation

A metaclass is shown as the stereotype «metaclass» of Class.

3.32.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass»
stereotype.

3.33 Enumeration

3.33.1 Semantics

An Enumeration is a user-defined data type whose instances are a set of user-specified n
enumeration literals. The literals have a relative order but no algebra is defined on them.

3.33.2 Notation

An Enumeration is shown using the Classifier notation (a rectangle) with the keyword
«enumeration». The name of the Enumeration is placed in the upper compartment. An or
list of enumeration literals may be placed, one to a line, in the middle compartment. Opera
defined on the literals may be placed in the lower compartment. The lower and middle
compartments may be suppressed.

3.33.3 Mapping

Maps into an Enumeration with the given list of enumeration literals.

3.34 Stereotype

3.34.1 Semantics

A Stereotype is a user-defined metaelement whose structure matches an existing UML
metaelement.

3.34.2 Notation

A Stereotype is shown using the Classifier notation (a rectangle) with the keyword
«stereotype». The name of the Stereotype is placed in the upper compartment. Constrain
elements described by the stereotype may be placed in a named compartment called
Constraints . Required tags may be placed in a named compartment called Tags .

The base element may be indicated by a property string of the form {baseElement =
name}.
3-54 UML V1.3 June 1999

3.35 Powertype

 of

ord
the
t

rent

ly

s to
e for

s for
uding
es of
An icon can be defined for the stereotype, but its graphical definition is outside the scope
UML and must be handled by an editing tool.

3.34.3 Mapping

Maps into a Stereotype with the given constraints and base element.

3.35 Powertype

3.35.1 Semantics

A Powertype is a user-defined metaelement whose instances are classes in the model.

3.35.2 Notation

A Powertype is shown using the Classifier notation (a rectangle) with the stereotype keyw
«powertype». The name of the Powertype is placed in the upper compartment. Because
elements are ordinary classes, attributes and operations on the powertype are usually no
defined by the user.

The instances of the powertype may be indicated by placing a dashed line across the pa
lines of the classes with the syntax
discriminatorName: powertypeName ,
where the powertype name on the line implicitly defines a powertype if one is not explicit
defined.

3.35.3 Mapping

Maps into a Class with the «powertype» stereotype with the given classes as instances.

3.36 Class Pathnames

3.36.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relationship
other classes. A reference to a class in a different package is notated by using a pathnam
the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type specification
attributes and variables. In these places a reference to a class is indicated by simply incl
the name of the class itself, including a possible package name, subject to the syntax rul
the expression.
UML V1.3 June 1999 3-55

3 UML Notation

th the
 in the
rrent
l in

 level,
nced by
t have

ested
ackage

ther
Note

in the
ence

3.36.2 Example

Figure 3-27 Pathnames for Classes in Other Packages

3.36.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class wi
given name inside the package with the given name. The name is assumed to be defined
target package; otherwise, the model is ill formed. A Relationship from a symbol in the cu
package (i.e., the package containing the diagram and its mapped elements) to a symbo
another package is part of the current package.

3.37 Accessing or Importing a Package

3.37.1 Semantics

An element may reference an element contained in a differenc package. On the package
the «access» dependency indicates that the contents of the target package may be refere
the client package or packages recursively embedded within it. The target references mus
visibility sufficient for the referents: public visibility for an unrelated package, public or
protected visibility for a descendant of the target package, or any visibility for a package n
inside the target package (an access dependency is not required for the latter case). A p
nested inside the package making the access gets the same access.

Note that an access dependency does not modify the namespace of the client or in any o
way automatically create references; it merely grants permission to establish references.
also that a tool could automatically create access dependencies for users if desired when
references are created.

An import dependency grants access and also loads the names with appropriate visibility
target namespace into the accessing package (i.e., a pathname is not necessary to refer
them). Such names are not automatically reexported, however; a name must be explicitly
reexported (and may be given a new name and visibility at the same time).

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash
3-56 UML V1.3 June 1999

3.37 Accessing or Importing a Package

)
w has
ent
tisfy
ically

he
3.37.2 Notation

The access dependency is displayed as a dependency arrow from the referencing (client
package to the target (supplier) package containing the target of the references. The arro
the stereotype keyword «access». This dependency indicates that elements within the cli
package may legally reference elements within the supplier. The references must also sa
visibility constraints specified by the supplier. Note that the dependency does not automat
create any references. It merely grants permission for them to be established.

The import dependency has the same notation as the access dependency except it has t
stereotype keyword «import».

3.37.3 Example

Figure 3-28 Access Dependency Among Packages

3.37.4 Mapping

This is not a special symbol. It maps into a Permission dependency with the stereotype
«access» or «import» between the two packages.

Banking::CheckingAccount

CheckingAccount

Banking

«acess»

Customers
UML V1.3 June 1999 3-57

3 UML Notation

A
-like

ts, as

e

age

 as an
 its

rently.

ch

3.38 Object

3.38.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values.
similar notation also represents a role within a collaboration because roles have instance
characteristics.

3.38.2 Notation

The object notation is derived from the class notation by underlining instance-level elemen
explained in the general comments in “Type-Instance Correspondence” on page 3-15.

An object shown as a rectangle with two compartments.

The top compartment shows the name of the object and its class, all underlined, using th
syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The pack
names precede the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name string) or
icon in the upper right corner. The stereotype for an object must match the stereotype for
class.

To show multiple classes that the object is an instance of, use a comma-separated list of
classnames. These classnames must be legal for multiple classification (i.e., only one
implementation class permitted, but multiple types permitted).

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur concur

The second compartment shows the attributes for the object and their values as a list. Ea
value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal value
expressions; however, it is expected that a tool will specify such a syntax using some
programming language.
3-58 UML V1.3 June 1999

3.38 Object

ow
of one

lass
ships.

alues

en

ot
e held

cific
The flow relationship between two values of the same object over time can be shown by
connecting two object symbols by a dashed arrow with the keyword «become». If the flow
arrow is on a collaboration diagram, the label may also include a sequence number to sh
when the value changes. Similarly, the keyword «copy» can be used to show the creation
object from another object value.

3.38.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the c
name. This represents an anonymous object of the given class given identity by its relation

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list of v
held over time. In an interactive tool, they might even change dynamically. An alternate
notation is to show the same object more than once with a «becomes» relationship betwe
them.

3.38.4 Style Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are n
objects, because they describe many possible objects. They are instead roles that may b
by object. Objects in class diagrams serve mainly to show examples of data structures.

3.38.5 Variations

For a language such as Self in which operations can be attached to individual objects at run
time, a third compartment containing operations would be appropriate as a language-spe
extension.
UML V1.3 June 1999 3-59

3 UML Notation

n by
s the
 the

ss and
tion;

ct is

ct, so
s with
3.38.6 Example

Figure 3-29 Objects

3.38.7 Mapping

In an object diagram, or within an ordinary class diagram, an object symbol maps into an
Object of the Class (or Classes) given by the classname part of the name string. The attribute
list in the symbol maps into a set of AttributeLinks attached to the Object, with values give
the value expressions in the attribute list in the symbol. If a list of states in brackets follow
class name, then this maps into a ClassifierInState with the named Class as its type and
named States as the states.

3.39 Composite Object

3.39.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is an
instance of a composite class, which implies the composition aggregation between the cla
its parts. A composite object is similar to (but simpler and more restricted than) a collabora
however, it is defined completely by composition in a static model. See Section 3.47,
“Composition,” on page 3-74.

3.39.2 Notation

A composite object is shown as an object symbol. The name string of the composite obje
placed in a compartment near the top of the rectangle (as with any object). The lower
compartment holds the parts of the composite object instead of a list of attribute values.
(However, even a list of attribute values may be regarded as the parts of a composite obje
there is not a great difference.) It is possible for some of the parts to be composite object
further nesting.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler
3-60 UML V1.3 June 1999

3.40 Association

 to
 path

ave a
hown

ty of
3.39.3 Example

Figure 3-30 Composite Objects

3.39.4 Mapping

A composite object symbol maps into an Object of the given Class with composition links
each of the Objects and Links corresponding to the class box symbols and to association
symbols directly contained within the boundary of the composite object symbol (and not
contained within another deeper boundary).

3.40 Association

Binary associations are shown as lines connecting two classifier symbols. The lines may h
variety of adornments to show their properties. Ternary and higher-order associations are s
as diamonds connected to class symbols by lines.

3.41 Binary Association

3.41.1 Semantics

A binary association is an association among exactly two classifiers (including the possibili
an association from a classifier to itself).

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves
UML V1.3 June 1999 3-61

3 UML Notation

 may
of one
t may
cted

 to

 These
gment
rmine
r. The

 with a
nt of
as no
ed as

f
n-

n

d other
wn as

del
bol, or
3.41.2 Notation

A binary association is drawn as a solid path connecting two classifier symbols (both ends
be connected to the same classifier, but the two ends are distinct). The path may consist
or more connected segments. The individual segments have no semantic significance, bu
be graphically meaningful to a tool in dragging or resizing an association symbol. A conne
sequence of segments is called a path.

In a binary association, both ends may attach to the same classifier. The links of such an
association may connect two different instances from the same classifier or one instance
itself. The latter case may be forbidden by a constraint if necessary.

The end of an association where it connects to a classifier is called an association end. Most of
the interesting information about an association is attached to its ends.

The path may also have graphical adornments attached to the main part of the path itself.
adornments indicate properties of the entire association. They may be dragged along a se
or across segments, but must remain attached to the path. It is a tool responsibility to dete
how close association adornments may approach an end so that confusion does not occu
following kinds of adornments may be attached to a path.

association name

Designates the (optional) name of the association.

It is shown as a name string near the path (but not near enough to an end to be confused
rolename). The name string may have an optional small black solid triangle in it. The poi
the triangle indicates the direction in which to read the name. The name-direction arrow h
semantics significance, it is purely descriptive. The classifiers in the association are order
indicated by the name-direction arrow.

Note – There is no need for a name direction property on the association model; the ordering o
the classifiers within the association is the name direction. This convention works even with
ary associations.

A stereotype keyword within guillemets may be placed above or in front of the associatio
name. A property string may be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes, operations, an
associations. This is present if, and only if, the association is an association class. It is sho
a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same underlying mo
element, which has a single name. The name may be placed on the path, in the class sym
on both (but they must be the same name).
3-62 UML V1.3 June 1999

3.41 Binary Association

r, they
, but

g to

s, and

may
cting
int
in
Logically, the association class and the association are the same semantic entity; howeve
are graphically distinct. The association class symbol can be dragged away from the line
the dashed line must remain attached to both the path and the class symbol.

3.41.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular jo
indicate that the paths do not intersect (as in electrical circuit diagrams).

3.41.4 Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segment
curved segments. The choice of a particular set of line styles is a user choice.

3.41.5 Options

Xor-association

An xor-constraint indicates a situation in which only one of several potential associations
be instantiated at one time for any single instance. This is shown as a dashed line conne
two or more associations, all of which must have a classifier in common, with the constra
string “{xor}” labeling the dashed line. Any instance of the classifier may only participate
one of the associations at one time. Each rolename must be different. (This is simply a
predefined use of the constraint notation.)
UML V1.3 June 1999 3-63

3 UML Notation

 the
wise,
p into
ge
3.41.6 Example

Figure 3-31 Association Notation

3.41.7 Mapping

An association path connecting two class symbols maps to an Association between the
corresponding Classifiers. If there is an arrow on the association name, then the Class
corresponding to the tail of the arrow is the first class and the Classifier corresponding to
head of the arrow is the second Classifier in the ordering of ends of the Association; other
the ordering of ends in the association is undetermined. The adornments on the path ma
properties of the Association as described above. The Association is owned by the packa
containing the diagram.

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{Xor}

salary
3-64 UML V1.3 June 1999

3.42 Association End

s part
of the
t a

ssifier
 The

st drag

r an
self.

s
 does
ents

hown

This
rd

tation.
the
3.42 Association End

3.42.1 Semantics

An association end is simply an end of an association where it connects to a classifier. It i
of the association, not part of the classifier. Each association has two or more ends. Most
interesting details about an association are attached to its ends. An association end is no
separable element, it is just a mechanical part of an association.

3.42.2 Notation

The path may have graphical adornments at each end where the path connects to the cla
symbol. These adornments indicate properties of the association related to the classifier.
adornments are part of the association symbol, not part of the classifier symbol. The end
adornments are either attached to the end of the line, or near the end of the line, and mu
with it. The following kinds of adornments may be attached to an association end.

multiplicity

Specified by a text syntax. Multiplicity may be suppressed on a particular association or fo
entire diagram. In an incomplete model the multiplicity may be unspecified in the model it
In this case, it must be suppressed in the notation. See Section 3.43, “Multiplicity,” on
page 3-68.

ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or
unordered. If no indication is given, then it is unordered (the elements form a set). Variou
kinds of ordering can be specified as a constraint on the association end. The declaration
not specify how the ordering is established or maintained. Operations that insert new elem
must make provision for specifying their position either implicitly (such as at the end) or
explicitly. Possible values include:

• unordered - the elements form an unordered set. This is the default and need not be s
explicitly.

• ordered - the elements of the set have an ordering, but duplicates are still prohibited.
generic specification includes all kinds of ordering. This may be specified by the keywo
syntax “{ordered}”.

An ordered relationship may be implemented in various ways; however, this is normally
specified as a language-specified code generation property to select a particular implemen
An implementation extension might substitute the data structure to hold the elements for
generic specification “ordered.”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses a design decision:
UML V1.3 June 1999 3-65

3 UML Notation

is best

oward
the
iven

 may
tached

 to the

r
 this
lar

tion
e and

sifiers
e

to the
• sorted - the elements are sorted based on their internal values. The actual sorting rule
specified as a separate constraint.

qualifier

A qualifier is optional, but not suppressible. See Section 3.44, “Qualifier,” on page 3-70.

navigability

An arrow may be attached to the end of the path to indicate that navigation is supported t
the classifier attached to the arrow. Arrows may be attached to zero, one, or two ends of
path. To be totally explicit, arrows may be shown whenever navigation is supported in a g
direction. In practice, it is often convenient to suppress some of the arrows and just show
exceptional situations. See “Presentation Options” on page 3-35 for details.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The diamond
not be attached to both ends of a line, but it need not be present at all. The diamond is at
to the class that is the aggregate. The aggregation is optional, but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as composition.
See Section 3.47, “Composition,” on page 3-74.

rolename

A name string near the end of the path. It indicates the role played by the class attached
end of the path near the rolename. The rolename is optional, but not suppressible.

interface specifier

The name of a Classifier with the syntax:

‘:’ classifiername , . . .

It indicates the behavior expected of an associated object by the related instance. In othe
words, the interface specifier specifies the behavior required to enable the association. In
case, the actual classifier usually provides more functionality than required for the particu
association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small collabora
that includes just an association and two roles, whose structure is defined by the rolenam
attached classifier on the original association. Therefore, the original association and clas
are a use of the collaboration. The original classifier must be compatible with the interfac
specifier (which can be an interface or a type, among other kinds of classifiers).

If an interface specifier is omitted, then the association may be used to obtain full access
associated class.
3-66 UML V1.3 June 1999

3.42 Association End

d. The

rty

n.

 them.
 (a text

e by
nts on
itional

vary

is not

n.

ions,

s
hich

owing
th:
changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is neede
property {frozen} indicates that no links may be added, deleted, or moved from an object
(toward the end with the adornment) after the object is created and initialized. The prope
{addOnly} indicates that additional links may be added (presumably, the multiplicity is
variable); however, links may not be modified or deleted.

visibility

Specified by a visibility indicator (‘+’, ‘#’, ‘-’ or explicit property name such as {public}) in
front of the rolename. Specifies the visibility of the association traversing in the direction
toward the given rolename. See “Attribute” on page 3-40 for details of visibility specificatio

Other properties can be specified for association ends, but there is no graphical syntax for
To specify such properties, use the constraint syntax near the end of the association path
string in braces). Examples of other properties include mutability.

3.42.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a tre
merging the aggregation end into a single segment. This requires that all of the adornme
the aggregation ends be consistent. This is purely a presentation option, there are no add
semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These can
from time to time by user request or from diagram to diagram.

• Presentation option 1: Show all arrows. The absence of an arrow indicates navigation
supported.

• Presentation option 2: Suppress all arrows. No inference can be drawn about navigatio
This is similar to any situation in which information is suppressed from a view.

• Presentation option 3: Suppress arrows for associations with navigability in both direct
show arrows only for associations with one-way navigability. In this case, the two-way
navigability cannot be distinguished from no-way navigation; however, the latter case i
normally rare or nonexistent in practice. This is yet another example of a situation in w
some information is suppressed from a view.

3.42.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the foll
order, reading from the end of the path attached to the classifier toward the bulk of the pa

• qualifier

• aggregation symbol

• navigation arrow
UML V1.3 June 1999 3-67

3 UML Notation

t

or
yout.
nd, or

g role
ment
e
on.

tes,
pen
Rolenames and multiplicity should be placed near the end of the path so that they are no
confused with a different association. They may be placed on either side of the line. It is
tempting to specify that they will always be placed on a given side of the line (clockwise
counterclockwise), but this is sometimes overridden by the need for clarity in a crowded la
A rolename and a multiplicity may be placed on opposite sides of the same association e
they may be placed together (for example, “* employee”).

3.42.5 Example

Figure 3-32 Various Adornments on Association Roles

3.42.6 Mapping

The adornments on the end of an association path map into properties of the correspondin
of the Association. In general, implications cannot be drawn from the absence of an adorn
(it may simply be suppressed) but see the preceding descriptions for details. The interfac
specifier maps into the “specification” rolename in the AssociationEnd-Classifier associati

3.43 Multiplicity

3.43.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within composi
repetitions, and other purposes. Essentially a multiplicity specification is a subset of the o
set of nonnegative integers.

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+points
3-68 UML V1.3 June 1999

3.43 Multiplicity

nce
the

e)
r (*)
d
 literal
ger

lue.

solve
tially

able

3.43.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated seque
of integer intervals, where an interval represents a (possibly infinite) range of integers, in
format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed (inclusiv
range of integers from the lower bound to the upper bound. In addition, the star characte
may be used for the upper bound, denoting an unlimited upper bound. In a parameterize
context (such as a template), the bounds could be expressions but they must evaluate to
integer values for any actual use. Unbound expressions that do not evaluate to literal inte
values are not permitted.

If a single integer value is specified, then the integer range contains the single integer va

If the multiplicity specification comprises a single star (*), then it denotes the unlimited
nonnegative integer range, that is, it is equivalent to 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they must re
to fixed integer ranges within the model (i.e., no dynamic evaluation of expressions, essen
the same rule on literal values as most programming languages).

3.43.3 Style Guidelines

Preferably, intervals should be monotonically increasing. For example, “1..3,7,10” is prefer
to “7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example, “0..1” is
preferable to “0,1”.

3.43.4 Example

0..1

1

0..*

*

1..*

1..6

1..3,7..10,15,19..*
UML V1.3 June 1999 3-69

3 UML Notation

ut is

nces

en the
gle is
 path
he
t of

xactly

target
ues

in of

utes
cept

dify
3.43.5 Mapping

A multiplicity string maps into a Multiplicity value with one or more MultiplicityRanges.
Duplications or other nonstandard presentation of the string itself have no effect on the
mapping. Note that Multiplicity is a value and not an object. It cannot stand on its own, b
the value of some element property.

3.44 Qualifier

3.44.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of insta
associated with an instance across an association. The qualifiers are attributes of the
association.

3.44.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path betwe
final path segment and the symbol of the classifier that it connects to. The qualifier rectan
part of the association path, not part of the classifier. The qualifier rectangle drags with the
segments. The qualifier is attached to the source end of the association. An instance of t
source classifier, together with a value of the qualifier, uniquely select a partition in the se
target classifier instances on the other end of the association (i.e., every target falls into e
one partition).

The multiplicity attached to the target end denotes the possible cardinalities of the set of
instances selected by the pairing of a source instance and a qualifier value. Common val
include:

• “0..1” (a unique value may be selected, but every possible qualifier value does not
necessarily select a value).

• “1” (every possible qualifier value selects a unique target instance; therefore, the doma
qualifier values must be finite).

• “*” (the qualifier value is an index that partitions the target instances into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more attrib
shown one to a line. Qualifier attributes have the same notation as classifier attributes, ex
that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single
association.

3.44.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would mo
the inherent character of the relationship).
3-70 UML V1.3 June 1999

3.45 Association Class

h

 is not

fier
lifier

 just a

 an
ciation
A tool may use a lighter line for qualifier rectangles than for class rectangles to distinguis
them clearly.

3.44.4 Style Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although this
always practical.

3.44.5 Example

Figure 3-33 Qualified Associations

3.44.6 Mapping

The presence of a qualifier box on an end of an association path maps into a list of quali
attributes on the corresponding Association Role. Each attribute entry string inside the qua
box maps into an Attribute.

3.45 Association Class

3.45.1 Semantics

An association class is an association that also has class properties (or a class that has
association properties). Even though it is drawn as an association and a class, it is really
single model element.

3.45.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line to
association path. The name in the class symbol and the name string attached to the asso
path are redundant and should be the same. The association path may have the usual
adornments on either end. The class symbol may have the usual contents. There are no
adornments on the dashed line.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

UML V1.3 June 1999 3-71

3 UML Notation

s not

 to be

have a
iation

asize
e
n

ss box
 is
if both
iously.
3.45.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission doe
change the overall relationship. The association path may not be suppressed.

3.45.4 Style Guidelines

The attachment point should not be near enough to either end of the path that it appears
attached to, the end of the path, or to any of the association end adornments.

Note that the association path and the association class are a single model element and
single name. The name can be shown on the path, the class symbol, or both. If an assoc
class has only attributes, but no operations or other associations, then the name may be
displayed on the association path and omitted from the association class symbol to emph
its “association nature.” If it has operations and other associations, then the name may b
omitted from the path and placed in the class rectangle to emphasize its “class nature.” I
neither case are the actual semantics different.

3.45.5 Example

Figure 3-34 Association Class

3.45.6 Mapping

An association path connecting two class boxes connected by a dashed line to another cla
maps into a single AssociationClass element. The name of the AssociationClass element
taken from the association path, the attached class box, or both (they must be consistent
are present). The Association properties map from the association path, as specified prev
The Class properties map from the class box, as specified previously. Any constraints or
properties placed on either the association path or attached class box apply to the
AssociationClass itself; they must not conflict.

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary
3-72 UML V1.3 June 1999

3.46 N-ary Association

 may
e

ity.
ation

r on a
n (if
inary

tes an
3.46 N-ary Association

3.46.1 Semantics

An n-ary association is an association among three or more classifiers (a single classifier
appear more than once). Each instance of the association is an n-tuple of values from th
respective classifier. A binary association is a special case with its own notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary multiplic
The multiplicity on a role represents the potential number of instance tuples in the associ
when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

3.46.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a terminato
path) with a path from the diamond to each participant class. The name of the associatio
any) is shown near the diamond. Role adornments may appear on each path as with a b
association. Multiplicity may be indicated; however, qualifiers and aggregation are not
permitted.

An association class symbol may be attached to the diamond by a dashed line. This indica
n-ary association that has attributes, operations, and/or associations.

3.46.3 Style Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.
UML V1.3 June 1999 3-73

3 UML Notation

is
erent

ring of
ed to

t
. See
3.46.4 Example

This example shows the record of a team in each season with a particular goalkeeper. It
assumed that the goalkeeper might be traded during the season and can appear with diff
teams.

Figure 3-35 Ternary association that is also an association class

3.46.5 Mapping

A diamond attached to some number of class symbols by solid lines maps into an N-ary
Association whose AssociationEnds are attached to the corresponding Classes. The orde
the Classifiers in the Association is indeterminate from the diagram. If a class box is attach
the diamond by a dashed line, then the corresponding Classifier supplies the classifier
properties for an N-ary AssociationClass.

3.47 Composition

3.47.1 Semantics

Composition is a form of aggregation with strong ownership and coincident lifetime of par
with the whole. The multiplicity of the aggregate end may not exceed one (it is unshared)
“AssociationEnd” on page 2-21 in the Semantics chapter for further details.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties
3-74 UML V1.3 June 1999

3.47 Composition

to
 any

arts

 of
ny.
 may
tax:

the

f the

 to be
rent

ition

class.
 within
Such a
orner
et of
The parts of a composition may include classes and associations (they may be formed in
AssociationClasses if necessary). The meaning of an association in a composition is that
tuple of objects connected by a single link must all belong to the same container object.

3.47.2 Notation

Composition may be shown by a solid filled diamond as an association end adornment.
Alternately, UML provides a graphically-nested form that is more convenient for showing
composition in many cases.

Instead of using binary association paths using the composition aggregation adornment,
composition may be shown by graphical nesting of the symbols of the elements for the p
within the symbol of the element for the whole. A nested class-like element may have a
multiplicity within its composite element. The multiplicity is shown in the upper right corner
the symbol for the part. If the multiplicity mark is omitted, then the default multiplicity is ma
This represents its multiplicity as a part within the composite classifier. A nested element
have a rolename within the composition; the name is shown in front of its type in the syn

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of an
association path attached to the element for the whole. The multiplicity may be shown in
normal way.

Note that attributes are, in effect, composition relationships between a classifier and the
classifiers of its attributes.

An association drawn entirely within a border of the composite is considered to be part o
composition. Any instances on a single link of it must be from the same composite. An
association drawn such that its path breaks the border of the composite is not considered
part of the composition. Any instances on a single link of it may be from the same or diffe
composites.

Note that the notation for composition resembles the notation for collaboration. A compos
may be thought of as a collaboration in which all of the participants are parts of a single
composite object.

Note that nested notation is not the correct way to show a class declared within another
Such a declared class is not a structural part of the enclosing class but merely has scope
the namespace of the enclosing class, which acts like a package toward the inner class.
namescope containment may be shown by placing a package symbol in the upper right c
of the class symbol. A tool can allow a user to click on the package symbol to open the s
elements declared within it.
UML V1.3 June 1999 3-75

3 UML Notation

l may
ut
s;

lves is
3.47.3 Design Guidelines

Note that a class symbol is a composition of its attributes and operations. The class symbo
be thought of as an example of the composition nesting notation (with some special layo
properties). However, attribute notation subordinates the attributes strongly within the clas
therefore, it should be used when the structure and identity of the attribute objects themse
unimportant outside the class.
3-76 UML V1.3 June 1999

3.47 Composition
3.47.4 Example

Figure 3-36 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11
UML V1.3 June 1999 3-77

3 UML Notation

del

n the

s, one
 of the
 of

ly;

s. It

tance
tails

ar the
, they

ay be

 The
3.47.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although
attributes may be semantically equivalent to composition on a deep level, the mapped mo
distinguishes the two forms.

A solid diamond on an association path maps into the aggregation-composition property o
corresponding Association Role.

A class box with contained class boxes maps into a set of composition associations; that i
composition association between the Class corresponding to the outer class box and each
Classes corresponding to the enclosed class boxes. The multiplicity of the composite end
each association is 1. The multiplicity of each constituent end is 1 if not specified explicit
otherwise, it is the value specified in the corner of the class box or specified on an association
path from the outer class box boundary to an inner class box.

3.48 Link

3.48.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object reference
is an instance of an association.

3.48.2 Notation

A binary link is shown as a path between two instances. In the case of a link from an ins
to itself, it may involve a loop with a single instance. See “Association” on page 3-61 for de
of paths.

A rolename may be shown at each end of the link. An association name may be shown ne
path. If present, it is underlined to indicate an instance. Links do not have instance names
take their identity from the instances that they relate. Multiplicity is not shown for links because
they are instances. Other association adornments (aggregation, composition, navigation) m
shown on the link ends.

A qualifier may be shown on a link. The value of the qualifier may be shown in its box.

Implementation stereotypes

A stereotype may be attached to the link end to indicate various kinds of implementation.
following stereotypes may be used:

«association» association (default, unnecessary to specify except for
emphasis)

«parameter» method parameter
3-78 UML V1.3 June 1999

3.49 Generalization

me

ding
of the

 and a
ds
N-ary link

An n-ary link is shown as a diamond with a path to each participating instance. The other
adornments on the association, and the adornments on the association ends, have the sa
possibilities as the binary link.

3.48.3 Example

Figure 3-37 Links

3.48.4 Mapping

Within an object diagram, each link path maps to a Link between the Instances correspon
to the connected class boxes. If a name is placed on the link path, then it is an instance
given Association (and the rolenames must match or the diagram is ill formed).

3.49 Generalization

3.49.1 Semantics

Generalization is the taxonomic relationship between a more general element (the parent)
more specific element (the child) that is fully consistent with the first element and that ad
additional information. It is used for classes, packages, use cases, and other elements.

«local» local variable of a method

«global» global variable

«self» self link (the ability of an instance to send a message to
itself)

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer
UML V1.3 June 1999 3-79

3 UML Notation

ch as
hollow

rtition
ce of

ay be
 for the

am

tes
ntion

 A
everal
nes
are

at the
3.49.2 Notation

Generalization is shown as a solid-line path from the child (the more specific element, su
a subclass) to the parent (the more general element, such as a superclass), with a large
triangle at the end of the path where it meets the more general element.

A generalization path may have a text label called a discriminator that is the name of a pa
of the children of the parent. The child is declared to be in the given partition. The absen
a discriminator label indicates the “empty string” discriminator which is a valid value (the
“default” discriminator).

Generalization may be applied to associations as well as classes, although the notation m
messy because of the multiple lines. An association can be shown as an association class
purpose of attaching generalization arrows.

The existence of additional children in the model that are not shown on a particular diagr
may be shown using an ellipsis (. . .) in place of a child.

Note – This does not indicate that additional children may be added in the future. It indica
that additional children exist right now, but are not being seen. This is a notational conve
that information has been suppressed, not a semantic statement.

Predefined constraints may be used to indicate semantic constraints among the children.
comma-separated list of keywords is placed in braces either near the shared triangle (if s
paths share a single triangle) or near a dotted line that crosses all of the generalization li
involved. The following keywords (among others) may be used (the following constraints
predefined):

The discriminator must be unique among the attributes and association roles of the given
parent. Multiple occurrences of the same discriminator name are permitted and indicate th
children belong to the same partition.

The use of multiple classification or dynamic classification affects the dynamic execution
semantics of the language, but is not usually apparent from a static model.

overlapping An element may have two or more children from the set
as ancestors. An instance may be a direct or indirect
instance of two or more of the children.

disjoint No element may have two children in the set as ancestors.
No instance may be a direct or indirect instance of tow of
the children.

complete All children have been specified (whether or not shown).
No additional children are expected.

incomplete Some children have been specified, but the list is known
to be incomplete. There are additional children that are
not yet in the model. This is a statement about the model
itself. Note that this is not the same as the ellipsis, which
states that additional children exist in the model but are
not shown on the current diagram.
3-80 UML V1.3 June 1999

3.49 Generalization

s to
iven
3.49.3 Presentation Options

A group of generalization paths for a given parent may be shown as a tree with a shared
segment (including the triangle) to the child, branching into multiple paths to each child.

If a text label is placed on a generalization triangle shared by several generalization path
children, the label applies to all of the paths. In other words, all of the children share the g
properties.

3.49.4 Example

Figure 3-38 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .
UML V1.3 June 1999 3-81

3 UML Notation

en the
y tails
l on a
Figure 3-39 Generalization with Discriminators and Constraints, Separate Target Style

Figure 3-40 Generalization with Shared Target Style

3.49.5 Mapping

Each generalization path between two element symbols maps into a Generalization betwe
corresponding GeneralizableElements. A generalization tree with one arrowhead and man
maps into a set of Generalizations, one between each element corresponding to a symbo

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species
3-82 UML V1.3 June 1999

3.50 Dependency

is, a
l

perty
)

antic
ram.

s of

 may

ent at
plier).

rrows
s on

ency
tail and the single GeneralizableElement corresponding to the symbol on the head. That
tree is semantically indistinguishable from a set of distinct arrows, it is purely a notationa
convenience.

Any property string attached to a generalization arrow applies to the Generalization. A pro
string attached to the head line segment on a generalization tree represents a (duplicated
property on each of the individual Generalizations.

The presence of an ellipsis (“...”) as a child node of a given parent indicates that the sem
model contains at least one child of the given parent that is not visible on the current diag
Normally, this indicator will be maintained automatically by an editing tool.

3.50 Dependency

3.50.1 Semantics

A dependency indicates a semantic relationship between two model elements (or two set
model elements). It relates the model elements themselves and does not require a set of
instances for its meaning. It indicates a situation in which a change to the target element
require a change to the source element in the dependency.

3.50.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model elem
the tail of the arrow (the client) depends on the model element at the arrowhead (the sup
The arrow may be labeled with an optional stereotype and an optional individual name.

It is possible to have a set of elements for the client or supplier. In this case, one or more a
with their tails on the clients are connected the tails of one or more arrows with their head
the suppliers. A small dot can be placed on the junction if desired. A note on the depend
should be attached at the junction point.
UML V1.3 June 1999 3-83

3 UML Notation

Note

. The
ith the

 by a
The following kinds of Dependency are predefined and may be indicated with keywords.
that some of these correspond to actual metamodel classes and others to stereotypes of
metamodel classes. All of these are shown as dashed arrows with keywords in guillemets
name column shows the name of the metamodel class or the informal name of the class w
given beyword stereotype.

3.50.3 Presentation Options

Note: The connection between a note or constraint and the element it applies to is shown
dashed line without an arrowhead. This is not a Dependency.

Keyword Name Description

access Access The granting of permission for one package to reference
the public elements owned by another package (subject to
appropriate visibility). Maps into a Permission with the
stereotype access.

bind Binding A binding of template parameters to actual values to
create a nonparameterized element. See Section 3.30,
“Bound Element,” on page 3-51 for more details. Maps
into a Binding.

derive Derivation A computable relationship between one element and
another (one more than one of each). Maps into an
Abstraction with the stereotype derivation.

import Import The granting of permission for one package to reference
the public elements of another package, together with
adding the names of the public elements of the supplier
package to the client package. Maps into a Permission
with the stereotype import.

refine Refinement A historical or derivation connection between two
elements with a mapping (not necessarily complete)
between them. A description of the mapping may be
attached to the dependency in a note. Various kinds of
refinement have been proposed and can be indicated by
further stereotyping. Maps into an Abstraction with the
stereotype refinement.

trace Trace A historical connection between two elements that
represent the same concept at different levels of meaning.
Maps into an Abstraction with the stereotype trace.

use Usage A situation in which one element requires the presence of
another element for its correct implementation or
functioning. May be stereotyped further to indicate the
exact nature of the dependency, such as calling an
operation of another class, granting permission for access,
instantiating an object of another class, etc. Maps into a
Usage. If the keyword is one of the stereotypes of Usage
(call, create, instantiate, send) then it maps into a Usage
with the given stereotype.
3-84 UML V1.3 June 1999

3.50 Dependency
3.50.4 Example

Figure 3-41 Various Dependencies Among Classes

Figure 3-42 Dependencies Among Packages

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine» ClassC combines
two logical classes

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»

«access»

«access»
UML V1.3 June 1999 3-85

3 UML Notation

een
type
ncy.

larity

ent,

arrow

3.50.5 Mapping

A dashed arrow maps into the appropriate kind of Dependency (based on keywords) betw
the Elements corresponding to the symbols attached to the ends of the arrow. The stereo
and the name (if any) attached to the arrow are the stereotype and name of the Depende

3.51 Derived Element

3.51.1 Semantics

A derived element is one that can be computed from another one, but that is shown for c
or that is included for design purposes even though it adds no semantic information.

3.51.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived elem
such as an attribute or a rolename.

3.51.3 Style Guidelines

The details of computing a derived element can be specified by a dependency with the
stereotype «derive». Usually it is convenient in the notation to suppress the dependency
and simply place a constraint string near the derived element, although the arrow can be
included when it is helpful.
3-86 UML V1.3 June 1999

3.52 InstanceOf

s into

arrow
3.51.4 Example

Figure 3-43 Derived Attribute and Derived Association

3.51.5 Mapping

The presence of a derived adornment (a leading “/” on the symbol name) on a symbol map
the attachment of the “derived” tag to the corresponding Element.

3.52 InstanceOf

3.52.1 Semantics

Shows the connection between an instance and its classifier.

3.52.2 Notation

Shown as a dashed arrow with its tail on the instance and its head on the classifier. The
has the keyword «instanceOf».

3.52.3 Mapping

Maps into an instance relationship from the instance to the classifier.

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

∗
∗

1

1

1
employer

employer
department
UML V1.3 June 1999 3-87

3 UML Notation
3-88 UML V1.3 June 1999

3.53 Use Case Diagram

.

 cases
ted to

nd the
tors and
ludes
resents
3UML Notation
Part 6 - Use Case Diagrams

A use case diagram shows the relationship among actors and use cases within a system

3.53 Use Case Diagram

3.53.1 Semantics

Use case diagrams show actors and use cases together with their relationships. The use
represent functionality of a system or a classifier, like a subsystem or a class, as manifes
external interactors with the system or the classifier.

3.53.2 Notation

A use case diagram is a graph of actors, a set of use cases, possibly some interfaces, a
relationships between these elements. The relationships are associations between the ac
the use cases, generalizations between the actors, and generalizations, extends, and inc
among the use cases. The use cases may optionally be enclosed by a rectangle that rep
the boundary of the containing system or classifier.
UML V1.3 June 1999 3-89

3 UML Notation

maps
ctively.
he set
f

zation
ifiers.
en an

r
3.53.3 Example

Figure 3-44 Use Case Diagram

3.53.4 Mapping

A set of use case ellipses, possibly within a rectangle, with connections to actor symbols
to a set of UseCases and Actors corresponding to the use case and actor symbols, respe
The rectangle maps onto either a Model with the stereotype «useCaseModel» containing t
of UseCases and Actors, or to a Classifier, like Subsystem or Class, containing the set o
UseCases. An interface in the diagram is mapped onto an Interface in the Model, and the
connection between the interface and the actor or use case icons is mapped onto a reali
Dependency (an Abstraction dependency being stereotyped «realize») between the Class
Each generalization arrow maps onto a Generalization in the model, and each line betwe
actor symbol and a use case ellipse maps to an Association between the corresponding
Classifiers. A dashed arrow with the keyword «include» or «extend» maps to an Include o
Extend relationship.

Customer

Supervisor

SalespersonPlace

Establish
credit

Check

Telephone Catalog

Fill orders

Shipping Clerk

status

order
3-90 UML V1.3 June 1999

3.54 Use Case

ong the

ces
 use

otype
. As a

 state

at is

 case

s, and

ers in

to an
3.54 Use Case

3.54.1 Semantics

A use case is a kind of classifier representing a coherent unit of functionality provided by a
system, a subsystem, or a class as manifested by sequences of messages exchanged am
system and one or more outside interactors (called actors) together with actions performed by
the system.

An extension point is a reference to one location within a use case at which action sequen
from other use cases may be inserted. Each extension point has a unique name within a
case, and a description of the location within the behavior of the use case.

3.54.2 Notation

A use case is shown as an ellipse containing the name of the use case. An optional stere
keyword may be placed above the name and a list of properties included below the name
classifier, a use case may also have compartments displaying attributes and operations.

Extension points may be listed in a compartment of the use case with the heading extension
points. The description of the locations of the extension point is given in a suitable form,
usually as ordinary text, but can also be given in other forms, like the name of a state in a
machine, or a precondition or a postcondition.

The behavior of a use case can be described in several different ways, depending on wh
convenient: often plain text is used, but state machines, and operations and methods are
examples of other ways of describing the behavior of the use case.

3.54.3 Presentation Options

The name of the use case may be placed below the ellipse. The name of an abstract use
may be shown in italics.

The ellipse may contain or suppress compartments presenting the attributes, the operation
the extension points of the use case.

3.54.4 Style Guidelines

Use case names should follow capitalization and punctuation guidelines used for Classifi
the model.

3.54.5 Mapping

A use case symbol maps to a UseCase with the given name. An extension point maps in
ExtensionPoint within the UseCase.
UML V1.3 June 1999 3-91

3 UML Notation

with
e with

or
or»,

asses

y be

ses.

d
tween

nce of
n) by
nsion

ce of
ed at
3.55 Actor

3.55.1 Semantics

An actor defines a coherent set of roles that users of an entity can play when interacting
the entity. An actor may be considered to play a separate role with regard to each use cas
which it communicates.

3.55.2 Notation

The standard stereotype icon for an actor is a “stick man” figure with the name of the act
below the figure. An actor may also be shown as a class rectangle with the keyword «act
with the usual notation for all compartments.

3.55.3 Style Guidelines

Actor names should follow capitalization and punctuation guidelines used for types and cl
in the model.

3.55.4 Mapping

An actor symbol maps to an Actor with the given name. The names of abstract actors ma
shown in italics

3.56 Use Case Relationships

3.56.1 Semantics

There are several standard relationships among use cases or between actors and use ca

• Association – The participation of an actor in a use case, i.e. instances of the actor an
instances of the use case communicate with each other. This is the only relationship be
actors and use cases.

• Extend – An extend relationship from use case A to use case B indicates that an insta
use case B may be augmented (subject to specific conditions specified in the extensio
the behavior specified by A. The behavior is inserted at the location defined by the exte
point in B which is referenced by the extend relationship.

• Generalization – A generalization from use case A to use case B indicates that A is a
specialization of B.

• Include – An include relationship from use case A to use case B indicates that an instan
the use case A will also contain the behavior as specified by B. The behavior is includ
the location which defined in A.
3-92 UML V1.3 June 1999

3.56 Use Case Relationships

tor and

-head
h the
ey-

-head

ith a

ined by

 be
3.56.2 Notation

An association between an actor and a use case is shown as a solid line between the ac
the use case. It may have end adornments such as multiplicity.

An extend relationship between use cases is shown by a dashed arrow with an open arrow
from the use case providing the extension to the base use case. The arrow is labeled wit
keyword «extend». The condition of the relationship is optionally presented close to the k
word.

An include relationship between use cases is shown by a dashed arrow with an open arrow
from the base use case to the included use case. The arrow is labeled with the keyword
«include».

A generalization between use cases is shown by a generalization arrow, i.e. a solid line w
closed, hollow arrow head pointing at the parent use case.

The relationship between a use case and its external interaction sequences is usually def
an invisible hyperlink to sequence diagrams. The relationship between a use case and its
implementation may be shown as refinement relationships to collaborations, but may also
defined as invisible hyperlinks.

3.56.3 Example

Figure 3-45 Use Case Relationships

additional requests :

Order
Product

Supply
Arrange

«include»«include»«include»

Request
Catalog

«extend»Extension points

Payment
Customer Data

after creation of the order

Salesperson

Place Order

1 * the salesperson asks for
the catalog
UML V1.3 June 1999 3-93

3 UML Notation

.

d
tween

ce of

tor and

 a
3.56.4 Mapping

A path between use case and/or actor symbols maps into the corresponding relationship
between the corresponding Elements, as described above.

3.57 Actor Relationships

3.57.1 Semantics

There is one standard relationship among actors and one between actors and use cases

• Association – The participation of an actor in a use case, i.e. instances of the actor an
instances of the use case communicate with each other. This is the only relationship be
actors and use cases.

• Generalization – A generalization from an actor A to an actor B indicates that an instan
A can communicate with the same kinds of use-case instances as an instance of B.

3.57.2 Notation

An association between an actor and a use case is shown as a solid line between the ac
the use case.

An generalization between actors is shown by a generalization arrow, i.e. a solid line with
closed, hollow arrow head. The arrow head points at the more general actor.

3.57.3 Example

Figure 3-46 Actor Relationships

Establish
Credit

Place
Order

Salesperson

Supervisor

1 *

1 *
3-94 UML V1.3 June 1999

3.57 Actor Relationships

 a use
nts, as
3.57.4 Mapping

A generalization between two actor symbols and an association between actor symbol and
case symbol maps into the corresponding relationship between the corresponding Eleme
described above.
UML V1.3 June 1999 3-95

3 UML Notation
3-96 UML V1.3 June 1999

3.58 Kinds of Interaction Diagrams

uli
ms

s on a
in
 have

 the

tion
ses.
ese

g (or

ole
)

, each
d, as

ses,
neric
l

forms
3UML Notation
Part 7 - Sequence Diagrams

3.58 Kinds of Interaction Diagrams

A pattern of interaction among instances is shown on an interaction diagram. Interaction
diagrams come in two forms based on the same underlying information, specified by an
interaction, but each form emphasizing a particular aspect of it. The two forms are: sequence
diagrams and collaboration diagrams. Sequence diagrams show the explicit sequence of stim
and are better for real-time specifications and for complex scenarios. Collaboration diagra
show the relationships among instances and are better for understanding all of the effect
given instance and for procedural design. Collaboration diagrams are described in detail
“Part 8 - Collaboration Diagrams”. That part should be read together with this one, as they
much in common.

A sequence diagram shows an interaction arranged in time sequence. In particular, it shows
instances participating in the interaction by their “lifelines” and the stimuli they exchange
arranged in time sequence. It does not show the associations among the objects.

A sequence diagram presents a Collaboration with a superposed Interaction. A Collabora
defines a set of participants and relationships that are meaningful for a given set of purpo
The identification of participants and their relationships does not have global meaning. Th
participants define roles that Instances play when interacting with each other. Hence, a
Collaboration specifies a set of ClassifierRoles and AssociationRoles. Instances conformin
binding) to the ClassifierRoles play the roles defined by the ClassifierRoles, while Links
between the Instances will conform to AssociationRoles of the Collaboration. A ClassifierR
(AssociationRole) defines a usage of an Instance (Link), while the Classifier (Association
specifies all properties of the Instance (Link) (see also Section 3.64, “Collaboration,” on
page -109).

An Interaction is defined in the context of a Collaboration. It specifies the communication
patterns between the roles. More precisely, it contains a set of partially ordered Messages
specifying one communication, e.g. what Signal to be sent or what Operation to be invoke
well as the roles to be played by the sender and the receiver, respectively.

Sequence diagrams come in several slightly different formats intended for different purpo
like focusing on execution control, concurrency etc. A sequence diagram can exist in a ge
form (describes all the possible sequences) and in an instance form (describes one actua
sequence consistent with the generic form). In cases without loops or branches, the two
are isomorphic.

In the following the term object is used, but any kind of instance can be used instead.
UML V1.3 June 1999 3-97

3 UML Notation

) the
 (The
n real-

 (See

and
 see

rt
ith

ed in
 not

t

d so
l.

nctions

 set of
uations

 to
tation
d time
ligible,
uously
 before
ing.)
3.59 Sequence Diagram

3.59.1 Semantics

A sequence diagram presents an Interaction, which is a set of Messages between
ClassifierRoles within a Collaboration to effect a desired operation or result.

3.59.2 Notation

A sequence diagram has two dimensions: 1) the vertical dimension represents time and 2
horizontal dimension represents different objects. Normally time proceeds down the page.
dimensions may be reversed, if desired.) Usually only time sequences are important, but i
time applications the time axis could be an actual metric. There is no significance to the
horizontal ordering of the objects. Objects can be grouped into “swimlanes” on a diagram.
subsequent sections for details of the contents of a sequence diagram.)

The different kinds of arrows used in sequence diagrams are are described in “Message
Stimulus” on page 3-105, below. These are the same kinds as in collaboration diagrams;
Section 3.72.

Note that much of this notation is drawn directly from the Object Message Sequence Cha
notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself derived w
modifications from the Message Sequence Chart notation.

3.59.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to proce
one direction across the page; however, this is not always possible and the ordering does
convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and differen
objects are shown as horizontal lines.

Various labels (such as timing constraints, descriptions of actions during an activation, an
on) can be shown either in the margin or near the transitions or activations that they labe

Timing constraints may be expressed using time expressions on message names. The fu
sendTime (the time at which a message is sent by an object) and receiveTime (the time at which
a message is received by an object) may applied to message names to yield a time. The
time functions is open-ended, so that users can invent new ones as needed for special sit
or implementation distinctions (such as elapsedTime, executionStartTime, queuedTime,
handledTime, etc.)

Construction marks of the kind found in blueprints can be used to indicate a time interval
which a constraint may be attached (see bottom right of Figure 3-47 on page 99). This no
is visually appealing but it is ambiguous if the message line is horizontal, because the sen
and the receive time cannot be distinguished. In many cases the transmission time is neg
so the ambiguity is harmless, but a tool must nevertheless map such a notation unambig
to an expression on message names (as shown in the examples in the left of the diagram)
the information is placed in the semantic model. (A tool may adopt defaults for this mapp
3-98 UML V1.3 June 1999

3.59 Sequence Diagram

tion

ers).
Similarly, a tool might permit the time function to be elided and use the message name to
denote the time of message sending or receipt within a timing expression (such as
“b.receiveTime - a.sendTime < 1 sec.” in Figure 3-47), but again this is only a surface nota
that must be mapped to a proper time expression in the semantic model).

3.59.4 Example

Simple sequence diagram with concurrent objects.

Figure 3-47 Simple Sequence Diagram with Concurrent Objects (denoted by boxes with thick bord

caller exchange

a: lift receiver

b: dial tone

c: dial digit

{b.receiveTime

{c.receiveTime

. . .

d: route

{d.receiveTime

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.

- a.sendTime < 1 sec.}

- b.sendTime < 10 sec.}

- d.sendTime < 5 sec.}

 < 1 sec.
UML V1.3 June 1999 3-99

3 UML Notation
Figure 3-48 Sequence Diagram with Focus of Control, Conditional, Recursion,
Creation, and Destruction.

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()
3-100 UML V1.3 June 1999

3.59 Sequence Diagram

 it,

ction
ages,
of

ts and

orms
, the

d in the
aps
3.59.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements within
some of which are described in subsequent sections.

Figure 3-49 A summary of the UML constructs used in the section below.

Sequence diagram

A sequence diagram maps into an Interaction and an underlying Collaboration. An Intera
specifies a sequence of communications; it contains a collection of partially ordered Mess
each specifying a communication between a sender role and a receiver role. Collections
Objects that conform to the ClassifierRoles in the Collaboration owning the Interaction,
communicate by dispatching Stimuli that conform to the Messages in the Interaction. A
sequence diagram presents one collection of object symbols and arrows mapping to Objec
Stimuli that conform to the ClassifierRoles and Messages in the Interaction and its
Collaboration.

In an sequence diagram, each object box with its lifeline maps into an Object which conf
to a ClassifierRole in the Collaboration. The name field maps into the name of the Object
role name into the ClassifierRole’s name, and the class field maps into the names of the
Classifiers (in this case Classes) being the base Classifiers of the ClassifierRole. The
associations among roles are not shown on the sequence diagram. They must be obtaine
model from a complementary collaboration diagram or other means. A message arrow m

Collaboration

ClassifierRole AssociationRole Interaction

AssociationEndRole Message

1..*
*

*

1

*

2..*

0..1

*

1..*

Instance Link Stimulus

LinkEnd

2..*

1

*

* 1 1 *

*0..1 Action
0..1

*

Action
0..1

*

UML V1.3 June 1999 3-101

3 UML Notation

forms
t the
ified
ined

ached

les
al to
nected
f
ped onto

apped
 of
e

f the
e

age in
ct is
d by

her
ches
ps
s to

ssages

 of

ws on

nested

s the
 be

roles

tions
into a Stimulus connected to two Objects: the sender and the receiver. The Stimulus con
to a Message between the ClassifierRoles corresponding to the two Objects’ lifelines tha
arrow connects. The Link used for the communication of the Stimulus plays the role spec
by the AssociationRole connected to the Message. Unless the correct Link can be determ
from a complementary collaboration diagram or other means, the Stimulus is either not att
to a Link (not a complete model), or it is attached to an arbitrary Link or to a dummy Link
between the Instances conforming to the AssociationRole implied by the two ClassifierRo
due to the lack of complete information. The name of the Operation to be invoked or Sign
be sent is mapped onto the name of the Operation or Signal associated by the Action con
to the Message. Different alternatives exists for showing the arguments of the Stimulus. I
references to the actual Instances being passed as arguments are shown, these are map
the arguments of the Stimulus. If the argument expressions are shown instead, these are m
onto the Arguments of the Action connected to the dispatching Action. Finally, if the types
the arguments are shown together with the name of the Operation or the Signal, these ar
mapped onto the parameter types of the Operation or the Attribute types of the Signal,
respectively. A timing label placed on the level of an arrow endpoint maps into the name o
corresponding Message. A constraint placed on the diagram maps into a Constraint on th
entire Interaction.

An arrow with the arrowhead pointing to an object symbol within the frame of the diagram
maps into a Stimulus dispatched by a CreateAction, i.e. the Stimulus conforms to a Mess
the Interaction which is connected to the CreateAction. The interpretation is that the Obje
created by dispatching the Stimulus, and the Object conforms to the receiver role specifie
the Message. After the creation of the Object, it may immediately start interacting with ot
Objects. This implies that the creation method (constructor, initializer) of the Object dispat
these Stimuli. If an object termination symbol (“X”) is the target of an arrow, the arrow ma
into a Stimulus which will cause the receiving Object to be removed. The Stimulus conform
a Message in the Interaction with a DestroyAction attached to the Message. If the object
termination symbol appears in the diagram without an incomming arrow, it maps into a
TerminateAction.

The order of the arrows in the diagram maps onto a pair of associations between the Me
that correspond to the Stimuli the arrows maps onto. A predecessor association is established
between Messages corresponding to successive arrows in the vertical sequence. In case
concurrent arrows preceding an arrow, the corresponding Message has a collection of
predecessors. Moreover, each Message has an activator association to the Message
corresponding to the incoming arrow of the activation.

Procedural sequence diagram

On a procedural sequence diagram (one with focus of control and calls), subsequent arro
the same lifeline map into Stimuli obeying the predecessor association between their
corresponding Messages. An arrow to the head of a focus of control region establishes a
activation. The arrow maps into a Stimulus conforming to a Message with the dispatching
Action being a CallAction. The Stimulus holds the sender and receiver Objects, as well a
argument Objects to be supplied in the invocation and references the target Operation to
invoked. The expressions that evaluate to the arguments of the Operation are the argument
Expressions on the CallAction connected to the Message, while the sender and receiver
are specified by the sender and receiver ClassifierRoles of the Message. The sender and
receiver Objects conform to these ClassifierRoles. Any guard conditions or iteration condi
3-102 UML V1.3 June 1999

3.60 Object Lifeline

g the

st

of any

s
thin a

; it
Object

e
e
int;
t the
ps
ol. If
ither

n the
t that

ay
attached to the arrow become recurrence values of the Action attached to the Message. All
arrows departing the nested activation map into Messages with an activation Association to the
Message corresponding to the arrow at the head of the activation. A return arrow departin
end of the activation maps into a Stimulus conforming to a Message with:

• an activation Association to the Message corresponding to the arrow at the head of the
activation, and

• a predecessor association to the previous Message within the same activation, i.e. the la
Message being sent in the activation.

A return must be the final Message within a predecessor chain. It is not the predecessor
Message.

3.60 Object Lifeline

3.60.1 Semantics

In a sequence diagram an object lifeline denotes an Object playing a specific role. Arrow
between the lifelines denote communication between the Objects playing those roles. Wi
sequence diagram the existence and duration of the Object in a role is shown, but the
Relationships among the Objects are not shown. The role is specified by a ClassifierRole
describes the properties of an Object playing the role and describes the Relationships an
in that role has to other Objects.

3.60.2 Notation

An Object is shown as a vertical dashed line called the “lifeline.” The lifeline represents th
existence of the Object at a particular time. If the Object is created or destroyed during th
period of time shown on the diagram, then its lifeline starts or stops at the appropriate po
otherwise, it goes from the top to the bottom of the diagram. An object symbol is drawn a
head of the lifeline. If the Object is created during the diagram, then the arrow, which ma
onto the stimulus that creates the object, is drawn with its arrowhead on the object symb
the object is destroyed during the diagram, then its destruction is marked by a large “X,” e
at the arrow mapping to the Stimulus that causes the destruction or (in the case of self-
destruction) at the final return arrow from the destroyed Object. An Object that exists whe
transaction starts is shown at the top of the diagram (above the first arrow), while an Objec
exists when the transaction finishes has its lifeline continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality. Each
separate track corresponds to a conditional branch in the communication. The lifelines m
merge together at some subsequent point.

3.60.3 Example

See Figure 3-48 on page 3-100.
UML V1.3 June 1999 3-103

3 UML Notation

f the

 its

and
eled
the

ing
n

s the
ot

ted

e is
 other
ase of
rawn
alls
3.60.4 Mapping

See “Mapping” on page 3-101.

3.61 Activation

3.61.1 Semantics

An activation (focus of control) shows the period during which an Object is performing an
Action either directly or through a subordinate procedure. It represents both the duration o
performance of the Action in time and the control relationship between the activation and
callers (stack frame).

3.61.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation time
whose bottom is aligned with its completion time. The Action being performed may be lab
in text next to the activation symbol or in the left margin, depending on style. Alternately,
incoming arrow may indicate the Action, in which case it may be omitted on the activation
itself. In procedural flow of control, the top of the activation symbol is at the tip of an incom
arrow (the one that initiates the action) and the base of the symbol is at the tail of a retur
arrow.

In the case of concurrent Objects each with their own threads of control, an activation show
duration when each Object is performing an Operation. Operations by other Objects are n
relevant. If the distinction between direct computation and indirect computation (by a nes
procedure) is unimportant, the entire lifeline may be shown as an activation.

In the case of procedural code, an activation shows the duration during which a procedur
active in the Object or a subordinate procedure is active, possibly in some other Object. In
words, all of the active nested procedure activations may be seen at a given time. In the c
a recursive call to an Object with an existing activation, the second activation symbol is d
slightly to the right of the first one, so that they appear to “stack up” visually. (Recursive c
may be nested to an arbitrary depth.)

3.61.3 Example

See Figure 3-47 on page 99 and Figure 3-48 on page 3-100.

3.61.4 Mapping

See “Mapping” on page 3-101.
3-104 UML V1.3 June 1999

3.62 Message and Stimulus

e a

tch a

f one
rrow
e

ulus in
ms, as
n
ifying

ns:

ry
f

.

nce.

ow
ce.
3.62 Message and Stimulus

3.62.1 Semantics

A Stimulus is a communication between two Objects that conveys information with the
expectation that action will ensue. A Stimulus will cause an Operation to be invoked, rais
Signal, or cause an Object to be created or destroyed.

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender and the
receiver Objects must conform to, as well as the Action which will, when executed, dispa
Stimulus that conforms to the Message.

3.62.2 Notation

In a sequence diagram a Stimulus is shown as a horizontal solid arrow from the lifeline o
Object to the lifeline of another Object. In case of a Stimulus from an Object to itself, the a
may start and finish on the same Object lifeline. The arrow is labeled with the name of th
Stimulus (Operation or Signal) and its argument values or argument expressions.

The arrow may also be labeled with a sequence number to show the sequence of the Stim
the overall interaction. However, sequence numbers are often omitted in sequence diagra
the physical location of the arrow shows the relative sequences, but they are necessary i
collaboration diagrams. Sequence numbers are useful on both kinds of diagrams for ident
concurrent threads of control. A Stimulus may also be labeled with a guard condition.

3.62.3 Presentation options

The following arrowhead variations may be used to show different kinds of communicatio

filled solid arrowhead

Procedure call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. May be used with ordina
procedure calls. May also be used with concurrently active objects when one o
them sends a Signal and waits for a nested sequence of behavior to complete

stick arrowhead

Flat flow of control. Each arrow shows the progression to the next step in seque
Normally all of the messages are asynchronous.

half stick arrowhead

An asynchronous Stimulus. Used instead of the stick arrowhead to explicitly sh
an asynchronous communication between two Objects in a procedural sequen
UML V1.3 June 1999 3-105

3 UML Notation

he
y

trol
t

rity
f the

a
 that

timuli

then
gle
 can

gh-
dashed arrow with stick arrowhead

Return from procedure call.

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at t
end of an activation). It is assumed that every call has a paired return after an
subordinate stimuli. The return value can be shown on the initial arrow. For
nonprocedural flow of control (including parallel processing and asynchronous
messages) returns should be shown explicitly.

Variation:

In a concurrent system, a full arrowhead shows the yielding of a thread of con
(wait semantics) and a half arrowhead shows the sending of a message withou
yielding control (no-wait semantics).

Variation:

Normally message arrows are drawn horizontally. This indicates the duration
required to send the stimulus is “atomic,” i.e. it is brief compared to the granula
of the interaction and that nothing else can “happen” during the transmission o
stimulus. This is the correct assumption within many computers. If the stimulus
requires some time to arrive, during which something else can occur (such as
stimulus in the opposite direction), then the arrow may be slanted downward so
the arrowhead is below the arrow tail.

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each labeled by a
guard condition. Depending on whether the guard conditions are mutually
exclusive, the construct may represent conditionality or concurrency.

Variation: Iteration

A connected set of arrows may be enclosed and marked as an iteration. For a
generic sequence diagram, the iteration indicates that the dispatch of a set of s
can occur multiple times. For a procedure, the continuation condition for the
iteration may be specified at the bottom of the iteration. If there is concurrency,
some arrows in the diagram may be part of the iteration and others may be sin
execution. It is desirable to arrange a diagram so that the arrows in the iteration
be enclosed together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a hi
level view.
3-106 UML V1.3 June 1999

3.63 Transition Times

r
es

the

These
ds of
such as

, or a

n the

 itself
 of the
y the
Variation:

A distinction may be made between a period during which an Object has a live
activation and a period in which the activation is actually computing. The forme
(during which it has control information on a stack but during which control resid
in something that it called) is shown with the ordinary double line. The latter
(during which it is the top item on the stack) may be distinguished by shading
region.

3.62.4 Mapping

See “Mapping” on page 3-101.

3.63 Transition Times

3.63.1 Semantics

A Message may specify several different times, e.g. a sending time and a receiving time.
are formal names that may be used within Constraint expressions. The set of different kin
times is open-ended so that users can invent new ones as needed for special situations,
elapsedTime and startExecutionTime. These expressions may be used in Constraints to
designate specific time constraints valid for the Message.

3.63.2 Notation

A transition instance (such as a Stimulus in a sequence diagram, a collaboration diagram
Transition in a state machine) may be given a name. A timing constraint is formed as an
expression based on the name of the transition. For example, if the name of a Stimulus isstim,
its send-time is expressed by stim.sendTime (), and its receive-time by stim.receiveTime (). The
timing constraint may be shown in the left margin aligned with the arrow (on a sequence
diagram) or near the tail of the arrow (on a collaboration diagram). Constraints may be
specified by placing Boolean expressions, possibly including time expressions, in braces o
sequence diagram.

3.63.3 Presentation Options

When it is clear from the context, the name of a Message or the name of a Stimulus may
be used to denote the time at which the transition started. In cases where the performance
transition is not instantaneous, the time at which the transition is ended may be indicated b
same name with a prime sign appended to the name.

3.63.4 Example

See Figure 3-47 on page 3-99.
UML V1.3 June 1999 3-107

3 UML Notation
3.63.5 Mapping

See “Mapping” on page 3-101.
3-108 UML V1.3 June 1999

3.64 Collaboration

n,
he

eir
e

nce of
bers.
r real-
 in
is

ts
atter

ll
ign, it
ng a
y are

for a
s not
cting

oles

 a
 the
3UML Notation
Part 8 - Collaboration Diagrams

A pattern of interactions among instances is shown on an interaction diagram.
Interaction diagrams come in two forms based on the same underlying informatio
specified by an interaction, but each form emphasizing a particular aspect of it. T
two forms are: sequence diagrams and collaboration diagrams. A collaboration
diagram shows an interaction organized around the roles in the interaction and th
links to each other. Unlike a sequence diagram, a collaboration diagram shows th
relationships among the objects playing the different roles. On the other hand, a
collaboration diagram does not show time as a separate dimension, so the seque
interactions and the concurrent threads must be determined using sequence num
Hence, sequence diagrams show the explicit sequence of stimuli and are better fo
time specifications and for complex scenarios. Sequence diagrams are described
detail in “Part 7 - Sequence Diagrams”. That part should be read together with th
one, as they have much in common.

A collaboration diagram can be given in two different forms: either at specification
level (the diagram shows ClassifierRoles, AssociationRoles, and Messages) or at
instance level (the diagram shows Objects, Links, and Stimuli). The former presen
the roles and their structure as defined in the underlying Collaboration, while the l
focuses on instance that conforms to the roles in the Collaboration.

In the following the term Object is used, but any kind of Instance can be used.

3.64 Collaboration

3.64.1 Semantics

Behavior is implemented by sets of Objects that exchange Stimuli within an overa
interaction to accomplish a purpose. To understand the mechanisms used in a des
is important to see only those Objects and their interaction involved in accomplishi
purpose or a related set of purposes, projected from the larger system of which the
part for other purposes. Such a static construct is called a Collaboration.

A Collaboration defines a set of participants and relationships that are meaningful
given set of purposes. The identification of participants and their relationships doe
have global meaning. These participants define roles that Objects play when intera
with each other. Hence, a Collaboration specifies a set of ClassifierRoles and
AssociationRoles. Objects conforming (or binding) to the ClassifierRoles play the r
defined by the ClassifierRoles, while Links between the Objects will conform to
AssociationRoles of the Collaboration. A ClassifierRole (AssociationRole) defines
usage of an Object (Link), while the Class (Association) specifies all properties of
Object (Link).
UML V1.3 June 1999 3-109

3 UML Notation

tially
ent or
d the

 to

on is

hen
rns
ay

butes,

e
c

named
s.

ed

he
s are
 the
s in a

ed

 of

er
ram
the
An Interaction is defined in the context of a Collaboration. It specifies the
communication patterns between the roles. More precisely, it contains a set of par
ordered Messages, each specifying one communication, e.g. what Signal to be s
what Operation to be invoked, as well as the roles to be played by the sender an
receiver, respectively.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase,
describe the context in which their behavior occurs, i.e. what roles Objects play to
perform the behavior specified by the Operation or the UseCase. The Collaborati
said to be a realization of the Operation or the UseCase. The Interactions defined
within the Collaboration specify the communication pattern between the Objects w
they perform the behavior specified in the Operation or the UseCase. These patte
are presented in sequence diagrams or collaboration diagrams. A Collaboration m
also be attached to a Class to define the static structure of the Class, i.e. how attri
parameters etc. cooperate with each other.

A parameterized Collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the Collaboration, including the
Classifiers and Relationships, can be parameters of the generic Collaboration. Th
parameters are bound to particular ModelElements in each instantiation of generi
Collaboration. Such a parameterized Collaboration can capture the structure of a
design pattern (note that a design pattern involves more than structural aspects).
Whereas most Collaborations can be anonymous because they are attached to a
ModelElement, patterns are free standing design constructs that must have name

A Collaboration may be expressed at different levels of granularity. A coarse-grain
Collaboration may be refined to produce another Collaboration that has a finer
granularity.

3.64.2 Notation

The description of behavior involves two aspects: 1) the structural description of t
participants and 2) the description of the communication patterns. The two aspect
often described together on a single diagram, but at times it is useful to describe
structural and interaction aspects separately. The structure of Objects playing role
behavior and their relationships is called a Collaboration. A collaboration diagram
shows the context in which interaction occurs. The sequences of Stimuli exchang
among Objects to accomplish a specific purpose is called an Interaction. A
Collaboration is shown by a collaboration diagram which does not include any
communication. By adding communication to the diagram, an Interaction is shown
superposed on the Collaboration in which the Interaction is defined. Different sets
communication may be applied to the same Collaboration to yield different
Interactions. The communication can be shown at two different levels: at instance level
or at specification level. An instance level diagram shows Objects and Links togeth
with Stimuli being exchanged between the Objects, while a specification level diag
shows ClassifierRoles, AssociationRoles, and Messages. The model elements in
instance level diagram conform to the model elements in the specification level
diagram (see Section 3.69, “Collaboration Roles,” on page 3-118).
3-110 UML V1.3 June 1999

3.65 Collaboration Diagram

e
is

18,

 be
text.

tion

r. A
 and
e

d by

w

li
er a

rting

ce of
 level

n or
3.64.3 Mapping

A Collaboration Diagram or an Interaction Diagram given at specification level is
mapped onto a Collaboration, possibly together with an Interaction, including thos
elements owned by the Collaboration. If the diagram is given at instance level, it
mapped onto a set of Instances and Links conforming to the Collaboration. The
detailed mapping is described in Section 3.69, “Collaboration Roles,” on page 3-1
below.

3.65 Collaboration Diagram

3.65.1 Semantics

A collaboration diagram presents a Collaboration, which contains a set of roles to
played by Objects, as well as their required relationships given in a particular con
The diagram may also present an Interaction, which defines a set of Messages
specifying the interaction between the Objects playing the roles within a Collabora
to achieve the desired result.

A Collaboration is used for describing the realization of an Operation or a Classifie
Collaboration which describes a Classifier, like a UseCase, references Classifiers
Associations in general, while a Collaboration describing an Operation includes th
arguments and local variables of the Operation, as well as ordinary Associations
attached to the Classifier owning the Operation.

3.65.2 Notation

A collaboration diagram shows a graph of either Objects linked to each other, or
ClassifierRoles and AssociationRoles; it may also include the communication state
an Interaction. A collaboration diagram can be given in two different forms: at instance
level or at specification level; it may either show Instances, Links, and Stimuli, or sho
ClassifierRoles, AssociationRoles, and Messages (see below).

Because collaboration diagrams often are used to help design procedures, they
typically show navigability using arrowheads on the lines representing Links or
AssociationRoles. (An arrowhead on a line between boxes indicates a Link or
AssociationRole with one-way navigability. An arrow next to a line indicates Stimu
flowing in the given direction. Obviously such an arrow cannot point backwards ov
one-way line.)

The order of the interaction is described with a sequence of numbers, usually sta
with number 1. For a procedural flow of control, the subsequent communication
numbers are nested in accordance with call nesting. For a nonprocedural sequen
interactions among concurrent objects, all the sequence numbers are at the same
(that is, they are not nested).

A collaboration diagram without any interaction shows the context in which
interactions can occur. It might be used to show the context for a single Operatio
even for all of the Operations of a Class or group of Classes.
UML V1.3 June 1999 3-111

3 UML Notation

Link

 and

r the
or
e.

 the

 a
r
nd

 In
A collection of standard constraints may be used to show whether an Object or a
is created or destroyed during the execution:

• Objects and Links created during the execution may be designated as {new}.

• Objects and Links destroyed during the execution may be designated as
{destroyed}.

• Objects and Links created during the execution and then destroyed may be
designated as {transient}.

These changes in life state are derivable from the detailed interaction among the
Objects, they are provided as notational conveniences.

Instance level

A collaboration diagram given at instance level shows a collection of object boxes
lines mapping to Objects and Links, respectively. These instances conform to the
ClassifierRoles and AssociationRoles of the Collaboration. The diagram may also
include arrows attached to the lines that correspond to Stimuli communicated ove
Links. The diagram shows the Objects relevant to the realization of an Operation
Classifier, including Objects indirectly affected or accessed during the performanc
The diagram also shows the Links among the Objects, including transient ones
representing procedure arguments, local variables, and self links. Individual attribute
values are usually not shown explicitly. If Stimuli must be sent to attribute values,
Attributes should be modeled using Associations instead.

Specification level

A collaboration diagram given at specification level shows the roles defined within
Collaboration. Together, these roles form a realization of the attached Operation o
Classifier of the Collaboration. The diagram contains a collection of class boxes a
lines corresponding to ClassifierRoles and AssociationRoles in the Collaboration.
this case the arrows attached to the lines map onto Messages.
3-112 UML V1.3 June 1999

3.65 Collaboration Diagram

li.
3.65.3 Example

Figure 3-50 Collaboration Diagram at instance level, presenting Objects, Links, and Stimu

Figure 3-51 Collaboration Diagram at specification level, presenting ClassifierRoles and
AssociationRoles.

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local» line

1.1.3: display(window)

1.1.3.1: add(self)

 contents {new}

«self»

/ Teacher : Person

: Faculty
given course *

/ Student : Person

student *

: Course

tutor 1

taken course *

participant *lecturer 1faculty member *

faculty 1
UML V1.3 June 1999 3-113

3 UML Notation

n

or
le to

 be
 is a

tituted

tural
 does
ples.
Figure 3-52 Collaboration Diagram at instance level in which some of the Objects play the
same role. The instances conform to the Collaboration shown in Figure 3-51 o
page 3-113.

3.65.4 Mapping

A collaboration diagram maps to a Collaboration, possibly together with an
Interaction. The mapping of each kind of icon is described in Section 3.69,
“Collaboration Roles,” on page 3-118, below. The mapping of the stereotypes is
explained in Section 3.48.

3.66 Pattern Structure

3.66.1 Semantics

A Collaboration can be used to specify the implementation of design constructs. F
this purpose, it is necessary to specify its context and interactions. It is also possib
view a Collaboration as a single entity from the “outside.” For example, this could
used to identify the presence of design patterns within a system design. A pattern
parameterized Collaboration. In each use of the pattern, actual Classes are subs
for the parameters in the pattern definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and
Vlissides include much more than structural descriptions. UML describes the struc
aspects and some behavioral aspects of design patterns; however, UML notation
not include other important aspects of patterns, such as usage trade-offs or exam
These must be expressed in text or tables.

tutor / Teacher : Person

/ Student : Person

1: namesOfTeachers()

studentTeachers ()

1.1*[i:=1..n]: lecturer()

: Course

1.i.1: name ()

lecturer / Teacher : Person
3-114 UML V1.3 June 1999

3.66 Pattern Structure

e
bject
led
 the

within

hips
 a

on
he
 of
3.66.2 Notation

A use of a Collaboration is shown as a dashed ellipse containing the name of the
Collaboration. A dashed line is drawn from the collaboration symbol to each of th
symbols denoting Objects or Classes (depending on whether it appears within an o
diagram or a class diagram) that participate in the Collaboration. Each line is labe
by the role of the participant. The roles correspond to the names of elements within
context for the Collaboration; such names in the Collaboration are treated as
parameters that are bound to specify elements on each occurrence of the pattern
a model. Therefore, a collaboration symbol can show the use of a design pattern
together with the actual Classes that occur in that particular use of the pattern.

Figure 3-53 Use of a Collaboration.

As a Collaboration is a GeneralizableElement, it may have Generalization relations
to other Collaborations. In this way it is possible to define one Collaboration to be
specialization of another Collaboration. It is depicted by the ordinary Generalizati
arrow from the dashed ellipse representing the child Collaboration to the icon of t
parent Collaboration. The roles of the child Collaborations may be specializations
roles in the parent Collaboration.

Figure 3-54 Specialization of a Collaboration.

Observer

SlidingBarIcon
handler

CallQueue subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

handler.reading = length (subject.queue)

capacity: Integer

range = (0 .. capacity)

Observer SlidingBarIcon

handler

CallQueue

subject

Supervisor Controler

manager

ManagedQueue

subject
UML V1.3 June 1999 3-115

3 UML Notation

tion
nted

e

is

d
g an
l that

eded.
 of
ired
be
A dashed arrow with a closed, hollow arrow-head is used to show that a Collabora
is a realization of an Operation or a Classifier. This relationship can also be prese
in textual form within the Collaboration symbol.

Figure 3-55 The relationship between a Collaboration and the element it is realizing can b
shown either as a dashed arrow with a closed, hollow arrow-head from the
Collaboration to the realized element, or in text.

3.66.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol
attached by an arrow to the pattern occurrence symbol, the corresponding Class
bound to the template parameter that is the base association target of the ClassifierRole
in the Pattern with the name equal to the name on the arrow.

A dashed arrow from a Collaboration symbol to a Classifier or to an Operation is
mapped onto the representedClassifier and onto the representedOperation association
of the Collaboration, respectively.

3.67 Collaboration Contents

The contents of a Collaboration is a collection of roles specifying how Objects an
Links cooperate within a given context for a particular purpose, such as performin
Operation or a Use case. A Collaboration is a fragment of a larger complete mode
is intended for a particular purpose.

3.67.1 Semantics

A Collaboration diagram shows one or more roles together with their contents,
relationships, and neighbor roles, plus additional relationships and Classes as ne
To use a Collaboration, each role must be bound to an actual Class (or collection
Classes, if multiple classification is used) that (jointly) support the Operations requ
of the role. The additional elements express additional requirements that cannot
modelled with roles, such as Generalizations between roles.

Window

display (...)

representedOperation:
Window::display
3-116 UML V1.3 June 1999

3.68 Interactions

ts,

and
ing

nt,

an

and
cific

ecify
the
s are
3.67.2 Notation

A collaboration is shown as a graph of class boxes or object boxes together with
connecting lines. These icons map onto ClassifierRoles, AssociationRoles, Objec
and Links, respectively (see Section 3.69, “Collaboration Roles,” on page 3-118,
below).

However, a collaboration diagram may also contain other elements, like Classes
Generalizations, to express additional information. These elements are shown us
their ordinary icons.

Figure 3-56 A collaboration diagram showing different roles, together with two additional
Generalization relationships as constraining elements.

3.67.3 Mapping

The mapping of roles and instances are described below. Any constraining eleme
like a generalization arrow, is mapped onto its usual model element, such as
Generalization. These elements a referenced by the Collaboration as its constraining
elements.

3.68 Interactions

A collaboration of objects interacts to accomplish a purpose (such as performing
Operation) by exchanging Stimuli. These may include both sending Signals and
invocations of Operations, as well as more implicit interaction through conditions
time events. A specific pattern of communication exchanges to accomplish a spe
purpose is called an interaction.

3.68.1 Semantics

An Interaction is a behavioral specification that comprises a sequence of
communications exchanged among a set of Objects within a Collaboration to
accomplish a specific purpose, such as the implementation of an Operation. To sp
an Interaction, it is first necessary to specify a Collaboration; that is, to establish
roles that interact and their relationships. Then, the possible interaction sequence

/ Generator : PrintDevice

1: print (info)

: LaserPrinter : LinePrinter

printer 1
UML V1.3 June 1999 3-117

3 UML Notation

hs.

ce.

ns
rence

ge.
the
ct
hing

s do

ects;

ime

tion

one
nce

ts of

he
ions
other
n the
specified. These can be specified in a single description containing conditionals
(branches or conditional signals), or they can be specified by supplying multiple
descriptions, each describing a particular path through the possible execution pat

One communication is specified with a Message; it specifies the sender and the
receiver roles, as well as the Action that will cause the communication to take pla
The Action specifies what kind of communication that should take place, such as
sending a Signal or invoking an Operation, together with a sequence of expressio
that determine the arguments to be supplied. The Action may also contain a recur
expression stating a guard or an iteration of the performance of the Action.

When the Action is performed, a Stimulus is dispatched conforming to the Messa
The Stimulus contains references to the sender and the receiver Objects playing
sender role and the receiver role of the Message, as well as a sequence of Obje
references being the result of evaluating the argument expressions of the dispatc
Action.

3.68.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both
diagram formats show the execution of collaborations. However, sequence diagram
not show the relationships between the Objects or the Attribute values of the Obj
therefore, they do not fully show the context aspect of a Collaboration. Sequence
diagrams do show the behavioral aspect of Collaborations explicitly, including the t
sequence of Stimuli and explicit representation of method activations. Sequence
diagrams are described in “Part 7 - Sequence Diagrams” on page 3-97. Collabora
diagrams show the full context of an interaction, including the Objects and their
relationships relevant to a particular interaction. The sequencing of the Stimuli is d
using sequence numbers, since distributing them along a time axis, like in Seque
diagrams, is not possible in this kind of diagram. (In fact, in some cases it is
convenient to use sequence numbers in combination with a time axis.) The conten
collaboration diagrams are described in the following section.

3.68.3 Example

See Section 3.65, “Collaboration Diagram” for examples of Interactions and their
Collaborations.

3.69 Collaboration Roles

3.69.1 Semantics

A ClassifierRole defines a role to be played by an Object within a collaboration. T
role describes the type of Object that may play the role, such as required Operat
and Attributes, and describes its relationships to other roles. The relationships to
roles are defined by AssociationRoles. These describe the required Links betwee
Objects, i.e. a subset of the existing Links.
3-118 UML V1.3 June 1999

3.69 Collaboration Roles

e

ude

es

an

ox.

the

. The

.

x,

 of

ther

er
gle

s of
3.69.2 Notation

A ClassifierRole is shown using a class rectangle symbol. Normally, only the nam
compartment is shown, but the attribute and operation compartments may also be
shown when needed. The name compartment contains the string:

‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

The name of the Classifier (or Classifiers if multiple classification is used) can incl
a full pathname of enclosing Packages, if necessary. A tool will normally permit
shortened pathnames to be used when they are unambiguous. The Package nam
precede the Classifier name and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype may be shown textually (in guillemets above the name string) or as
icon in the upper right corner. A ClassifierRole representing a set of Objects can
include a multiplicity indicator (such as “*”) in the upper right corner of the class b

An AssociationRole is shown with the usual association line. The name string of
Association Role follows the same syntax as for the ClassifierRole. If the name is
omitted, a line connected to Classifier Role symbols denotes an Association Role
information attached to the ends of the AssociationRole, i.e. to the
AssociationEndRoles, are shown using the same notation as for AssociationEnds

An Object playing the role defined by a ClassifierRole is depicted by an object bo
normally without an attribute compartment. The name of the Object is shown as a
string:

ObjectName ‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

i.e. it starts with the name of the Object, followed by the complete name of the
ClassifierRole, all underlined.

A Link is shown by a line between object boxes. It name string follows the syntax
an Object playing a specific role.

3.69.3 Presentation options

The name of a ClassifierRole may be omitted. In this case, the colon is kept toge
with the Class name. The role name may be omitted only if there is only one role to be
played by Objects of the base Class in the Collaboration.

The name of the Class may be omitted together with the colon. In this case, the
diagram does not present the complete information regarding the Collaboration.

At least one of the Class name (together with the colon) or the role name (togeth
with the slash) must be present to denote a ClassifierRole. Otherwise, the rectan
denotes an ordinary Class.

If the role is to be played by an Object originating from multiple Classes, the name
the Classes are shown in a comma separated list after the colon.
UML V1.3 June 1999 3-119

3 UML Notation

ash
ts in
ject

sifier
een

e of

e
In an object box the Object name, the role name and / or the class name may be
omitted. However, the colon should be kept in front of the class name, and the sl
should be kept in front of the role name. The notation used is the same for Objec
general, with the possible addition of the name of the ClassifierRole which the Ob
conforms to.

Note, the name of an Instance is always underlined, whereas the name of a Clas
(including ClassifierRole) is never underlined. Furthermore, an un-named line betw
icons representing Instances is always a Link, and between icons representing
Classifiers it is always an Association.

These tables summarize the different combinations of names:

3.69.4 Example

See figures in Section 3.65, “Collaboration Diagram”.

3.69.5 Mapping

A classifier role rectangle maps onto one ClassifierRole. The role name is the nam
the ClassifierRole and the sequence of classifier names are the names of the base
Classifiers. An association role line maps onto an AssociationRole attached to th
ClassifierRoles corresponding to the rectangles at the end points of the line.

Table 3-1 Syntax of Object names

syntax explanation

: C un-named Object originating from the Class C

/ R un-named Object playing the role R

/ R : C un-named Object originating from the Class C
playing the role R

O / R an Object named O playing the role R

O : C an Object named O originating from the Class C

O / R : C an Object named O originating from the Class C
playing the role R

O an Object named O

Table 3-2 Syntax of role names

syntax explanation

/ R a role named R

: C an un-named role with the base Class C

/ R : C a role named R with the base Class C
3-120 UML V1.3 June 1999

3.70 Multiobject

names
 the

is is
ngle

htly
he
tion

wo

This
des

es a

ode)
ink)

d to
t. A

An object symbol maps onto an Object whose name is the object part of the name
string. The Classes of the Object are those named according to the sequence of
in the class part of the string (or children of these Classes). The Object conforms to
ClassifierRole, whose name is the role part of the string.

3.70 Multiobject

3.70.1 Semantics

A multiobject represents a set of Objects on the “many” end of an Association. Th
used to show Operations and Signals that address the entire set, rather than a si
Object in it. The underlying static model is unaffected by this grouping. This
corresponds to an Association with multiplicity “many” used to access a set of
associated Objects.

3.70.2 Notation

A multiobject is shown as two rectangles in which the top rectangle is shifted slig
vertically and horizontally to suggest a stack of rectangles. A message arrow to t
multi-object symbol indicates a Stimulus to the set of Objects (for example, a selec
Operation to find an individual Object).

To perform an Operation on each Object in a set of associated Objects requires t
Stimuli: 1) an iteration to the multi-object to extract Links to the individual Objects
and then 2) a Stimulus sent to each individual Object using the (temporary) Link.
may be elided on a diagram by combining the arrows into a single arrow that inclu
an iteration and an application to each individual Object. The target rolename tak
“many” indicator (*) to show that many individual Links are implied. Although this
may be written as a single Stimulus, in the underlying model (and in any actual c
it requires the two layers of structure (iteration to find Links, message using each L
mentioned previously.

An Object from the set is shown as a normal object symbol, but it may be attache
the multiobject symbol using a composition Link to indicate that it is part of the se
message arrow to the simple object symbol indicates a Stimulus to an individual
Object.

Typically a selection Stimulus to a multiobject returns a reference to an individual
Object, to which the original sender then sends a Stimulus.
UML V1.3 June 1999 3-121

3 UML Notation

ection

ty.
ssive
. In a
e

are

ly,
3.70.3 Example

Figure 3-57 Multiobject

3.70.4 Mapping

A multi-object symbol maps to a set of Objects that together conforms to a
ClassifierRole with multiplicity “many” (or whatever is explicitly specified). In other
respects, it maps the same as an object symbol. (The stereotype is explained in S
3.48.)

3.71 Active object

An active object is one that owns a thread of control and may initiate control activi
A passive object is one that holds data, but does not initiate control. However, a pa
object may send Stimuli in the process of processing a request that it has received
collaboration diagram, a ClassifierRole that is an active class represents the activ
objects that occur during execution.

3.71.1 Semantics

An active object is an Object that owns a thread of control. Processes and tasks
traditional kinds of active objects.

3.71.2 Notation

A role for an active object is shown as a rectangle with a heavy border. Frequent
active object roles are shown as composites with embedded parts.

The property keyword {active} may also be used to indicate an active object.

servers
:Server

:Server
aServer «local»

client

1: aServer:=find(specs)

2: process(request)
3-122 UML V1.3 June 1999

3.71 Active object

e
3.71.3 Example

Figure 3-58 Composite Active Object

3.71.4 Mapping

An active object symbol maps as an object symbol does, with the addition that th
active property is set.

job

:Factory JobMgr

:Factory Scheduler

currentJob : TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

«local» job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed
UML V1.3 June 1999 3-123

3 UML Notation

at
se

ed.

 and

ole or

e

ry
f

.

nce.

licit
3.72 Message and Stimulus

3.72.1 Semantics

In a collaboration diagram a Stimulus is a communication between two Objects th
conveys information with the expectation that action will ensue. A Stimulus will cau
an Operation to be invoked, raise a Signal, or an Object to be created or destroy

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender
the receiver Objects should conform to, as well as the Action which will, when
executed, dispatch a Stimulus that conforms to the Message.

3.72.2 Notation

Messages and Stimuli are shown as labeled arrows placed near an AssociationR
a Link, respectively. The meaning is that the Link is used for transportation of the
Stimulus to the target Object. The arrow points along the line in the direction of th
receiving Object.

Control flow type

The following arrowhead variations may be used to show different kinds of
communications:

filled solid arrowhead

Procedure call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. May be used with ordina
procedure calls. May also be used with concurrently active objects when one o
them sends a Signal and waits for a nested sequence of behavior to complete

stick arrowhead

Flat flow of control. Each arrow shows the progression to the next step in seque
Normally all of the messages are asynchronous.

half stick arrowhead

Asynchronous flow of control. Used instead of the stick arrowhead to explicitly
show an asynchronous communication between two Objects in a procedural
sequence.

dashed arrow with stick arrowhead

Return from a procedure call. The return arrow may be suppressed as it is imp
at the end of an activation.
3-124 UML V1.3 June 1999

3.72 Message and Stimulus

 the

lash

t must

hose

a

ber is
bers
hich

 colon

f all
he
other variations

Other kinds of control may be shown, such as “balking” or “time-out;” however,
these are treated as extensions to the UML core.

Arrow label

In the following the term Message is used, but the text applies to Stimulus, as well.

The label has the following syntax:

predecessor guard-condition sequence-expression return-value := message-name
argument-list

The label indicates the Message being sent, its arguments and return values, and
sequencing of the Message within the larger interaction, including call nesting,
iteration, branching, concurrency, and synchronization.

Predecessor

The predecessor is a comma-separated list of sequence numbers followed by a s
(‘/’):

sequence-number ‘,’ . . . ‘/’

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. I
match the sequence number of another Message.

The meaning is that the Message is not enabled until all of the communications w
sequence numbers appear in the list have occurred (once the communication has
occurred the guard remains satisfied). Therefore, the guard condition represents
synchronization of threads.

Note that the Message corresponding to the numerically preceding sequence num
an implicit predecessor and need not be explicitly listed. All of the sequence num
with the same prefix form a sequence. The numerical predecessor is the one in w
the final term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.

Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a
(‘:’).

sequence-term ‘.’ . . . ‘:’

Each term represents a level of procedural nesting within the overall interaction. I
the control is concurrent, then nesting does not occur. Each sequence-term has t
following syntax:

[integer | name] [recurrence]
UML V1.3 June 1999 3-125

3 UML Notation

level
ated

ffer
and
l

 or
ices

fied).
ming

he
r an
uld

think

tion

els.

ue of

oes not
The integer represents the sequential order of the Message within the next higher
of procedural calling. Messages that differ in one integer term are sequentially rel
at that level of nesting. Example: Message 3.1.4 follows Message 3.1.3 within
activation 3.1. The name represents a concurrent thread of control. Messages that di
in the final name are concurrent at that level of nesting. Example: Message 3.1a
Message 3.1b are concurrent within activation 3.1. All threads of control are equa
within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero
more Messages that are executed depending on the conditions involved. The cho
are:

‘*’ ‘[’ iteration-clause ‘]’ an iteration

‘[’ condition-clause ‘]’ a branch

An iteration represents a sequence of Messages at the given nesting depth. The
iteration clause may be omitted (in which case the iteration conditions are unspeci
The iteration-clause is meant to be expressed in pseudocode or an actual program
language, UML does not prescribe its format. An example would be: *[i := 1..n] .

A condition represents a Message whose execution is contingent on the truth of t
condition clause. The condition-clause is meant to be expressed in pseudocode o
actual programming language; UML does not prescribe its format. An example wo
be: [x > y] .

Note that a branch is notated the same as an iteration without a star. One might
of it as an iteration restricted to a single occurrence.

The iteration notation assumes that the Messages in the iteration will be executed
sequentially. There is also the possibility of executing them concurrently. The nota
for this is to follow the star by a double vertical line (for parallelism): *|| .

Note that in a nested control structure, the recurrence is not repeated at inner lev
Each level of structure specifies its own iteration within the enclosing context.

Signature

A signature is a string that indicates the name, the arguments, and the return val
an Operation, a Reception, a Message, or a Signal. These have the following
properties.

Return-value

This is a list of names that designates the values returned at the end of the
communication within the subsequent execution of the overall interaction. These
identifiers can be used as arguments to subsequent Messages. If the Message d
return a value, then the return value and the assignment operator are omitted.

Message-name
3-126 UML V1.3 June 1999

3.72 Message and Stimulus

 of
,
the

ceiver
 the
e

ent is

rn
rting
le

shown
r
n
nts

ng
ould

ed to

This is the name of the event raised in the target Object (which is often the event
requesting an Operation to be performed). It may be implemented in various waysone
of which is an operation call. If it is implemented as a procedure call, then this is
name of the Operation, and the Operation must be defined on the Class of the re
or inherited by it. In other cases, it may be the name of an event that is raised on
receiving Object. In normal practice with procedural overloading, both the messag
name and the argument list types are required to identify a particular Operation.

Argument list

This is a comma-separated list of arguments (actual parameters) enclosed in
parentheses. The parentheses can be used even if the list is empty. Each argum
either an object reference, or an expression in pseudocode or an appropriate
programming language (UML does not prescribe). The expressions may use retu
values of previous messages (in the same scope) and navigation expressions sta
from the source object (that is, attributes of it and links from it and paths reachab
from them).

3.72.3 Presentation Options

Instead of text expressions for arguments and return values, data tokens may be
near a message. A token is a small circle labeled with the argument expression o
return value name. It has a small arrow on it that points along the Message (for a
argument) or opposite the Message (for a return value). Tokens represent argume
and return values. The choice of text syntax or tokens is a presentation option.

The syntax of Messages may instead be expressed in the syntax of a programmi
language, such as C++ or Smalltalk. All of the expressions on a single diagram sh
use the same syntax, however.

A return flow, may be explicitly shown with a dashed arrow.

3.72.4 Example

See Figure 3-50 on page 3-113 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y) simple Message

1.3.1: p:= find(specs) nested call with return value

[x < 0] 4: invert (x, color) conditional Message

A3,B4/ C3.1*: update () synchronization with other threads, iteration

3.72.5 Mapping

An arrow symbol maps either onto a Message or a Stimulus. If the arrow is attach
a line corresponding to an AssociationRole, it maps onto a Message, with the
ClassifierRoles corresponding to the end-points of the line as the sender and the
UML V1.3 June 1999 3-127

3 UML Notation

with
eiver

the

 the
 to the
ceding
cated
to a

h the

e the

ed to
n.

ge

a

ome
receiver roles. If the line corresponds to a Link, the arrow maps onto a Stimulus,
the Objects corresponding to the end-points of the line as the sender and the rec
Instances. The line is the communication connection or the communication link of the
Message or the Stimulus, respectively.

The control flow type sets the corresponding properties:

• solid arrowhead: a synchronous operation invocation

• stick arrowhead: flat flow of control (normally asynchronous)

• half stick arrowhead: an asynchronous operation invocation

• dashed arrow with stick arrowhead: return from an synchronous operation
invocation

The predecessor expression, together with the sequence expression, determines
predecessor and activation (caller) associations between the Message and other
Messages. The predecessors of the Message are the Messages corresponding to
sequence numbers in the predecessor list as well as the Message corresponding
immediate preceding sequence number as the Message, i.e. 1.2.2 is the one pre
1.2.3. The caller of the Message is the Message whose sequence number is trun
by one position, i.e. 1.2 is the caller of 1.2.3. The thread-of-control name maps on
Classifier stereotyped thread, i.e. an active class.

The return of a value maps into a Message from the called Object to the caller wit
dispatching Action being a ReturnAction. Its predecessor is the final Message within
the procedure. Its activation is the Message that called the procedure.

The recurrence expression, the iteration clause, and the condition clause determin
recurrence value in the Action attached to the Message.

The operation name and the form of the signature determine the Operation attach
the CallAction associated with the Message. Similarly for a Signal and SendActio
The arguments of the signature determine the arguments associated with the
CallAction and SendAction, respectively

In a procedural interaction, each arrow symbol also maps into a second Message
representing the return flow, unless the return flow is explicitly shown. This Messa
has an activation Association to the original call Message. Its associated Action is
ReturnAction bearing the return values as arguments (if any).

3.73 Creation/Destruction Markers

3.73.1 Semantics

During the execution of an interaction some Objects and Links are created and s
are destroyed. The creation and destruction of elements can be marked.
3-128 UML V1.3 June 1999

3.73 Creation/Destruction Markers

int
 the

or
use
ystem

or
3.73.2 Notation

An Object or a Link that is created during an interaction has the standard constra
new attached to it. An Object or a Link that is destroyed during an interaction has
standard constraint destroyed attached. These constraints may be used even if the
element has no name. Both constraints may be used together, but the standard
constraint transient may be used in place of new destroyed.

3.73.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. F
example, each kind of lifetime might be shown in a different color. A tool may also
animation to show the creation and destruction of elements and the state of the s
at various times.

3.73.4 Example

See Figure 3-50 on page 3-113.

3.73.5 Mapping

Creation or destruction indicators map either into CreateActions, DestroyActions,
TerminateActions in the corresponding ClassifierRoles. The former two Actions
dispatch the Stimuli that cause the changes. These status indicators are merely
summaries of the total actions.
UML V1.3 June 1999 3-129

3 UML Notation
3-130 UML V1.3 June 1999

3.74 Statechart Diagram

 object
gh
 (e.g.,

rel’s
ce on
oore

g the
s such

r types
nd

onnect
very

achine.

n.

 page
3UML Notation
Part 9 - Statechart Diagrams

A statechart diagram can be used to describe the behavior of a model element such as an
or an interaction. Specifically, it describes possible sequences of states and actions throu
which the element can proceed during its lifetime as a result of reacting to discrete events
signals, operation invocations).

The semantics and notation described in this chapter are substantially those of David Ha
statecharts with modifications to make them object-oriented. His work was a major advan
the traditional flat state machines. Statechart notation also implements aspects of both M
machines and Mealy machines, traditional state machine models.

3.74 Statechart Diagram

3.74.1 Semantics

Statechart diagrams represent the behavior of entities capable of dynamic behavior by
specifying its response to the receipt of event instances. Typically, it is used for describin
behavior of classes, but statecharts may also describe the behavior of other model entitie
as use-cases, actors, subsystems, operations, or methods.

3.74.2 Notation

A statechart diagram is a graph that represents a state machine. States and various othe
of vertices (pseudostates) in the state machine graph are rendered by appropriate state a
pseudostate symbols, while transitions are generally rendered by directed arcs that inter-c
them. States may also contain subdiagrams by physical containment or tiling. Note that e
state machine has a top state which contains all the other elements of the entire state m
The graphical rendering of this top state is optional.

The association between a state machine and its context does not have a special notatio

An example statechart diagram for a simple telephone object is depicted in Figure 3-59 on
3-132.
UML V1.3 June 1999 3-131

3 UML Notation

model
vides

aints

ome

tion
for an
re

a
Figure 3-59 State Diagram

3.74.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be owned by a
element capable of dynamic behavior, such as classifier or a behavioral feature, which pro
the context for that state machine. Different contexts may apply different semantic constr
on the state machine.

3.75 State

3.75.1 Semantics

A state is a condition during the life of an object or an interaction during which it satisfies s
condition, performs some action, or waits for some event. A composite state is a state that, in
contrast to a simple state, has a graphical decomposition. (Composite states and their nota
are described in more detail in Section 3.76.) Conceptually, an object remains in a state
interval of time. However, the semantics allow for modeling “flow-through” states which a
instantaneous, as well as transitions that are not instantaneous.

A state may be used to model an ongoing activity. Such an activity is specified either by
nested state machine or by a computational expression.

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connectInvalid
do/ play message

[incomplete]after (15 sec.)

after (15 sec.)
3-132 UML V1.3 June 1999

3.75 State

nally,
tside of
the
s well

er by

mes
ice in

 if a

the

n
re in

ot be

 is

ion is

 the
ing
3.75.2 Notation

A state is shown as a rectangle with rounded corners (Figure 3-60 on page 3-134). Optio
it may have an attached name tab. The name tab is a rectangle, usually resting on the ou
the top side of a state and it contains the name of that state. It is normally used to keep
name of a composite state that has concurrent regions, but may be used in other cases a
(the Process state in Figure 3-65 on page 3-142 illustrates the use of the name tab).

A state may be optionally subdivided into multiple compartments separated from each oth
a horizontal line. They are as follows:

• Name compartment

This compartment holds the (optional) name of the state, as a string. States without na
are anonymous and are all distinct. It is undesirable to show the same named state tw
the same diagram, as confusion may ensue. Name compartments should not be used
name tab is used and vice versa.

• Internal transitions compartment

This compartment holds a list of internal actions or activities that are performed while
element is in the state. The notation for such each of these list items has the following
general format:

action-label ‘/’ action-expression

The action label identifies the circumstances under which the action specified by the actio
expression will be invoked. The action expression may use any attributes and links that a
the scope of the owning entity. For list items where the action expression is empty, the
backslash separator is optional.

A number of action labels are reserved for various special purposes and, therefore, cann
used as event names. The following are the reserved action labels and their meaning:

• entry

This label identifies an action, specified by the corresponding action expression, which
performed upon entry to the state (entry action)

• exit

This label identifies an action, specified by the corresponding action expression, that is
performed upon exit from the state (exit action)

• do

This label identifies an ongoing activity (“do activity”) that is performed as long as the
modeled element is in the state or until the computation specified by the action express
completed (the latter may result in a completion event being generated).

• include

This label is used to identify a submachine invocation. The action expression contains
name of the submachine that is to be invoked. Submachine states and the correspond
notation are described in Section 3.82, “Submachine States,” on page -147.
UML V1.3 June 1999 3-133

3 UML Notation

ion
o self

l

nt. The
 can be

ils on

 name
string)

iated
le,
e
47.)

tive
sition.

In all other cases, the action label identifies the event that triggers the corresponding act
expression. These events are called internal transitions and are semantically equivalent t
transitions except that the state is not exited or re-entered. This means that the corresponding
exit and entry actions are not performed. The general format for the list item of an interna
transition is:

event-name ‘(’ comma-separated-parameter-list ‘)’ ‘[’ guard-condition‘]’ ‘/’
 action-expression

Each event name may appear more than once per state if the guard conditions are differe
event parameters and the guard conditions are optional. If the event has parameters, they
used in the action expression through the current event variable.

3.75.3 Example

Figure 3-60 State

3.75.4 Mapping

A state symbol maps into a State. See “Composite States” on page 3-135 for further deta
which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the same
map into the same state. However, each state symbol with no name (or an empty name
maps into a distinct anonymous State.

A list item in the internal transition compartment maps into a corresponding Action assoc
with a state. An “entry” list item (i.e., an item with the “entry” label) maps to the “entry” ro
an “exit” list item maps to the “exit” role, and a “do” item maps to the “doActivity” role. (Th
mapping of “include” items is discussed in Section 3.82, “Submachine States,” on page -1

A list item with an event name maps to a Transition associated with the “internal” role rela
to the state. The action expression maps into the ActionSequence and Guard for the Tran
The event name and arguments map into an Event corresponding to the event name and
arguments. The Transition has a trigger Association to the Event.

Typing Password

help / display help

entry / set echo invisible
exit / set echo normal
character / handle character
3-134 UML V1.3 June 1999

3.76 Composite States

o
r type.

itial

te

nds to

ional)
nt that

f the
ach
states.
 a solid
 tab

m

the
t;
sing

he

le, the

sented
3.76 Composite States

3.76.1 Semantics

A composite state is decomposed into two or more concurrent substates (called regions) or into
mutually exclusive disjoint substates. A given state may only be refined in one of these tw
ways. Naturally, any substate of a composite state can also be a composite state of eithe

A newly-created object takes it’s topmost default transition, originating from the topmost in
pseudostate. An object that transitions to its outermost final state is terminated.

Each region of a state may have initial pseudostates and final states. A transition to the
enclosing state represents a transition to the initial pseudostate. A transition to a final sta
represents the completion of activity in the enclosing region. Completion of activity in all
concurrent regions represents completion of activity by the enclosing state and triggers a
completion event on the enclosing state. Completion of the top state of an object correspo
its termination.

3.76.2 Notation

An expansion of a state shows its internal state machine structure. In addition to the (opt
name and internal transition compartments, the state may have an additional compartme
contains a region holding a nested diagram. For convenience and appearance, the text
compartments may be shrunk horizontally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region o
state using dashed lines to divide it into regions. Each region is a concurrent substate. E
region may have an optional name and must contain a nested state diagram with disjoint
The text compartments of the entire state are separated from the concurrent substates by
line. It is also possible to use a tab notation to place the name of a concurrent state. The
notation is more space efficient.

An expansion of a state into disjoint substates is shown by showing a nested state diagra
within the graphic region.

An initial pseudostate is shown as a small solid filled circle. In a top-level state machine,
transition from an initial pseudostate may be labeled with the event that creates the objec
otherwise, it must be unlabeled. If it is unlabeled, it represents any transition to the enclo
state. The initial transition may have an action.

A final state is shown as a circle surrounding a small solid filled circle (a bull’s eye). It
represents the completion of activity in the enclosing state and it triggers a transition on t
enclosing state labeled by the implicit activity completion event (usually displayed as an
unlabeled transition), if such a transition is defined.

In some cases, it is convenient to hide the decomposition of a composite state. For examp
state machine inside a composite state may be very large and may simply not fit in the
graphical space available for the diagram. In that case, the composite state may be repre
by a simple state graphic with a special “composite” icon, usually in the lower right-hand
corner. This icon, consisting of two horizontally placed and connected states, is an optional
UML V1.3 June 1999 3-135

3 UML Notation

rt
n in a

 and
visual cue that the state has a decomposition that is not shown in this particular statecha
diagram (Figure 3-62 on page 136). Instead, the contents of the composite state are show
separate diagram. Note that the “hiding” here is purely a matter of graphical convenience
has no semantic significance in terms of access restrictions.

3.76.3 Examples

Figure 3-61 Sequential Substates

Figure 3-62 Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

HiddenComposite

entry/ start dial tone
exit/ stop dial tone
3-136 UML V1.3 June 1999

3.77 Events

 with

sarily
Figure 3-63 Concurrent Substates

3.76.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into a
SimpleState. If it is tiled by dashed lines into regions, then it maps into a CompositeState
the isConcurrent value true; otherwise, it maps into a CompositeState with the isConcurrent
value false. A region maps into a CompositeState with the isRegion value true and the
isConcurrent value false.

An initial pseudostate symbol map into a Pseudostate of kind initial. A final state symbol maps
to a final state.

3.77 Events

3.77.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an
occurrence that may trigger a state transition. Events may be of several kinds (not neces
mutually exclusive).

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class
UML V1.3 June 1999 3-137

3 UML Notation

s from

and

ance.

nts a

f the

te

. The
 signal.
 the

 the

ctice

mbol.
shown
tion
• A designated condition becoming true (described by a Boolean expression) results in a
change event instance. The event occurs whenever the value of the expression change
false to true. Note that this is different from a guard condition. A guard condition is
evaluated once whenever its event fires. If it is false, then the transition does not occur
the event is lost. R

• The receipt of an explicit signal from one object to another results in a signal event inst
It is denoted by the signature of the event as a trigger on a transition.

• The receipt of a call for an operation implemented as a transition by an object represe
call event instance.

• The passage of a designated period of time after a designated event (often the entry o
current state) or the occurrence of a given date/time is a TimeEvent. .

The event declaration has scope within the package it appears in and may be used in sta
diagrams for classes that have visibility inside the package. An event is not local to a single
class.

3.77.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)

A parameter has the format:

parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class diagram
parameters are specified as attributes. A signal can be specified as a subclass of another
This indicates that an occurrence of the subevent triggers any transition that depends on
event or any of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an expression that
evaluates (at modeling time) to an amount of time, such as “after (5 seconds)” or after (10
seconds since exit from state A).” If no starting point is indicated, then it is the time since
entry to the current state. Other time events can be specified as conditions, such as when (date
= Jan. 1, 2000).

A condition becoming true is shown with the keyword when followed by a Boolean expression.
This may be regarded as a continuous test for the condition until it is true, although in pra
it would only be checked on a change of values.

Signals can be declared on a class diagram with the keyword «signal» on a rectangle sy
These define signal names that may be used to trigger transitions. Their parameters are
in the attribute compartment. They have no operations. They may appear in a generaliza
hierarchy.
3-138 UML V1.3 June 1999

3.77 Events

ven by
ss

licit
e
3.77.3 Example

Figure 3-64 Signal Declaration

3.77.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are gi
the name string and the attribute list of the box. Generalization arrows between signal cla
boxes map into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an imp
reference of the Event with the given name. It is an error if various uses of the same nam
(including any explicit declarations) do not match.

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character
UML V1.3 June 1999 3-139

3 UML Notation

 state
vided

said to
e
on as
 states
n, it is
., not

g
ition
d

 of
vent,

tirely

mber
ls or
hosen

sition
3.78 Simple Transitions

3.78.1 Semantics

A simple transition is a relationship between two states indicating that an object in the first
will enter the second state and perform specific actions when a specified event occurs pro
that certain specified conditions are satisfied. On such a change of state, the transition is
“fire.” The trigger for a transition is the occurrence of the event labeling the transition. Th
event may have parameters, which are accessible by the actions specified on the transiti
well as in the corresponding exit and entry actions associated with the source and target
respectively. Events are processed one at a time. If an event does not trigger any transitio
discarded. If it can trigger more than one transition within the same sequential region (i.e
in different concurrent regions), only one will fire. If these conflicting transitions are of the
same priority, an arbitrary one is selected and triggered.

3.78.2 Notation

A transition is shown as a solid line originating from the source state and terminated by an
arrow on the target state. It may be labeled by a transition string that has the following general
format:

event-signature ‘[’ guard-condition ‘]’ ‘/’ action-expression

The event-signature describes an event with its arguments:

event-name ‘(’ comma-separated-parameter-list ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the triggerin
event and attributes and links of the object that owns the state machine. The guard cond
may also involve tests of concurrent states of the current machine, or explicitly designate
states of some reachable object (for example, “in State1” or “not in State2”). State names may
be fully qualified by the nested states that contain them, yielding pathnames of the form
“State1::State2::State3.” This may be used in case same state name occurs in different
composite state regions of the overall machine.

The action-expression is executed if and when the transition fires. It may be written in terms
operations, attributes, and links of the owning object and the parameters of the triggering e
or any other features visible in it’s scope. The corresponding action must be executed en
before any other actions are considered. This model of execution is referred to as run-to-
completion semantics. The action expression may be an action sequence comprising a nu
of distinct actions including actions that explicitly generate events, such as sending signa
invoking operations. The details of this expression are dependent on the action language c
for the model.

Transition times

Names may be placed on transitions to designate the times at which they fire. See “Tran
Times” on page 3-107.
3-140 UML V1.3 June 1999

3.79 Transitions to and from Concurrent States

ntax of

d its
g

t, a
ssed

uard
d in

und

e bar
ese
do
3.78.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location);
object.highlight ()

The event may be any of the standard event types. Selecting the type depends on the sy
the name (for time events, for example); however, SignalEvents and CallEvents are not
distinguishable by syntax and must be discriminated by their declaration elsewhere.

3.78.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition an
attachments. The arrow connects two state symbols. The Transition has the correspondin
States as its source (the state at the tail) and destination (the state at the head) States in
associations to the Transition.

The event name and parameters map into an Event element, which may be a SignalEven
CallEvent, a TimeExpression (if it has the proper syntax), or a ChangeEvent (if it is expre
as a Boolean expression). The event is attached as a “trigger” role in the association to the
transition.

The guard condition maps into a Guard element attached to the Transition. Note that a g
condition is distinguished graphically from a change event specification by being enclose
brackets.

An action expression maps into an Action attached as an “effect” role relative to the Transition.

3.79 Transitions to and from Concurrent States

A concurrent transition may have multiple source states and target states. It represents a
synchronization and/or a splitting of control into concurrent threads without concurrent
substates.

3.79.1 Semantics

A concurrent transition is enabled when all the source states are occupied. After a compo
transition fires, all its destination states are occupied.

3.79.2 Notation

A concurrent transition includes a short heavy bar (a synchronization bar, which can represent
synchronization, forking, or both). The bar may have one or more arrows from states to th
(these are the source states). The bar may have one or more arrows from the bar to states (th
are the destination states). A transition string may be shown near the bar. Individual arrows
not have their own transition strings.
UML V1.3 June 1999 3-141

3 UML Notation

e a
to a

nitial

within
an be

state.
n.
 the

es.

n a
bar
their
3.79.3 Example

Figure 3-65 Concurrent Transitions

3.79.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork pseudostate. A bar with
multiple transition arrows entering it maps into a join pseudostate. The transitions
corresponding to the incoming and outgoing arrows attach to the pseudostate as if it wer
regular state. If a bar has multiple incoming and multiple outgoing arrows, then it maps in
join connected to a fork pseudostate by a single transition with no attachments.

3.80 Transitions to and from Composite States

3.80.1 Semantics

A transition drawn to the boundary of a composite state is equivalent to a transition to its i
point (or to a complex transition to the initial point of each of its concurrent regions, if it is
concurrent). The entry action is always performed when a state is entered from outside.

A transition from a composite state indicates a transition that applies to each of the states
the state region (at any depth). It is “inherited” by the nested states. Inherited transitions c
masked by the presence of nested transitions with the same trigger.

3.80.2 Notation

A transition drawn to a composite state boundary indicates a transition to the composite
This is equivalent to a transition to the initial pseudostate within the composite state regio
The initial pseudostate must be present. If the state is a concurrent composite state, then
transition indicates a transition to the initial pseudostate of each of its concurrent substat

Transitions may be drawn directly to states within a composite state region at any nesting
depth. All entry actions are performed for any states that are entered on any transition. O
transition within a concurrent composite state, transition arrows from the synchronization
may be drawn to one or more concurrent states. Any other concurrent regions start with
default initial pseudostate.

Process

Setup Cleanup

A1 A2

B2B1
3-142 UML V1.3 June 1999

3.80 Transitions to and from Composite States

te
r exit

ting
y
 be
states

’
may
going
en
 state
istory
it
 at the
ators.

t specific
om an
n as

e
l state.

undary
ld not
sition
 of the
sition

e
A transition drawn from a composite state boundary indicates a transition of the composi
state. If such a transition fires, any nested states are forcibly terminated and perform thei
actions, then the transition actions occur and the new state is established.

Transitions may be drawn directly from states within a composite state region at any nes
depth to outside states. All exit actions are performed for any states that are exited on an
transition. On a transition from within a concurrent composite state, transition arrows may
specified from one or more concurrent states to a synchronization bar; therefore, specific
in the other regions are irrelevant to triggering the transition.

A state region may contain a history state indicator shown as a small circle containing an ‘H.
The history indicator applies to the state region that directly contains it. A history indicator
have any number of incoming transitions from outside states. It may have at most one out
unlabeled transition. This identifies the default “previous state” if the region has never be
entered. If a transition to the history indicator fires, it indicates that the object resumes the
it last had within the composite region. Any necessary entry actions are performed. The h
indicator may also be ‘H*’ for deep history. This indicates that the object resumes the state
last had at any depth within the composite region, rather than being restricted to the state
same level as the history indicator. A region may have both shallow and deep history indic

3.80.3 Presentation options

Stubbed transitions

Nested states may be suppressed. Transitions to nested states are subsumed to the mos
visible enclosing state of the suppressed state. Subsumed transitions that do not come fr
unlabeled final state or go to an unlabeled initial pseudostate may (but need not) be show
coming from or going to stubs. A stub is shown as a small vertical line (bar) drawn inside th
boundary of the enclosing state. It indicates a transition connected to a suppressed interna
Stubs are not used for transitions to initial or from final states.

Note that events should be shown on transitions leading into a state, either to the state bo
or to an internal substate, including a transition to a stubbed state. Normally events shou
be shown on transitions leading from a stubbed state to an external state. Think of a tran
as belonging to its source state. If the source state is suppressed, then so are the details
transition. Note also that a transition from a final state is summarized by an unlabeled tran
from the composite state contour (denoting the implicit event “action complete” for the
corresponding state).

3.80.4 Example

See Figure 3-64 on page 3-139 and Figure 3-65 on page 3-142 for examples of composit
transitions. The following are examples of stubbed transitions and the history indicator.
UML V1.3 June 1999 3-143

3 UML Notation
Figure 3-66 Stubbed Transitions

Figure 3-67 History Indicator

3.80.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the
corresponding States and similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

A C

H

A1

A2

interrupt

resume
3-144 UML V1.3 June 1999

3.81 Factored Transition Paths

t
in the

ver,
 is a
un-to-

r
 a
her

ing in

sible

nd
se

an
to
 small
page

d” of
the

 at the
some
nt is
A stubbed transition does not map into anything in the model. It is a notational elision tha
indicates the presence of transitions to additional states in the model that are not visible
diagram.

3.81 Factored Transition Paths

3.81.1 Semantics

By definition, a transition connects exactly two vertices in the state machine graph. Howe
since some of these vertices may be pseudostates—which are transient in nature—there
need for describing chains of transitions that may be executed in the context of a single r
completion step. Such a transition is known as a compound transition.

As a practical measure, it is often useful to share segments of a compound transition. Fo
example, two or more distinct compound transitions may come together and continue via
common path, sharing its action, and possibly terminating on the same target state. In ot
cases, it may be useful to split a transition into separate mutually exclusive (i.e., non-
concurrent) paths.

Both of these examples of graphical factoring in which some transitions are shared result
simplified diagrams. However, factoring is also useful for modeling dynamically adaptive
behavior. An example of this occurs when a single event may lead to any of a set of pos
target states, but where the final target state is only determined as the result of an action
(calculation) performed after the triggering of the compound transition.

Note that the splitting and joining of paths due to factoring is different from the splitting a
joining of concurrent transitions described in Section 3.79. The sources and targets of the
factored transitions are not concurrent.

3.81.2 Notation

Two or more transitions emanating from different non-concurrent states or pseudostates c
terminate on a common junction point. This allows their respective compound transitions
share the path that emanates from that junction point. A junction point is represented by a
black circle. Alternatively, it may be represented by a diamond shape (see “Decisions” on
3-154).

Two or more guarded transitions emanating from the same junction point represent a static
branch point. Normally, the guards are mutually exclusive. This is equivalent to a set of
individual transitions, one for each path through the tree, whose guard condition is the “an
all of the conditions along the path. Note that the semantics of static branches is that all
outgoing guards are evaluated before any transition is taken.

Two or more guarded transitions emanating from a common dynamic choice point are used to
model dynamic choices. In this case, the guards of the outgoing transitions are evaluated
time the choice point has been reached. The value of these guards may be a function of
calculations performed in the actions of the incoming transition (s). A dynamic choice poi
represented by a a small white circle (reminiscent of a small state icon).
UML V1.3 June 1999 3-145

3 UML Notation

f
ing

occurs,
hus,

 is
at the
e can

3.81.3 Examples

In Figure 3-68 a single junction point is used to merge and split transitions. Regardless o
whether the junction point was reached from state State0 or from state State1, the outgo
paths are the same for both cases.

If the state machine in this example is in state State1 and b is less than 0 when event e1
the outgoing transition will be taken only if one of the three downstream guards is true. T
if a is equal to 6 at that point, no transition will be triggered.

Figure 3-68 Junction points

In the dynamic choice point example in Figure 3-69, the decision on which branch to take
only made after the transition from State1 is taken and the choice point is reached. Note th
action associated with that incoming transition computes a new value for a. This new valu
then be used to determine the outgoing transition to be taken. The use of the predefined
condition[else] is recommended to avoid run-time errors.

Figure 3-69 Dynamic choice points

[a < 0]

State1

State2 State3 State4

e1[b < 0]e2[b < 0]

State0

[a = 5]

[a > 7]

[a < 0]

State1

State2 State3 State4

e1[b < 0]/a := f(m)

[a = 5]

[else]
3-146 UML V1.3 June 1999

3.82 Submachine States

r
ing of
n the

hrough
f the
t

ation

ore

ust be

f the
 cases.
n

he

 state
nd
3.82 Submachine States

3.82.1 Semantics

A submachine state represents the invocation of a state machine defined elsewhere. It is simila
to a macro call in the sense that it represents a (graphical) shorthand that implies embedd
a complex specification within another specification. The submachine must be contained i
same context as the invoking state machine.

In the general case, an invoked state machine can be entered at any of its substates or t
its default (initial) pseudostate. Similarly, it can be exited from any substate or as a result o
invoked state machine reaching its final state or by an “inherited” or “group” transition tha
applies to all substates in the submachine.

The non-default entry and exits are specified through special stub states.

3.82.2 Notation

The submachine state is depicted as a normal state with the appropriate “include” declar
within its internal transitions compartment (see Section 3.75, “State,” on page -132). The
expression following the include reserved word is the name of the invoked submachine.

Optionally, the submachine state may contain one or more entry stub states and one or m
exit stub states. The notation for these is similar to that used for stub ends of stubbed
transitions, except that the ends are labeled. The labels represent the names of the
corresponding substates within the invoked submachine. A pathname may be used if the
substate is not defined at the top level of the invoked submachine. Naturally, this name m
a valid name of a state in the invoked state machine.

If the submachine is entered through its default pseudostate or if it is exited as a result o
completion of the submachine, it is not necessary to use the stub state notation for these
Similarly, a stub state is not required if the exit occurs through an explicit “group” transitio
that emanates from the boundary of the submachine state (implying that it applies to all t
substates of the submachine).

Submachine states invoking the same submachine may occur multiple times in the same
diagram with different entry and exit configurations and with different internal transitions a
exit and entry action specifications in each case.
UML V1.3 June 1999 3-147

3 UML Notation

 (the

ld be
ions.

b1”
ame,
sition
ated
he

ken as
 state.

ept in
e
3.82.3 Example

The following diagram shows a fragment from a statechart diagram in which a submachine
FailureSubmachine) is invoked in a particular way. The actual submachine is presumably
defined elsewhere and is not shown in this diagram. Note that the same submachine cou
invoked elsewhere in the same statechart diagram with different entry and exit configurat

Figure 3-70 Submachine State

In the above example, the transition triggered by event “error1” will terminate on state “su
of the FailureSubmachine state machine. Since the entry point does not contain a path n
this means that “sub1” is defined at the top level of that submachine. In contrast, the tran
triggered by “error2” will terminate on the “sub12” substate of the “sub1”substate (as indic
by the path name), while the “error3” transition implies taking of the default transition of t
FailureSubmachine.

The transition triggered by the event “fixed1” emanates from the “subEnd” substate of the
submachine. Finally, the transition emanating from the edge of the submachine state is ta
a result of the completion event generated when the FailureSubmachine reaches its final

3.82.4 Mapping

A submachine state in a statechart diagram maps directly to a SubmachineState in the
metamodel. The name following the “include” reserved action label represents the state
machine indicated by the “submachine” attribute. Stub states map to the Stub State conc
the metamodel. The label on the diagram corresponds to the pathname represented by th
“referenceState” attribute of the stub state.

Handle Failure

include / FailureSubmachine

sub1 sub1::sub12

subEnd

error2/error1/

error3/

fixed1/
3-148 UML V1.3 June 1999

3.83 Synch States

s
ons
mber

er a
een
3.83 Synch States

3.83.1 Semantics

A synch state is for synchronizing concurrent regions of a state machine. It is used in
conjunction with forks and joins to insure that one region leaves a particular state or state
before another region can enter a particular state or states. The firing of outgoing transiti
from a synch state can be limited by specifying a bound on the difference between the nu
of times outgoing and incoming transitions have fired.

3.83.2 Notation

A synch state is shown as a small circle with the upper bound inside it. The bound is eith
positive integer or a star ('*') for unlimited. Synch states are drawn on the boundary betw
two regions when possible.

3.83.3 Example

Figure 3-71 Synch states

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity
Outside

Install
Walls

**
UML V1.3 June 1999 3-149

3 UML Notation

tate of
ynch
3.83.4 Mapping

A synch state circle maps into a SynchState, contained by the least common containing s
the regions it is synchronizing. The number inside it maps onto the bound attribute of the s
state. A star ('*') inside the synch state circle maps to a value of Unlimited for the bound
attribute.
3-150 UML V1.3 June 1999

3.84 Activity Diagram

ance
s or

the
 are
ivity
r to the
y

ere all

s
3UML Notation
Part 10 - Activity Diagrams

3.84 Activity Diagram

3.84.1 Semantics

An activity graph is a variation of a state machine in which the states represent the perform
of actions or subactivities and the transitions are triggered by the completion of the action
subactivities. It represents a state machine of a procedure itself.

3.84.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most) of
states are action or subactivity states and in which all (or at least most) of the transitions
triggered by completion of the actions or subactivities in the source states. The entire act
diagram is attached (through the model) to a class, such as a use case, or to a package, o
implementation of an operation. The purpose of this diagram is to focus on flows driven b
internal processing (as opposed to external events). Use activity diagrams in situations wh
or most of the events represent the completion of internally-generated actions (that is,
procedural flow of control). Use ordinary state diagrams in situations where asynchronou
events occur.
UML V1.3 June 1999 3-151

3 UML Notation
3.84.3 Example

Figure 3-72 Activity Diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

/coffeePot.turnOn

light goes out
3-152 UML V1.3 June 1999

3.85 Action state

uch
s or

rmal
r a

n the

s are
e

 code.

y are

e
3.84.4 Mapping

An activity diagram maps into an ActivityGraph.

3.85 Action state

3.85.1 Semantics

An action state is a shorthand for a state with an entry action and at least one outgoing
transition involving the implicit event of completing the entry action (there may be several s
transitions if they have guard conditions). Action states should not have internal transition
outgoing transitions based on explicit events, use normal states for this situation. The no
use of an action state is to model a step in the execution of an algorithm (a procedure) o
workflow process.

3.85.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs o
two sides. The action-expression is placed in the symbol. The action expression need not be
unique within the diagram.

Transitions leaving an action state should not include an event signature. Such transition
implicitly triggered by the completion of the action in the state. The transitions may includ
guard conditions and actions.

3.85.3 Presentation options

The action may be described by natural language, pseudocode, or programming language
It may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams; however, the
more commonly used with activity diagrams, which are special cases of state diagrams.

3.85.4 Example

Figure 3-73 Action States

3.85.5 Mapping

An action state symbol maps into an ActionState with the action-expression mapped to th
entry action of the State. There is no exit nor any internal transitions. The State is normally
anonymous.

matrix.invert (tolerance:Real) drive to work
UML V1.3 June 1999 3-153

3 UML Notation

ty
t

ally
ed. A

on in
laced

n

s to a

itions
3.86 Subactivity state

3.86.1 Semantics

A subactivity state invokes an activity graph. When a subactivity state is entered, the activi
graph “nested” in it is executed as any activity graph would be. The subactivity state is no
exited until the final state of the nested graph is reached, or when trigger events occur on
transitions coming out of the subactivity state. Since states in activity graphs do not norm
have trigger events, subactivity states are normally exited when their nested graph is finish
single activity graph may be invoked by many subactivity states.

3.86.2 Notation

A subactivity state is shown in the same way as an action state with the addition of an ic
the lower right corner depicting a nested activity diagram. The name of the subactivity is p
in the symbol. The subactivity need not be unique within the diagram.

This notation is applicable to any UML construct that supports “nested” structure. The ico
must suggest the type of nested structure.

3.86.3 Example

Figure 3-74 Subactivity States

3.86.4 Mapping

A subactivity state symbol maps into a SubactivityState. The name of the subactivity map
submachine link between the SubactivityState and a StateMachine of that name. The
SubactivityState is normally anonymous.

3.87 Decisions

3.87.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when guard
conditions are used to indicate different possible transitions that depend on Boolean cond
of the owning object. UML provides a shorthand for showing decisions and merging their
separate paths back together.

Build Product Fill Order
3-154 UML V1.3 June 1999

3.88 Swimlanes

t

 and
t

ined
s

 called

nt in
s. The

mbol
3.87.2 Notation

A decision may be shown by labeling multiple output transitions of an action with differen
guard conditions.

The icon provided for a decision is the traditional diamond shape, with one incoming arrow
with two or more outgoing arrows, each labeled by a distinct guard condition with no even
trigger. All possible outcomes should appear on one of the outgoing transitions. A predef
guard denoted “else” may be defined for at most one outgoing transition. This transition i
enabled if all the guards labeling the other transitions are false.

The same icon can be used to merge decision branches back together, in which case it is
a merge. A merge has two or more incoming arrows and one outgoing arrow.

Note that a chain of decisions may be part of a complex transition, but only the first segme
such a chain may contain an event trigger label. All segments may have guard expression
transition coming from a merge may not have a trigger label or guard expressions.

3.87.3 Example

Figure 3-75 Decision and merge

3.87.4 Mapping

A decision symbol maps into a Pseudostate of kind junction. Each label on an outgoing arrow
maps into a Guard on the corresponding Transition leaving the Pseudostate. A merge sy
maps also maps into a Pseudostate of kind junction.

3.88 Swimlanes

3.88.1 Semantics

Actions and subactivities may be organized into swimlanes. Swimlanes are used to organize
responsibility for actions and subactivities according to class. They often correspond to
organizational units in a business model.

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authorization

[cost ≥ $50]
UML V1.3 June 1999 3-155

3 UML Notation

r
ight
nes.
3.88.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from
neighboring swimlanes by vertical solid lines on both sides. Each swimlane represents
responsibility for part of the overall activity, and may eventually be implemented by one o
more objects. The relative ordering of the swimlanes has no semantic significance, but m
indicate some affinity. Each action is assigned to one swimlane. Transitions may cross la
There is no significance to the routing of a transition path.

3.88.3 Example

Figure 3-76 Swimlanes in Activity Diagram

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order
3-156 UML V1.3 June 1999

3.89 Action-Object Flow Relationships

sent
 are

ng a

ation.
mlane

shed
m an
action

ply a

ties. It

am.
us

rackets
3.88.4 Mapping

A swimlane maps into a Partition of the States in the ActivityGraph. A state symbol in a
swimlane causes the corresponding State to belong to the corresponding Partition.

3.89 Action-Object Flow Relationships

3.89.1 Semantics

Actions operate by and on objects. These objects either have primary responsibility for
initiating an action, or are used or determined by the action. Actions usually specify calls
between the object owning the activity graph, which initiates actions, and the objects that
the targets of the actions.

3.89.2 Notation

Object responsible for an action

In sequence diagrams, the object responsible for performing an action is shown by drawi
lifeline and placing actions on lifelines. See “Sequence Diagram” on page 3-98. Activity
diagrams do not show the lifeline, but each action specifies which object performs its oper
These objects may also be related to the swimlane in some way. The actions within a swi
can all be handled by the same object or by multiple objects.

Object flow

Objects that are input to or output from an action may be shown as object symbols. A da
arrow is drawn from an action state to an output object, and a dashed arrow is drawn fro
input object to an action state. The same object may be (and usually is) the output of one
and the input of one or more subsequent actions.

The control flow (solid) arrows must be omitted when the object flow (dashed) arrows sup
redundant constraint. In other words, when an state produces an output that is input to a
subsequent state, that object flow relationship implies a control constraint.

Object in state

Frequently the same object is manipulated by a number of successive actions or subactivi
is possible to show one object with arrows to and from all of the relevant actions and
subactivities, but for greater clarity, the object may be displayed multiple times on a diagr
Each appearance denotes a different point during the object’s life. To distinguish the vario
appearances of the same object, the state of the object at each point may be placed in b
and appended to the name of the object (for example, PurchaseOrder[approved]). This
notation may also be used in collaboration and sequence diagrams.
UML V1.3 June 1999 3-157

3 UML Notation

tions
he
3.89.3 Example

Figure 3-77 Actions and Object Flow

3.89.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing Transi
correspond to the incoming and outgoing arrows. The Transitions have no attachments. T
class name and (optional) state name of the object flow symbol map into a Class or a
ClassifierInState corresponding to the name(s). Solid and dashed arrows both map to
transitions.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]
3-158 UML V1.3 June 1999

3.90 Control Icons

, but

with a
mbol.

ashed
der of

with a

gon
e. A
 the
3.90 Control Icons

The following icons provide explicit symbols for certain kinds of information that can be
specified on transitions. These icons are not necessary for constructing activity diagrams
many users prefer the added impact that they provide.

3.90.1 Notation

Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle
triangular notch in its side (either side). The signature of the signal is shown inside the sy
A unlabeled transition arrow is drawn from the previous action state to the pentagon and
another unlabeled transition arrow is drawn from the pentagon to the next action state. A d
arrow may be drawn from an object symbol to the notch on the pentagon to show the sen
the signal; this is optional.

Signal sending

The sending of a signal may be shown as a convex pentagon that looks like a rectangle
triangular point on one side (either side). The signature of the signal is shown inside the
symbol. A unlabeled transition arrow is drawn from the previous action state to the penta
and another unlabeled transition arrow is drawn from the pentagon to the next action stat
dashed arrow may be drawn from the point on the pentagon to an object symbol to show
receiver of the signal, this is optional.
UML V1.3 June 1999 3-159

3 UML Notation

ome
ly is
laces

t of
tion. If
 a
n

al
e.

ial

 the
posite
rrable
ble
Figure 3-78 Symbols for Signal Receipt and Sending

Deferred events

A frequent situation is when an event that occurs must be “deferred” for later use while s
other action or subactivity is underway. (Normally an event that is not handled immediate
lost.) This may be thought of as having an internal transition that handles the event and p
it on an internal queue until it is needed or until it is discarded. Each state specifies a se
events that are deferred if they occur during the state and are not used to trigger a transi
an event is not included in the set of deferrable events for a state, and it does not trigger
transition, then it is discarded from the queue even if it has already occurred. If a transitio
depends on an event, the transition fires immediately if the event is already on the intern
queue. If several transitions are possible, the leading event in the queue takes precedenc

A deferrable event is shown by listing it within the state followed by a slash and the spec
operation defer. If the event occurs, it is saved and it recurs when the object transitions to
another state, where it may be deferred again. When the object reaches a state in which
event is not deferred, it must be accepted or lost. The indication may be placed on a com
state or its equivalents, submachine and subactivity states, in which case it remains defe
throughout the composite state. A contained transition may still be triggered by a deferra
event, whereupon it is removed from the queue.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot
3-160 UML V1.3 June 1999

3.90 Control Icons

tible for
 state
e the
ss of

fied
e.

the

It is not necessary to defer events on action states, because these states are not interrup
event processing. In this case, both deferred and undeferred events that occur during the
are deferred until the state is completed. This means that the timing of the transition will b
same regardless of the relative order of the event and the state completion, and regardle
whether events are deferred.

Figure 3-79 Deferred Event

3.90.2 Mapping

A signal receipt symbol maps into a state with no actions or internal transitions. Its speci
event maps to a trigger event on the outgoing transition between it and the following stat

A signal send symbol maps into a SendAction on the incoming transition between it and
previous state.

A deferred event attached to a state maps into a deferredEvent association from the State to the
Event.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer
UML V1.3 June 1999 3-161

3 UML Notation

e
g are
n.

 more
y a
each

ame
lso

, the
3.91 Synch States

The SynchState notation may be omitted in Activity Diagrams when a SynchState has on
incoming and one outgoing transition, and an unlimited bound. The semantics and mappin
the same as if the synch state circles were included, as defined for state machine notatio

Figure 3-80 Synchronizing parallel activities

3.92 Dynamic Invocation

3.92.1 Semantics

The actions of an action state or the activity graph of a subactivity state may be executed
than once concurrently. The number of concurrent invocations is determined at runtime b
concurrency expression, which evaluates to a set of argument lists, one argument list for
invocation.

3.92.2 Notation

If the dynamic concurrency of an action or subactivity state is not always exactly one, its
multiplicity is shown in the upper right corner of the state. Otherwise, nothing is shown.

3.92.3 Mapping

A multiplicity string in the upper right corner of an action or subactivity state maps to the s
value in the dynamicMultiplicity attribute of the state. The presence of a multiplicity string a
maps to a value of true for the isDynamic attribute of the state. If no multiplicity is present
value of the isDynamic attribute is false.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity

Outside

Install
Walls
3-162 UML V1.3 June 1999

3.93 Conditional Forks

gion
e
ition
3.93 Conditional Forks

In Activity Diagrams, transitions outgoing from forks may have guards. This means the re
initiated by a fork transition might not start, and therefore is not required to complete at th
corresponding join. The usual notation and mapping for guards may be used on the trans
outgoing from a fork.
UML V1.3 June 1999 3-163

3 UML Notation
3-164 UML V1.3 June 1999

3.94 Component Diagram

e and
 the

e
“code”
the

ource
,

me

g

ashed
on in

 may
s from
3UML Notation
Part 11 - Implementation Diagrams

Implementation diagrams show aspects of implementation, including source code structur
run-time implementation structure. They come in two forms: 1) component diagrams show
structure of the code itself and 2) deployment diagrams show the structure of the run-tim
system. They can also be applied in a broader sense to business modeling in which the
components are the business procedures and documents and the “run-time structure” is
organization units and resources (human and other) of the business.

3.94 Component Diagram

3.94.1 Semantics

A component diagram shows the dependencies among software components, including s
code components, binary code components, and executable components. For a business
“software” components are taken in the broad sense to include business procedures and
documents. A software module may be represented as a component stereotype. Some
components exist at compile time, some exist at link time, some exist at run time, and so
exist at more than one time. A compile-only component is one that is only meaningful at
compile time. The run-time component in this case would be an executable program.

A component diagram has only a type form, not an instance form. To show component
instances, use a deployment diagram (possibly a degenerate one without nodes).

3.94.2 Notation

A component diagram is a graph of components connected by dependency relationships.
Components may also be connected to components by physical containment representin
composition relationships.

A diagram containing component types and node types may be used to show static
dependencies, such as compiler dependencies between programs, which are shown as d
arrows (dependencies) from a client component to a supplier component that it depends
some way. The kinds of dependencies are implementation-specific and may be shown as
stereotypes of the dependencies.

As a classifier, a component may have operations and may realize interfaces. The diagram
show these interfaces and calling dependencies among components, using dashed arrow
components to interfaces on other components.
UML V1.3 June 1999 3-165

3 UML Notation

tware
present

be

nal
rs and
3.94.3 Example

Figure 3-81 Component Diagram

3.94.4 Mapping

A component diagram maps to a static model whose elements include Components.

3.95 Deployment Diagram

3.95.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the sof
components, processes, and objects that live on them. Software component instances re
run-time manifestations of code units. Components that do not exist as run-time entities
(because they have been compiled away) do not appear on these diagrams, they should
shown on component diagrams.

For business modeling, the run-time processing elements include workers and organizatio
units, and the software components include procedures and documents used by the worke
organizational units.

Planner

Scheduler

GUI

Reservations

Update
3-166 UML V1.3 June 1999

3.95 Deployment Diagram

des
 node.
t.
ly
onent.

on

de

 of the
node
3.95.2 Notation

A deployment diagram is a graph of nodes connected by communication associations. No
may contain component instances. This indicates that the component lives or runs on the
Components may contain objects, this indicates that the object resides on the componen
Components are connected to other components by dashed-arrow dependencies (possib
through interfaces). This indicates that one component uses the services of another comp
A stereotype may be used to indicate the precise dependency, if needed.

The deployment type diagram may also be used to show which components may reside
which nodes, by using dashed arrows with the stereotype «support» from the component
symbol to the node symbol or by graphically nesting the component symbol within the no
symbol.

Migration of component instances from node instance to node instance or objects from
component instance to component instance may be shown using the «become» stereotype
dependency relationship. In this case the component instance or object is resident on its
instance or component instance only part of the entire time.

Note that a process is just a special kind of object (see Active Object).
UML V1.3 June 1999 3-167

3 UML Notation

ast a
so
e and as
 reside
3.95.3 Example

Figure 3-82 Nodes

3.95.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not
particularly distinguished in the model.

3.96 Node

3.96.1 Semantics

A node is a physical object that represents a processing resource, generally, having at le
memory and often processing capability as well. Nodes include computing devices but al
human resources or mechanical processing resources. Nodes may be represented as typ
instances. Run time computational instances, both objects and component instances, may
on node instances.

AdminServer:HostMachine

Joe’sMachine:PC

:Scheduler reservations

:Planner

«database»
meetingsDB
3-168 UML V1.3 June 1999

3.96 Node

as a

tring in

node
.

ort a
he

pe to

rk).

ode to
3.96.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube. A node type h
type name:

node-type

A node instance has a name and a type name. The node may have an underlined name s
it or below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of a
it is. Either or both elements are optional; if the node-type is omitted, then so is the colon

Dashed arrows with the keyword <<support>> show the capability of a node type to supp
component type. Alternatively, this may be shown by nesting component symbols inside t
node symbol.

Component instances and objects may be contained within node instance symbols. This
indicates that the items reside on the node instances.

Nodes may be connected by associations to other nodes. An association between nodes
indicates a communication path between the nodes. The association may have a stereoty
indicate the nature of the communication path (for example, the kind of channel or netwo

3.96.3 Example

This example shows two nodes containing a component (cluster) that migrates from one n
another and a component (database) that remains in place.
UML V1.3 June 1999 3-169

3 UML Notation

 a
stance

ng
., in a
un-time
ce
 that
Figure 3-83 Use of Nodes to Hold Components

3.96.4 Mapping

A node maps to a Node.

A «support» arrow or the nesting of a component symbol within a node symbol maps into
residence metalink between the Component and the Node. The nesting of a component-in
symbol within a node-instance symbol maps to a residence metalink between the
ComponentInstance and the NodeInstance.

3.97 Component

3.97.1 Semantics

A component type represents a distributable piece of implementation of a system, includi
software code (source, binary, or executable) but also including business documents, etc
human system. Components may be used to show dependencies, such as compiler and r
dependencies or information dependencies in a human organization. A component instan
represents a run-time implementation unit and may be used to show implementation units
have identity at run time, including their location on nodes.

Node1

Node2

«cluster»

x y

«cluster»

x y

«become»

«database»

w z
3-170 UML V1.3 June 1999

3.97 Component

A

may be
ith

n.

urce,
run-

wn as
 by a
rship.

the
n

ibility
of the
e
utable
code
3.97.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its side.
component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type
shown as an underlined string either within the component symbol or above or below it, w
the syntax:

component-name ‘:’ component-type

Either or both elements are optional. If the component-type is omitted, then so is the colo

A property may be used to indicate the life-cycle stage that the component describes (so
binary, executable, or more than one of those). Components (including programs, DLLs,
time linkable images, etc.) may be located on nodes.

Objects that reside on a component instance (that is, which are implemented by it) are sho
nested inside the component instance symbol. By analogy, classes that are implemented
component may be shown as nested within it; this indicates implementation and not owne

Elements that reside in (i.e., are implemented by) a component are shown nested inside
component symbol. The visibility of a resident element to other components may be show
using the same notation as for the visibility of the contents of a package (prepending a vis
symbol to the name of the package). The meaning of the visibility depends on the nature
component. For a source-language component (such as program text), it would control th
accessibility of source-language constructs. For a run-time code component (such as exec
code), it would control the ability of code in other components to call or otherwise access
in the component.
UML V1.3 June 1999 3-171

3 UML Notation

ects at

mbol

sition
l
3.97.3 Example

The example shows a component with interfaces and also a component that contains obj
run time.

Figure 3-84 Components

3.97.4 Mapping

A component symbol maps to a Component.

The graphical nesting of an element (other than a component symbol) in a component sy
maps to an ElementResidence metalink between the ModelElement and the Component.
Graphical nesting of a component symbol in another component symbol maps to a compo
association. The graphical nesting of an instance symbol in a component instance symbo
mapsto a residence metalink between the Instance and the ComponentInstance.

Interface circles attached to the component symbol by solid lines map into supports
Dependencies to Interfaces.

Dictionary Spell-check

Synonyms

mymailer: Mailer

+Mailbox
+RoutingList

-MailQueue
3-172 UML V1.3 June 1999

3UML Notation

Index

Page numbers in italics indicate figures.
() See parentheses
{ } See braces
[] See square brackets
< > See angle brackets
« » See guillemets
: See colon
:: See double colon
. See dot
.. See double dot
. . . See ellipsis
+ See plus sign
– See minus sign
* See star
/ See slash
See pound sign
= See equal sign
-> See right arrow

A

abstract36
abstract class 37
abstract operation 44
access18, 56, 57, 84
accessing a package 56
action expression 140
action state 153, 153
action-object flow relationships 157
activation 103, 104
active object 122, 123
activity diagram 151, 152, 156, 158
activity graph 151
activity state 153, 154, 158
actor 90, 92, 93
actor relationship 94, 94
addOnly (keyword) 67

adornment68
on association 62
order 67

after (keyword) 138
aggregation 66
angle bracket

for binding argument 52
argument list 127
arrow

dashed
for constraint 28
for dependency 83
for extend 93
for flow relationship 59
for include 93
for instance of 87
for object flow 157
for realization 47
for return 106

solid
for call 105
for generalization 80
for message 105
for navigation 67
for sending signal 105
for transition 140

association 61, 64
association (keyword) 78
association class 62, 71, 72
association end 62, 65, 68
association name 62, 64
association role 109, 119
attribute 36, 37, 39, 40

in object 58
UML V1.3 June 1999 3-173

3 UML Notation
B

bar
for stub state 147
for stubbed transition 143
for synchronization, fork, join 141

become (keyword) 59
behavior

of operation as note 44
binary association 61
bind (keyword) 84
binding 51, 51
boldface

for class name 35
for compartment name 38
for special list element 35

Boolean property 30
bound element51, 51
braces

for constraint 27, 28
for property string 29, 37, 40

branch 100, 152, 154, 155
branch point 145
bull’s eye

for final state 135

C

call 102
call event 138
chain of transitions 145
changeability 67
circle

bull’s eye
for final state 135

filled
for initial state 135

for history state 143
for interface 48
for junction 145
for synch state 149

class 34, 36
declared in another class 75

class diagram 33
class in state 58
class scope36

attribute 41
operation 43

classifier 34
classifier role 109, 119
collaboration 109, 111, 116

specialization115
collaboration diagram 109, 111, 113, 113, 114
collaboration role 118
collaboration use115
colon

for return type 43
for sequence expression 125
for type 40, 43, 50, 55, 58, 66, 75, 119, 169, 171

comment 27, 28
communication association 92, 94
compartment 37

name 38, 39
special 35

complete (keyword) 80
complex transition 141, 142
component166, 170, 172

on node 170
component diagram 165, 166
composite object 60, 61
composite state 135, 149
composition 60, 61, 74, 77
concurrency

of operation 44
concurrent lifelines 103
concurrent substate 135
concurrent substates137
concurrent thread123
concurrent transition142
condition event 138
conditional fork 163
conditional, See branch
constant

enumeration 54
constraint 27, 28, 87

as list element 27
constraint language 27
context 111
control flow icon 124
control flow type 128
control icons 159
copy (keyword) 59
creation 100, 103, 112, 128
cross

for destruction 103
cube

for node 169

D

decision, See branch
decomposition indicator icon136
defer (keyword) 160
deferred event 160, 161
dependency 83, 85

package85
subsystem 21

deployment diagram 166, 168
derivation 84
derive (keyword) 84
derived element 86, 87
design pattern 114
destination state 141
destroyed (keyword) 112
destruction100, 103, 112, 128
3–174 UML V1.3 June 1999

diamond
filled

for composition 74
for aggregation 66
for branch or merge 155
for merge 145
for n-ary association 73

discriminator 80, 82
disjoint (keyword) 80
disjoint generalization82
disjoint substate 135
do activity 133
dog-eared rectangle

for note 14
dot

for navigation 13
for sequence expression 125

double colon
for pathname 35, 55

double dot
for integer range 69

dynamic choice point 145, 146
dynamic concurrency 162

E

elapsed-time event 138
element property 29
ellipse

dashed
for collaboration 115

for use case 91
ellipsis

for generalization 80, 83
for missing element 37

else (keyword) 146
entry action 133
entry stub state 147
enumeration 54
enumeration literal 54
equal sign

for attribute value 58
for default value 43, 50
for initial value 40
for tagged value 30

event 137
event signature 140
examples section 5
exit action 133
exit stub state 147
expression 12
extend 92, 93
extensibility mechanism 29, 31
extension mechanisms 27
extension point 91
extension points compartment 91

F

facade (stereotype) 17

factored transition path 145
feature 37
final state 135
flow relationship 59
focus of control100, 102, 104
font usage 9
fork of control 141
framework (stereotype) 17
frozen (keyword) 41, 67

G

generalization 79, 81, 82
association 80
constraints on 80
use case 92

global (keyword) 79
graphic constructs 7
graphic marker 31
group property 38
guard condition 140
guillemets

for keyword 12
for stereotype 31, 37

H

hidden element 37
history indicator144
history state 143
hyperlink 8

I

icon
for stereotype 31, 32, 37

icons 7
implementation class47

and type 46
implementation diagram 165
import 18, 56, 84
imported element 17
importing a package 56
include 93, 133

a use case 92
include (keyword) 147
incomplete (keyword) 80
incomplete generalization82
initial state 135
initial value

of attribute 41
input event icon 159
instance 15, 87

of classifier 87
instance level collaboration 112, 114
instantiable subsystem 20
interaction 110, 117
interaction diagram 97, 109
interface 22, 23, 48, 49

on subsystem 21
UML V1.3 June 1999 3–175

3 UML Notation
interface specifier 66
internal transition compartment 133
invisible hyperlink 8
italics

for abstract class 37
for abstract operation 44

iteration indicator 126

J

join of control 141
junction 145
junction point 146

K

keyword 12

L

label 11
lifeline 98, 99, 100, 103
line 62

dashed
for association class 71
for lifeline 103

solid
for actor-use case 93
for association 62
for association class 71
for communication association 94

link 78, 79, 113
list compartment 37, 39
literal

of enumeration type 54
local (keyword) 79

M

many 69
mapping section 6
merge 155
message99, 105, 113, 124
message label 125
message name 126
Message Sequence Chart notation 98
metaclass 53
method 45
minus sign

for private visibility 40
model 24, 25
model management 17
model organization 17
model tree25
multiobject 121, 122

multiplicity 68
of association68
of association end 65
of attribute 41
of qualified association 70
on dynamic concurrency 162

N

name 10
name compartment 36, 37, 133
named compartment 38, 39
n-ary association 73
navigability 66
navigation arrow 67
nested state 135
nesting

for composition 75, 77
new (keyword) 112
node 168, 168, 170
notation section 5
note 14, 28

O

object 58, 60, 99, 100, 118, 157
lifeline 103
playing role 119

object diagram 34
object flow 157, 158
object in state 157
Object Message Sequence Chart notation 98
object name syntax 120
object role 113
OCL 27
OCL expression 13
operation36, 37, 39, 42, 45
ordered (keyword) 65
ordering 65
output event icon 159
overlapping (keyword) 80, 82

P

package 17, 18, 57
package tree19
parameter (keyword) 78
parameter list 43
parameterized class 49
parentheses

for argument list 13
for parameter list 43, 134, 140

participation (in a use case) 92, 94
path 8, 55

for association 62
path (symbol) 7, 8
pathname 55, 56
pattern 114, 115
3–176 UML V1.3 June 1999

pentagon
for signal receipt 159
for signal sending 159

plus sign
for containment tree 17
for public visibility 40

pound sign
for protected visibility 40

powertype 55
predecessor 103, 125
presentation options 5, 8
private (keyword) 40
procedural sequence diagram 102
pronged rectangle

for component 171
property 29
property string 30, 38
protected (keyword) 40
public (keyword) 40

Q

qualified association71
qualifier 66, 70, 71
query 43

R

range 69
realization 22, 23, 49, 116

of interface by classifier 48
realization element 20, 23
realization relationship 47
rectangle

dashed
for template parameters50

dog-eared
for note 14

pronged
for component 171

rounded ends
for action state 153
for state 133
for subactivity state 154

solid
for active class 122
for association class 71
for class 34
for object 58
for qualifier 70

stacked
for multiobject 121

tabbed
for package 17

thin
for activation lifeline 104

recurrence 126
recursion100
reference to another package 35
refine (keyword) 84

refinement 84
return type expression 43
return value 126
right arrow

for special operation 13
role 15
role name syntax 120
rolename64, 66

S

self (keyword) 79
semantics section 5
sequence diagram 97, 98, 99, 100, 101
sequence expression 125
sequence number 111, 113, 125
sequential substate 135, 136
signal 138

declaration 138, 139
signal receipt icon 159, 160
signal sending icon 159, 160
signature 126
simple transition 140
slash

for action expression 133, 140
for derived element 86
for predecessor 125
for role 119

sorted (keyword) 65
source state 141
specification element 20, 22, 23
specification level collaboration 112, 113
square brackets

for attribute multiplicity 40, 41
for condition clause 126
for guard condition 134, 140
for selection 13
for state 58, 157

star
for iteration indicator 126
for multiplicity 69
for synchronization bound 149

state 132, 134
composite 149
of object 58

state diagram132
statechart diagram 131
static structure diagrams33
stereotype 30, 32, 54

as list element39
class 36
object 58

stick arrowhead
for control flow 105

stick man figure
for use case 92

stimulus 105, 124
string 7, 9, 11
stub (stereotype) 17
stub state 147
UML V1.3 June 1999 3–177

3 UML Notation
stubbed transition 143, 144
style guidelines 5
subactivity state 154, 154
submachine invocation 133
submachine state 147, 148
substate 135
subsystem 19, 20, 21, 22, 23

tree 25
support (keyword) 169
suppressed element 37
swimlane 155, 156
synch state 149, 149, 162, 162
synchronization 149
synchronization bar 141, 152
system boundary 89
systemModel (stereotype) 24, 25

T

tabbed rectangle
for package 17

tagged value 29
taxonomic relationship 79
template 49, 51
tiling (a state) 135
time dimension 98
time event 138
time expression 107, 140
time interval 98, 99
timing constraint 98, 99, 107
tools, interactive 8
topLevel (stereotype) 17
trace (keyword) 84
transient (keyword) 112
transition 140

chain 145
complex 141, 142
constraint 140
name 107
simple 140
string 140
stubbed 143
time 107
to composite state 142

triangle
for generalization 80
for realization 47

two-dimensional symbols 7
type 47

and implementation class 46
type expression 41
type-instance correspondence 15

U

underlining
for class scope 41, 43
for instances 15
for object 58, 119

unlimited multiplicity 69
unordered (keyword) 65
usage dependency49, 84
use (keyword)49, 84
use case90, 91, 93
use case diagram 89, 90
use case relationship 92, 93
utility (keyword) 53, 53

V

visibility
of association 67
of attribute 40
of operation 43
of package element 17

W

when (keyword) 138

X

X
for destruction 103

xor association 63, 64
3–178 UML V1.3 June 1999

UML Standard Profiles 4
This chapter includes the UML Profile for Software Development Processes and UML
Profile for Business Modeling.

 Contents

Part 1 - UML Profile for Software Development Processes 4-3
4.1 Overview 4-3
4.2 Introduction 4-3
4.3 Summary of Profile 4-3
4.4 Stereotypes and Notation 4-5
4.5 Well-Formedness Rules 4-8

Part 2 - UML Profile for Business Modeling 4-9
4.6 Introduction 4-9
4.7 Summary of Profile 4-9
4.8 Stereotypes and Notation 4-10
4.9 Well-Formedness Rules 4-13
UML V1.3 June 1999 4-1

4 UML Standard Profiles
4-2 UML V1.3 June 1999

4.1 Overview

a last
d,
end

n
,
ts.
r

es,

ined

s.

pply
4UML Standard Profiles
Part 1 - UML Profile for Software Development Processes

4.1 Overview

UML is broadly applicable without extension, so extensions should be considered only as
resort. Extensions will not be universally understood, supported, and agreed upon. Instea
UML profiles provide a standard way to use UML in a particular area without having to ext
or modify UML.

A UML Profile is a predefined set of Stereotypes, TaggedValues, Constraints, and notatio
icons that collectively specialize and tailor the UML for a specific domain or process (e.g.
Unified Process profile). A profile does not extend UML by adding any new basic concep
Instead, it provides conventions for applying and specializing standard UML to a particula
environment or domain.

User-defined profiles of the UML are enabled through the use of stereotypes, tagged valu
and constraints. Two profiles are defined currently: 1) Unified Process and 2) Business
Modeling.

4.2 Introduction

This section defines the UML Profile for the Unified Process for software engineering, def
in terms of the UML’s extensibility mechanisms, namely Stereotypes, TaggedValues, and
Constraints.

See the UML Semantics chapter for a full description of the UML extensibility mechanism

This chapter is not meant to be a complete definition of the Unified Process and how to a
it, but it serves the purpose of defining this profile, including its icons.

4.3 Summary of Profile

Table Table 4-1 lists the stereotypes defined by this profile.
UML V1.3 June 1999 4-3

4 UML Standard Profiles

 with
4.3.1 TaggedValues

Currently, this profile does not introduce any new TaggedValues.

4.3.2 Constraints

Currently, this profile does not introduce any new Constraints, other than those associated
the well-formedness semantics of the stereotypes introduced.

4.3.3 Prerequisite Profiles

This profile requires no other profiles to the UML for its definition.

Table 4-1 Stereotypes

Metamodel Class Stereotype Name

Model use-case model

Model analysis model

Model design model

Model implementation model

Package use-case system

Package analysis system

Subsystem design system

Subsystem implementation system

Package analysis package

Subsystem design subsystem

Subsystem implementation subsystem

Package use-case package

Package analysis service package

Subsystem design service subsystem

Class boundary

Class entity

Class control

Association communicate

Association subscribe

Collaboration use-case realization
4-4 UML V1.3 June 1999

4.4 Stereotypes and Notation

.
akes

 ways

ges

 not

es,
trol),

ary,

 and/or

.

4.4 Stereotypes and Notation

4.4.1 Model, Package, and Subsystem Stereotypes

A system modeled by the Unified Process comprises several different, but related models
These models are characterized by the lifecycle stage that they represent. Each model m
use of one specific stereotype. The different models are:

• Use Case

• Analysis

• Design

• Implementation

Use Case

A Use Case Model specifies the services a system provides to its users, i.e. the different
of using the system.

A Use Case System is a top-level package. A use case system contains use case packa
and/or use cases and relationships.

A Use Case Package is a package containing use cases and relationships. A use case is
partitioned over several use case packages.

Analysis

An Analysis Model is a model whose top-level package is an analysis system.

An Analysis System is a top-level package. An analysis system contains analysis packag
and/or analysis service packages, and/or analysis classes (i.e., entity, boundary, and con
and relationships.

An Analysis Package is a package containing other analysis packages, analysis service
packages, analysis classes (i.e., entity, boundary, and control), and relationships.

An Analysis Service Package is a package containing analysis classes (i.e., entity, bound
and control) and relationships.

Design

A Design Model is a model whose top-level package is a design system.

A Design System is a top-level subsystem. A design system contains design subsystems,
design service subsystems, and/or design classes, and relationships.

A Design Subsystem is a subsystem containing other design subsystems, design service
subsystems, design classes, and relationships.

A Design Service Subsystem is a subsystem containing design classes and relationships
UML V1.3 June 1999 4-5

4 UML Standard Profiles

m.

d/or

 icon

these
Implementation

An Implementation Model is a model whose top-level package is an implementation syste

An Implementation System is a top-level subsystem. An implementation system contains
implementation subsystems, and/or components, and relationships.

An Implementation Subsystem is a subsystem containing implementation subsystems, an
components, and relationships.

Notation

Package, subsystem, and model stereotypes are indicated with stereotype keywords in
guillemets («stereotype name»). There are no special icons for these stereotypes, but the
for a model or a subsystem may be used in the upper right of the package symbol in
conjunction with the stereotype keyword for stereotypes of the corresponding kind. Use of
icons is not mandatory, because the stereotype keyword is unambiguous.

Figure 4-1 Packages in the Unified Process

«use case system»

O rde ring

Ch eck Statu s

Es tab lis h
Cred it

F ill Ord er

Place Ord e r

Cu s to mer

Sa les pe rs o n

Sh ip p in g
Cle rk

Su p erv is o r
4-6 UML V1.3 June 1999

4.4 Stereotypes and Notation

own.
s any

oes

he

th the
4.4.2 Class Stereotypes

Analysis classes come in the following three kinds: 1) entity, 2) control, and 3) boundary.
Design classes are not by default stereotyped in the Unified Process.

Entity

An Entity is a class that is passive; that is, its objects do not initiate interactions on their
An entity object may participate in many different use case realizations and usually outlive
single interaction.

Control

A Control is a class, whose objects control interactions between collections of objects. A
control class usually has behavior specific for one use case and a control object usually d
not outlive the use case realizations in which it participates.

Boundary

A Boundary is a class that lies on the periphery of a system, but within it. It interacts with
actors outside the system as well as objects of all three kinds of analysis classes within t
system.

Notation

Class stereotypes can be shown with keywords in guillemets. They can also be shown wi
following special icons.

Figure 4-2 Class Stereotypes

4.4.3 Association Stereotypes

The following are special Unified Process associations between classes.

PenT racker
PenT racker
« co n tro l»

Orde rEn t ry
Orde rEn t ry
« b o u nd ary »

BankA ccou n t
BankA ccou n t

« en tity»
UML V1.3 June 1999 4-7

4 UML Standard Profiles

nds
 be used
tion
e

ed the
ass
he

mitted,

nts

4-2
Communicate

Communicate is an association between actors and use cases denoting that the actor se
messages to the use case and/or the use case sends messages to the actor. It may also
between boundary, control, and entity, and between actor and boundary. The communica
may be one-way or two-way navigation. The direction of communication is indicated by th
navigability of the association.

Subscribe

A subscribe association between two classes states that objects of the source class (call
subscriber) will be notified when a particular event has occured in objects of the target cl
(called the publisher). The association includes a specification of a set of event defining t
events that causes the subscriber to be notified.

Notation

Association stereotypes are indicated by keywords in guillemets. There are no special
stereotype icons. The stereotype «communicate» on actor-use case associations may be o
since it is the only kind of relationships between actors and use cases.

4.5 Well-Formedness Rules

Stereotyped model elements are subject to certain constraints, in addition to the constrai
imposed on all elements of their kind.

4.5.1 Generalization

All the modeling elements in a generalization must be of the same stereotype.

4.5.2 Association

Apart from standard UML combinations, the combinations of stereotypes shown in Table
may also be used.

Table 4-2 Valid Association Stereotype Combinations

 To:
From:

actor boundary entity control

actor communicate

boundary communicate communicate communicate
subscribe

communicate

entity communicate
subscribe

control communicate communicate
subscribe

communicate
4-8 UML V1.3 June 1999

4.6 Introduction

e-case

ics

ness
 Note

ns.

ow to
4.5.3 Model, Package, and Subsystem Containment

A model being sterotyped use case, analysis, design, or implementation may not contain
elements that are stereotyped with one of the other three stereotypes. For example, a us
model may not contain analysis subsystems.

Part 2 - UML Profile for Business Modeling

4.6 Introduction

The UML Profile for Business Modeling is defined in terms of the UML’s extensibility
mechanisms, namely Stereotypes, TaggedValues, and Constraints. See the UML Semant
chapter for a full description of the UML extensibility mechanisms.

This section describes stereotypes that can be used to tailor the use of UML for business
modeling. All of the UML concepts can be used for business modeling, but providing busi
stereotypes for some common situations provides a common terminology for this domain.
that UML can be used to model different kinds of systems (software systems, hardware
systems, and real-world organizations). Business modeling models real-world organizatio

This section is not meant to be a complete definition of business modeling concepts and h
apply them, but it serves the purpose of defining this profile, including its icons.

4.7 Summary of Profile

Stereotypes for this profile are shown in Table 4-3.

Table 4-3 Metamodel Class Stereotypes

Metamodel Class Stereotype Name

Model use-case model

Package use-case system

Package use-case package

Model object model

Subsystem object system

Subsystem organization unit

Subsystem work unit

Class worker

Class case worker

Class internal worker

Class entity

Collaboration use-case realization

Association subscribe
UML V1.3 June 1999 4-9

4 UML Standard Profiles

 with

m may
s.

heir

tors.

ntains

 not

odels

ins
4.7.1 Tagged Values

This profile does not currently introduce any new TaggedValues.

4.7.2 Constraints

This profile does not currently introduce any new Constraints, other than those associated
the well-formedness semantics of the stereotypes introduced.

4.7.3 Prerequisite Profiles

This profile requires no other profiles to the UML for its definition.

4.8 Stereotypes and Notation

4.8.1 Model, Package, and Subsystem Stereotypes

A business system comprises several different, but related, models. The models are
characterized by being exterior or interior to the business system they represent. Exterior
models are use case models and interior models are object models. A large business syste
be partitioned into subordinate business systems. The following are the model stereotype

Use Case

A Use Case Model is a model that describes the business processes of a business and t
interactions with external parties such as customers and partners.

A use case model describes:

• the businesses modeled as use cases.

• parties exterior to the business (e.g., customers and other businesses) modeled as ac

• the relationships between the external parties and the business processes.

A Use Case System is the top-level package in a use case model. A use case system co
use case packages, use cases, and relationships.

A Use Case Package is a package containing use cases and relationships. A use case is
partitioned over several use case packages.

Object

An Object Model is a model in which the top-level package is an object system. These m
describe the things interior to the business system itself.

An Object System is the top-level subsystem in an object model. An object system conta
organization units, classes (workers, work units, and entities), and relationships.
4-10 UML V1.3 June 1999

4.8 Stereotypes and Notation

ness.
and

er. It

me»).
may be
 for

. A
e

stem.
Organization Unit

Organization Unit is a subsystem corresponding to an organization unit of the actual busi
An organization unit subsystem contains organization units, work units, classes (workers
entities), and relationships.

Work Unit

A Work Unit is a subsystem that contains one or more entities.

A work unit is a task-oriented set of objects that form a recognizable whole to the end us
may have a facade defining the view of the work unit’s entities relevant to the task.

Notation

Package stereotypes are indicated with stereotype keywords in guillemets («stereotype na
There are no special icons for these stereotypes, but the icon for a model or a subsystem
used in the upper right of the package symbol in conjunction with the stereotype keyword
stereotypes of the corresponding kind. Use of these icons is not mandatory, because the
stereotype keyword is unambiguous.

4.8.2 Class Stereotypes

Business objects come in the following kinds:

• Actor (defined in the UML)

• Worker

• Case Worker

• Internal Worker

• Entity

Worker

A Worker is a class that represents an abstraction of a human that acts within the system
worker interacts with other workers and manipulates entities while participating in use cas
realizations.

Case Worker

A Case Worker is a worker who interacts directly with actors outside the system.

Internal Worker

An Internal Worker is a worker that interacts with other workers and entities inside the sy
UML V1.3 June 1999 4-11

4 UML Standard Profiles

ntity
gle

ers

bol.
Entity

An Entity is a class that is passive; that is, it does not initiate interactions on its own. An e
object may participate in many different use case realizations and usually outlives any sin
interaction. In business modeling, entities represent objects that workers access, inspect,
manipulate, produce, and so on. Entity objects provide the basis for sharing among work
participating in different use case realizations.

Notation

Class stereotypes can be shown with keywords in guillemets within the normal class sym
They can also be shown with the following special icons.

Figure 4-3 Class Stereotypes

The preceding icons represent common concepts useful in most business models.

O rd e rEn try
« c as e w o rke r»

T ra d e
« en t it y »

T ra d e

S a le s p e rs o n

A d min is t ra to r
A d min is t ra to r

« w o rke r»

D e s ig n e r
D e s ig n e r

« in te rn a l w o rke r»
4-12 UML V1.3 June 1999

4.9 Well-Formedness Rules

mples

,
an

rs
he

ed the
ass
he

ts
Example of Alternate Notations

Tools and users are free to add additional icons to represent more specific concepts. Exa
of such icons include icons for documents and actions, as shown in Figure 4-4.

Figure 4-4 Example of Special Icons for Entities and Actions

In this example, "Trade [requested]" and "Trade [traded]" represent an entity in two states
where the Trade is the dominant entity of a Trade Document work unit. Client Trading is
action. The icons are designed to be meaningful in the particular problem domain.

4.8.3 Association Stereotypes

The following are special business modeling associations between classes:

Communicate

Communicate is an association used for defining that instances of the associated classifie
interact. This may be one-way or two-way navigation. The direction of communication is t
same as the navigability of the association.

Subscribe

A subscribe association between two classes states that objects of the source class (call
subscriber) will be notified when a particular event has occured in objects of the target cl
(called the publisher). The association includes a specification of a set of event defining t
events that causes the subscriber to be notified.

Notation

Association stereotypes are indicated by keywords in guillemets. There are no special
stereotype icons.

4.9 Well-Formedness Rules

Stereotyped model elements are subject to certain constraints in addition to the constrain
imposed on all elements of their kind.

T rad e
[requ es te d]

Clie n t
T ra d ing

T rad e
[t ra d e d]
UML V1.3 June 1999 4-13

4 UML Standard Profiles

4-4
4.9.1 Generalization

All the modeling elements in a generalization must be of the same stereotype.

4.9.2 Association

Apart from standard UML combinations, the combinations of stereotypes shown in Table
may also be used.

Table 4-4 Valid Association Stereotype Combinations

 To:
From:

actor case worker entity work unit internal worker

actor communicate communicate
subscribe

case worker communicate communicate communicate
subscribe

communicate
subscribe

communicate

entity communicate
subscribe

communicate

work unit communicate communicate communicate
subscribe

communicate
subscribe

communicate

internal worker communicate communicate
subscribe

communicate
subscribe

communicate
4-14 UML V1.3 June 1999

 UML CORBAfacility Interface Definition 5

age,
t

rds
This chapter specifies the interfaces for a CORBAfacility for the Unified Modeling
Language, version 1.3. The UML CORBAfacility (or UML Facility for short) is a
repository for models expressed in the UML. The facility enables the creation, stor
and manipulation of UML models. The facility enables clients to be developed tha
provide a wide variety of model-based development capabilities, including:

• Drawing and animation of UML models in UML and other notations

• Enforcement of process and method style guidelines

• Metrics, queries, and reports

• Automation of certain development lifecycle activities (e.g., through design wiza
and code generation).

Contents

5.1 Overview 5-3
5.2 Mapping of UML Semantics to Facility Interfaces 5-4
5.3 Facility Implementation Requirements 5-6
5.4 IDL Modules 5-7
UML V1.3 June 1999 5-1

5 UML CORBAfacility Interface Definition
5-2 UML V1.3 June 1999

5.1 Overview

es

pose

n the

ntic
tterns

 the
al.

 to
red

ling

ols
 UML
ent

d in

e

m,
s a

at.
5 UML CORBAfacility InterfaceDefinition

5.1 Overview

There are two sets of interfaces provided: 1) generic and 2) tailored. Both sets of interfac
enable the creation and traversal of UML model elements.

The generic interfaces are included in the Reflective module. This is a set of general-pur
interfaces that provide utility for browser type functionality and as a base for the tailored
interfaces. They are more fully described in the Meta-Object Facility (MOF) Specification.

A set of tailored interfaces that are specifically typed to the UML metamodel elements is
defined. The tailored interfaces inherit from the generic interfaces. The tailored interfaces
provide capabilities necessary to instantiate, traverse, and modify UML model elements i
facility, directly in terms of the UML metamodel, with type safety. The specifications of the
tailored interfaces were generated by applying a set of transformations to the UML sema
metamodel. Because the tailored interfaces were generated consistently from a set of pa
(described more fully in the MOF Specification), they are easy to understand and program
against. It is feasible to generate automatically the implementation for the UML Facility, for
most part, because of these patterns and because the UML metamodel is strictly structur

The UML is designed with a layered architecture. Implementors can choose which layers
implement, and whether to implement only the generic interfaces or the generic and tailo
interfaces.

One of the primary goals was to advance the state of the industry by enabling OO mode
tool interoperability. This UML Facility defines a set of interfaces to provide that tool
interoperability. However, enabling meaningful exchange of model information between to
requires agreement on semantics and their visualization. The metamodel documenting the
semantics is defined in the UML Semantics chapter. Most of the IDL defined in this docum
is a direct mapping of the UML version 1.3 metamodel, based on the IDL mapping define
the MOF specification. Because the UML semantics are sufficiently complex, they are
documented separately in the UML Semantics chapter, whereas this chapter is void of
explanations of semantics.

5.1.1 Tool Sharing Options

A major goal is to achieve semantic interoperability between UML tools. Three options ar
explained below: model transfer, a general-purpose repository, and a UML facility.

Model Transfer

Two tools could understand the same stream format and exchange models via that strea
which could be a file. This is referred to as an “import facility.” A stream interface provide
sharing between tools that are not implemented in an API (CORBA or non-CORBA) or
repository environment. XML Metedata Interchange (XMI) is an example of a stream form
UML V1.3 June 1999 5-3

5 UML CORBAfacility InterfaceDefinition

t

 and is
cific
.

ding

sary

.

el

ace

data
nning

ach
given
r

 is
General-purpose Repository

Two tools could interface to the same repository and access a model there. A MetaObjec
Facility (MOF) could provide this repository. The MOF Specification defines a generic
interface to repository objects.

UML Facility

Two tools could exchange models on a detail-by-detail basis. This is referred to as a
“connection facility.” Although this would not be the most efficient method for sharing an
entire model, this type of access enables semantic interoperability to the greatest degree
extremely useful for client applications. This is also a repository, but its interfaces are spe
to UML tools. A set of IDL interfaces is defined in this document to provide model access

In summary, the UML Facility defines IDL interfaces for clients to use for model access.

5.2 Mapping of UML Semantics to Facility Interfaces

Understanding the process used to generate the IDL for this facility is helpful in understan
the resulting IDL. The process was as follows:

1. Converted the UML Semantics Metamodel into an interface metamodel, making neces
refinements for CORBA interfaces.

2. Put the interface metamodel into a MetaObject Facility as a MOF Package.

3. Generated IDL from the MOF, based on the mapping defined in the MOF Specification

5.2.1 Transformation of UML Semantics Metamodel into Interfaces Metamod

A model was created representing the interfaces required on the UML Facility. This interf
metamodel is nearly identical to the UML Semantics metamodel, so it is not documented
explicitly. The following list summarizes the conversions made from the UML Semantics
metamodel:

• Mapped all UML data types and select classes to CORBA data types. Put all CORBA
types in Foundation where they are visible to Core. The data types appear at the begi
of the Foundation module below.

• Named associations and their ends, where names were missing. The name given to e
unnamed AssociationEnd is its type’s name with the first letter downcased. The name
to each unnamed Association is “A” followed by the first end’s name with the first lette
upcased followed by the second end’s name with the first letter upcased.

• Prefixed the names of certain classifiers, association ends, and attributes with “Uml” to
avoid conflicts with words reserved in Reflective interfaces, CORBA, and MOF.

• Deleted derived associations, since they would have resulted in redundant interfaces.

• Transformed association classes into more fundamental structures. The transformation
explained below.
5-4 UML V1.3 June 1999

5.2 Mapping of UML Semantics to Facility Interfaces

type if
 the

he

ed to
ich is

nships

• For each navigable AssociationEnd, created a Reference in the Class that is the end’s
the Class’s owning Package is the same as the Association’s owning Package. Named
Reference the same as the AssociationEnd.

• Appended numbers to names as needed to avoid name duplication errors.

• Renamed enumeration literal names so they would be unique within the resulting IDL
modules.

The IDL generation from the MOF assures that all classes in the interface metamodel are
specializations of Reflective::RefObject, so this relationship is assumed to be present in t
interface metamodel.

Transformation for Association Classes

Since the MOF does not represent the semantics of association classes directly, we need
convert Each Association Class into something else. In the case of ElementOwnership, wh
single-valued on one end, we moved the attributes into the other end, ModelElement. We
converted every other Association Class into a simple class and added necessary relatio
to enable complete navigation (in the resulting facility IDL). Figure 5-1 shows an example
Association Class as it would appear in the semantic metamodel.

Figure 5-1 An Association Class in a Semantic metamodel

Figure 5-2 shows the corresponding transformed structure in the interface model.

Figure 5-2 Corresponding Association Class in an interface metamodel

A B

1..

b_rolea_role

AB

1..

A B

AB*

1

1..*

1

ab

b_role

1..*

1

ab

a_role

*

1

UML V1.3 June 1999 5-5

5 UML CORBAfacility InterfaceDefinition

 in

in

ility
ese

antics
5.2.2 Mapping from MOF to IDL

The description for the mapping from instances of models stored in the MOF is described
detail in the MOF Specification. The result of this mapping is the generated IDL in this
specification.

5.2.3 MOF Generic Interfaces

The MOF Specification fully describes the generic interfaces. As a summary, the generic
interfaces in the Reflective module provide the following:

• consistent treatment of type information,

• exception handling (including constraint violations, missing parameters, etc.), and

• generic creation and traversal of objects.

Note – The MOF Specification replaces the definition of the Reflective module contained
this specification.

5.3 Facility Implementation Requirements

Although this chapter focuses on defining the interfaces for the facility and leaves
implementation decisions up to the creativity of vendors, there are some implementation
requirements.

The UML Standard Elements (stereotypes, constraints, and tags) must be known to a fac
implementation, or provided via a load. This is necessary so that the interoperability of th
elements can be achieved. The semantics of the standard elements (e.g., containment
restrictions) must be enforced. The Standard Elements are documented in the UML Sem
chapter.
5-6 UML V1.3 June 1999

5.4 IDL Modules
5 UML CORBAfacility InterfaceDefinition

5.4 IDL Modules

5.4.1 Reflective

#ifndef REFLECTIVE_IDL
#define REFLECTIVE_IDL
#pragma prefix "org.omg.Uml"

module Reflective
{
 interface RefBaseObject;
 interface RefObject;
 typedef sequence<RefObject> RefObjectUList;
 typedef sequence<RefObject> RefObjectSet;
 interface RefAssociation;
 interface RefPackage;
 typedef RefObject DesignatorType;
 typedef any ValueType;
 typedef sequence<ValueType> ValueTypeList;
 typedef sequence<RefObject, 2> Link;
 typedef sequence<Link> LinkSet;

 // MOF error kinds
 const string UNDERFLOW_VIOLATION = "org.omg.mof:structural.underflow";
 const string OVERFLOW_VIOLATION = "org.omg.mof:structural.overflow";
 const string DUPLICATE_VIOLATION = "org.omg.mof:structural.duplicate";
 const string REFERENCE_CLOSURE_VIOLATION =

"org.omg.mof:structural.reference_closure";
 const string SUPERTYPE_CLOSURE_VIOLATION =

"org.omg.mof:structural.supertype_closure";
 const string COMPOSITION_CYCLE_VIOLATION =

"org.omg.mof:structural.composition_cycle";
 const string COMPOSITION_CLOSURE_VIOLATION =

"org.omg.mof:structural.composition_closure";
 const string INVALID_OBJECT_VIOLATION = "org.omg.mof:structural.invalid_object";
 const string ALREADY_EXISTS_VIOLATION = "org.omg.mof:structural.already_exists";
 const string INVALID_DESIGNATOR_VIOLATION =

"org.omg.mof:reflective.invalid_designator";
 const string WRONG_DESIGNATOR_DESIGNATOR_VIOLATION =

"org.omg.mof:reflective.wrong_designator_kind";
 const string UNKNOWN_DESIGNATOR_VIOLATION =

"org.omg.mof:reflective.unknown_designator";
 const string ABSTRACT_CLASS_VIOLATION = "org.omg.mof:reflective.abstract_class";
 const string NOT_CHANGEABLE_VIOLATION = "org.omg.mof:reflective.not_changeable";
 const string NOT_PUBLIC_VIOLATION = "org.omg.mof:reflective.not_public";
 const string WRONG_SCOPE_VIOLATION = "org.omg.mof:reflective.wrong_scope";
UML V1.3 June 1999 5-7

5 UML CORBAfacility InterfaceDefinition
 const string WRONG_MULTIPLICITY_VIOLATION =
"org.omg.mof:reflective.wrong_multiplicity";

 const string WRONG_TYPE_VIOLATION = "org.omg.mof:reflective.wrong_type";
 const string WRONG_NUMBER_PARAMETERS_VIOLATION =

"org.omg.mof:reflective.wrong_number_parameters";
 const string INVALID_DELETION_VIOLATION = "org.omg.mof:reflective.invalid_deletion";

 struct NamedValueType
 {
 string name;
 ValueType value;
 };
 typedef sequence<NamedValueType> NamedValueList;

 exception MofError
 {
 string error_kind;
 RefBaseObject object_in_error;
 NamedValueList extra_info;
 string error_description;
 };
 exception NotFound {};
 exception NotSet {};
 exception BadPosition
 {
 unsigned long current_size;
 };
 exception OtherError
 {
 DesignatorType exception_designator;
 ValueTypeList exception_values;
 };

 interface RefBaseObject
 {
 string ref_mof_id ();
 DesignatorType ref_meta_object ();
 boolean ref_itself (in RefBaseObject other_object);
 RefPackage ref_immediate_package ();
 RefPackage ref_outermost_package ();
 void ref_delete () raises (MofError);
 }; // end of interface RefBaseObject

 interface RefObject : RefBaseObject
 {
 boolean ref_is_instance_of (
 in DesignatorType some_class,
 in boolean consider_subtypes)
 raises (MofError);
 RefObject ref_create_instance (in ValueTypeList args)
 raises (MofError);
5-8 UML V1.3 June 1999

5.4 IDL Modules
 RefObjectSet ref_all_objects (in boolean include_subtypes);
 ValueType ref_value (in DesignatorType feature)
 raises (NotSet, MofError);
 void ref_set_value (
 in DesignatorType feature,
 in ValueType new_value)
 raises (MofError);
 void ref_unset_value (in DesignatorType feature)
 raises (MofError);
 void ref_add_value (
 in DesignatorType feature,
 in ValueType new_element)
 raises (MofError);
 void ref_add_value_before (
 in DesignatorType feature,
 in ValueType new_element,
 in ValueType before_element)
 raises (NotFound, MofError);
 void ref_add_value_at (
 in DesignatorType feature,
 in ValueType new_element,
 in unsigned long position)
 raises (BadPosition, MofError);
 void ref_modify_value (
 in DesignatorType feature,
 in ValueType old_element,
 in ValueType new_element)
 raises (NotFound, MofError);
 void ref_modify_value_at (
 in DesignatorType feature,
 in ValueType new_element,
 in unsigned long position)
 raises (BadPosition, MofError);
 void ref_remove_value (
 in DesignatorType feature,
 in ValueType old_element)
 raises (NotFound, MofError);
 void ref_remove_value_at (
 in DesignatorType feature,
 in unsigned long position)
 raises (BadPosition, MofError);
 RefObject ref_immediate_composite ();
 RefObject ref_outermost_composite ();
 ValueTypeList ref_invoke_operation (
 in DesignatorType requested_operation,
 inout ValueTypeList args)
 raises (OtherError, MofError);
 }; // end of interface RefObject

 interface RefAssociation : RefBaseObject
 {
UML V1.3 June 1999 5-9

5 UML CORBAfacility InterfaceDefinition
 LinkSet ref_all_links ();
 boolean ref_link_exists (in Link some_link)
 raises (MofError);
 RefObjectUList ref_query (
 in DesignatorType query_end,
 in RefObject query_object)
 raises (MofError);
 void ref_add_link (in Link new_link)
 raises (MofError);
 void ref_add_link_before (
 in Link new_link,
 in DesignatorType position_end,
 in RefObject before)
 raises (NotFound, MofError);
 void ref_modify_link (
 in Link old_link,
 in DesignatorType position_end,
 in RefObject new_object)
 raises (NotFound, MofError);
 void ref_remove_link (in Link old_link)
 raises (NotFound, MofError);
 }; // end of interface RefAssociation

 interface RefPackage : RefBaseObject
 {
 RefObject ref_class_ref (in DesignatorType class)
 raises (MofError);
 RefAssociation ref_association_ref (in DesignatorType association)
 raises (MofError);
 RefPackage ref_package_ref (in DesignatorType package)
 raises (MofError);
 }; // end of interface RefPackage

}; // end of module Reflective

#endif
5-10 UML V1.3 June 1999

5.4 IDL Modules
5.4.2 Foundation

#pragma prefix "org.omg.Uml"
#include "Reflective.idl"

module Foundation
{
 interface FoundationPackage;

 module DataTypes
 {
 typedef long Integer;
 typedef long UnlimitedInteger; // -1 means infinity
 typedef float UmlTime;
 enum AggregationKind {ak_none, ak_aggregate, ak_composite};
 enum CallConcurrencyKind {cck_sequential, cck_guarded, cck_concurrent};
 enum ChangeableKind {ck_changeable, ck_frozen, ck_addOnly};
 enum MessageDirectionKind {mdk_activation, mdk_return};
 enum OperationDirectionKind {odk_provide, odk_require};
 enum OrderingKind {ok_unordered, ok_ordered, ok_sorted};
 enum ParameterDirectionKind {pdk_in, pdk_inout, pdk_out, pdk_return};
 enum PseudostateKind {pk_initial, pk_deepHistory, pk_shallowHistory, pk_join, pk_fork,

pk_branch, pk_junction, pk_final};
 enum ScopeKind {sk_classifier, sk_instance};
 enum VisibilityKind {vk_public, vk_private, vk_protected};
 typedef string Geometry;
 typedef string LocationReference;
 typedef string Mapping;
 struct MultiplicityRange {Integer lower; UnlimitedInteger upper;};
 typedef sequence<MultiplicityRange> Multiplicity;
 typedef string Name;
 struct Expression {Name language; string body;};
 typedef Expression ActionExpression;
 typedef Expression ArgListsExpression;
 typedef Expression BooleanExpression;
 typedef Expression IterationExpression;
 typedef Expression MappingExpression;
 typedef Expression ObjectSetExpression;
 typedef Expression ProcedureExpression;
 typedef Expression TimeExpression;
 typedef Expression TypeExpression;

 interface DataTypesPackage : Reflective::RefPackage
 {
 };
 }; // end of module DataTypes

 module Core
 {
 interface ClassifierClass;
UML V1.3 June 1999 5-11

5 UML CORBAfacility InterfaceDefinition
 interface Classifier;
 typedef sequence<Classifier> ClassifierSet;
 interface ClassClass;
 interface Class;
 typedef sequence<Class> ClassSet;
 interface DataTypeClass;
 interface DataType;
 typedef sequence<DataType> DataTypeSet;
 interface StructuralFeatureClass;
 interface StructuralFeature;
 typedef sequence<StructuralFeature> StructuralFeatureSet;
 interface NamespaceClass;
 interface Namespace;
 typedef sequence<Namespace> NamespaceSet;
 interface AssociationEndClass;
 interface AssociationEnd;
 typedef sequence<AssociationEnd> AssociationEndSet;
 interface UmlInterfaceClass;
 interface UmlInterface;
 typedef sequence<UmlInterface> UmlInterfaceSet;
 interface UmlConstraintClass;
 interface UmlConstraint;
 typedef sequence<UmlConstraint> UmlConstraintSet;
 interface AssociationClass;
 interface Association;
 typedef sequence<Association> AssociationSet;
 interface ElementClass;
 interface Element;
 typedef sequence<Element> ElementSet;
 interface GeneralizableElementClass;
 interface GeneralizableElement;
 typedef sequence<GeneralizableElement> GeneralizableElementSet;
 interface UmlAttributeClass;
 interface UmlAttribute;
 typedef sequence<UmlAttribute> UmlAttributeSet;
 typedef sequence<UmlAttribute> UmlAttributeUList;
 interface OperationClass;
 interface Operation;
 typedef sequence<Operation> OperationSet;
 interface ParameterClass;
 interface Parameter;
 typedef sequence<Parameter> ParameterSet;
 typedef sequence<Parameter> ParameterUList;
 interface MethodClass;
 interface Method;
 typedef sequence<Method> MethodSet;
 interface GeneralizationClass;
 interface Generalization;
 typedef sequence<Generalization> GeneralizationSet;
 interface UmlAssociationClassClass;
 interface UmlAssociationClass;
5-12 UML V1.3 June 1999

5.4 IDL Modules
 typedef sequence<UmlAssociationClass> UmlAssociationClassSet;
 interface FeatureClass;
 interface Feature;
 typedef sequence<Feature> FeatureSet;
 typedef sequence<Feature> FeatureUList;
 interface BehavioralFeatureClass;
 interface BehavioralFeature;
 typedef sequence<BehavioralFeature> BehavioralFeatureSet;
 interface ModelElementClass;
 interface ModelElement;
 typedef sequence<ModelElement> ModelElementSet;
 typedef sequence<ModelElement> ModelElementUList;
 interface DependencyClass;
 interface Dependency;
 typedef sequence<Dependency> DependencySet;
 interface AbstractionClass;
 interface Abstraction;
 typedef sequence<Abstraction> AbstractionSet;
 interface PresentationElementClass;
 interface PresentationElement;
 typedef sequence<PresentationElement> PresentationElementSet;
 interface UsageClass;
 interface Usage;
 typedef sequence<Usage> UsageSet;
 interface BindingClass;
 interface Binding;
 typedef sequence<Binding> BindingSet;
 interface ComponentClass;
 interface Component;
 typedef sequence<Component> ComponentSet;
 interface NodeClass;
 interface Node;
 typedef sequence<Node> NodeSet;
 interface PermissionClass;
 interface Permission;
 typedef sequence<Permission> PermissionSet;
 interface CommentClass;
 interface Comment;
 typedef sequence<Comment> CommentSet;
 interface FlowClass;
 interface Flow;
 typedef sequence<Flow> FlowSet;
 interface RelationshipClass;
 interface Relationship;
 typedef sequence<Relationship> RelationshipSet;
 interface ElementResidenceClass;
 interface ElementResidence;
 typedef sequence<ElementResidence> ElementResidenceSet;
 interface TemplateParameterClass;
 interface TemplateParameter;
 typedef sequence<TemplateParameter> TemplateParameterSet;
UML V1.3 June 1999 5-13

5 UML CORBAfacility InterfaceDefinition
 typedef sequence<TemplateParameter> TemplateParameterUList;
 interface CorePackage;

 interface ElementClass : Reflective::RefObject
 {
 readonly attribute ElementSet all_of_type_element;
 };

 interface Element : ElementClass
 {
 }; // end of interface Element

 interface ModelElementClass : ElementClass
 {
 readonly attribute ModelElementSet all_of_type_model_element;
 };

 interface ModelElement : ModelElementClass, Element
 {
 DataTypes::Name name ()
 raises (Reflective::MofError);
 void set_name (in DataTypes::Name new_value)
 raises (Reflective::MofError);
 DataTypes::VisibilityKind visibility ()
 raises (Reflective::MofError);
 void set_visibility (in DataTypes::VisibilityKind new_value)
 raises (Reflective::MofError);
 boolean is_specification ()
 raises (Reflective::MofError);
 void set_is_specification (in boolean new_value)
 raises (Reflective::MofError);
 Core::Namespace namespace ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_namespace (in Core::Namespace new_value)
 raises (Reflective::MofError);
 void unset_namespace ()
 raises (Reflective::MofError);
 DependencySet client_dependency ()
 raises (Reflective::MofError);
 void set_client_dependency (in DependencySet new_value)
 raises (Reflective::MofError);
 void add_client_dependency (in Dependency new_element)
 raises (Reflective::MofError);
 void modify_client_dependency (
 in Dependency old_element,
 in Dependency new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_client_dependency (in Dependency old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 UmlConstraintSet uml_constraint ()
 raises (Reflective::MofError);
5-14 UML V1.3 June 1999

5.4 IDL Modules
 void set_uml_constraint (in UmlConstraintSet new_value)
 raises (Reflective::MofError);
 void add_uml_constraint (in UmlConstraint new_element)
 raises (Reflective::MofError);
 void modify_uml_constraint (
 in UmlConstraint old_element,
 in UmlConstraint new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_uml_constraint (in UmlConstraint old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 DependencySet supplier_dependency ()
 raises (Reflective::MofError);
 void set_supplier_dependency (in DependencySet new_value)
 raises (Reflective::MofError);
 void add_supplier_dependency (in Dependency new_element)
 raises (Reflective::MofError);
 void modify_supplier_dependency (
 in Dependency old_element,
 in Dependency new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_supplier_dependency (in Dependency old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 PresentationElementSet presentation ()
 raises (Reflective::MofError);
 void set_presentation (in PresentationElementSet new_value)
 raises (Reflective::MofError);
 void add_presentation (in PresentationElement new_element)
 raises (Reflective::MofError);
 void modify_presentation (
 in PresentationElement old_element,
 in PresentationElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_presentation (in PresentationElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 FlowSet target_flow ()
 raises (Reflective::MofError);
 void set_target_flow (in FlowSet new_value)
 raises (Reflective::MofError);
 void add_target_flow (in Flow new_element)
 raises (Reflective::MofError);
 void modify_target_flow (
 in Flow old_element,
 in Flow new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_target_flow (in Flow old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 FlowSet source_flow ()
 raises (Reflective::MofError);
 void set_source_flow (in FlowSet new_value)
 raises (Reflective::MofError);
 void add_source_flow (in Flow new_element)
UML V1.3 June 1999 5-15

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 void modify_source_flow (
 in Flow old_element,
 in Flow new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_source_flow (in Flow old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 TemplateParameterSet template_parameter3 ()
 raises (Reflective::MofError);
 void set_template_parameter3 (in TemplateParameterSet new_value)
 raises (Reflective::MofError);
 void add_template_parameter3 (in TemplateParameter new_element)
 raises (Reflective::MofError);
 void modify_template_parameter3 (
 in TemplateParameter old_element,
 in TemplateParameter new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_template_parameter3 (in TemplateParameter old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Core::Binding binding ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_binding (in Core::Binding new_value)
 raises (Reflective::MofError);
 void unset_binding ()
 raises (Reflective::MofError);
 CommentSet comment ()
 raises (Reflective::MofError);
 void set_comment (in CommentSet new_value)
 raises (Reflective::MofError);
 void add_comment (in Core::Comment new_element)
 raises (Reflective::MofError);
 void modify_comment (
 in Core::Comment old_element,
 in Core::Comment new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_comment (in Core::Comment old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ElementResidenceSet element_residence ()
 raises (Reflective::MofError);
 void set_element_residence (in ElementResidenceSet new_value)
 raises (Reflective::MofError);
 void add_element_residence (in ElementResidence new_element)
 raises (Reflective::MofError);
 void modify_element_residence (
 in ElementResidence old_element,
 in ElementResidence new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_element_residence (in ElementResidence old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 TemplateParameterUList template_parameter ()
 raises (Reflective::MofError);
5-16 UML V1.3 June 1999

5.4 IDL Modules
 void set_template_parameter (in TemplateParameterUList new_value)
 raises (Reflective::MofError);
 void add_template_parameter (in TemplateParameter new_element)
 raises (Reflective::MofError);
 void add_template_parameter_before (
 in TemplateParameter new_element,
 in TemplateParameter before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_template_parameter (
 in TemplateParameter old_element,
 in TemplateParameter new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_template_parameter (in TemplateParameter old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 TemplateParameterSet template_parameter2 ()
 raises (Reflective::MofError);
 void set_template_parameter2 (in TemplateParameterSet new_value)
 raises (Reflective::MofError);
 void add_template_parameter2 (in TemplateParameter new_element)
 raises (Reflective::MofError);
 void modify_template_parameter2 (
 in TemplateParameter old_element,
 in TemplateParameter new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_template_parameter2 (in TemplateParameter old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ModelElement

 interface NamespaceClass : ModelElementClass
 {
 readonly attribute Core::NamespaceSet all_of_type_namespace;
 readonly attribute Core::NamespaceSet all_of_class_namespace;
 Core::Namespace create_namespace (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Namespace : NamespaceClass, ModelElement
 {
 ModelElementSet owned_element ()
 raises (Reflective::MofError);
 void set_owned_element (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_owned_element (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_owned_element (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-17

5 UML CORBAfacility InterfaceDefinition
 void remove_owned_element (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Namespace

 interface GeneralizableElementClass : ModelElementClass
 {
 readonly attribute GeneralizableElementSet all_of_type_generalizable_element;
 };

 interface GeneralizableElement : GeneralizableElementClass, ModelElement
 {
 boolean is_root ()
 raises (Reflective::MofError);
 void set_is_root (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_leaf ()
 raises (Reflective::MofError);
 void set_is_leaf (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_abstract ()
 raises (Reflective::MofError);
 void set_is_abstract (in boolean new_value)
 raises (Reflective::MofError);
 GeneralizationSet generalization ()
 raises (Reflective::MofError);
 void set_generalization (in GeneralizationSet new_value)
 raises (Reflective::MofError);
 void add_generalization (in Core::Generalization new_element)
 raises (Reflective::MofError);
 void modify_generalization (
 in Core::Generalization old_element,
 in Core::Generalization new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_generalization (in Core::Generalization old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 GeneralizationSet specialization ()
 raises (Reflective::MofError);
 void set_specialization (in GeneralizationSet new_value)
 raises (Reflective::MofError);
 void add_specialization (in Core::Generalization new_element)
 raises (Reflective::MofError);
 void modify_specialization (
 in Core::Generalization old_element,
 in Core::Generalization new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_specialization (in Core::Generalization old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface GeneralizableElement

 interface ClassifierClass : Core::NamespaceClass, GeneralizableElementClass
 {
5-18 UML V1.3 June 1999

5.4 IDL Modules
 readonly attribute ClassifierSet all_of_type_classifier;
 };

 interface Classifier : ClassifierClass, Core::Namespace, GeneralizableElement
 {
 FeatureUList feature ()
 raises (Reflective::MofError);
 void set_feature (in FeatureUList new_value)
 raises (Reflective::MofError);
 void add_feature (in Core::Feature new_element)
 raises (Reflective::MofError);
 void add_feature_before (
 in Core::Feature new_element,
 in Core::Feature before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_feature (
 in Core::Feature old_element,
 in Core::Feature new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_feature (in Core::Feature old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 AssociationEndSet participant ()
 raises (Reflective::MofError);
 void set_participant (in AssociationEndSet new_value)
 raises (Reflective::MofError);
 void add_participant (in AssociationEnd new_element)
 raises (Reflective::MofError);
 void modify_participant (
 in AssociationEnd old_element,
 in AssociationEnd new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_participant (in AssociationEnd old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 GeneralizationSet powertype_range ()
 raises (Reflective::MofError);
 void set_powertype_range (in GeneralizationSet new_value)
 raises (Reflective::MofError);
 void add_powertype_range (in Core::Generalization new_element)
 raises (Reflective::MofError);
 void modify_powertype_range (
 in Core::Generalization old_element,
 in Core::Generalization new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_powertype_range (in Core::Generalization old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Classifier

 interface ClassClass : ClassifierClass
 {
 readonly attribute ClassSet all_of_type_class;
 readonly attribute ClassSet all_of_class_class;
UML V1.3 June 1999 5-19

5 UML CORBAfacility InterfaceDefinition
 Class create_class (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in boolean is_active)
 raises (Reflective::MofError);
 };

 interface Class : ClassClass, Classifier
 {
 boolean is_active ()
 raises (Reflective::MofError);
 void set_is_active (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface Class

 interface DataTypeClass : ClassifierClass
 {
 readonly attribute DataTypeSet all_of_type_data_type;
 readonly attribute DataTypeSet all_of_class_data_type;
 DataType create_data_type (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface DataType : DataTypeClass, Classifier
 {
 }; // end of interface DataType

 interface FeatureClass : ModelElementClass
 {
 readonly attribute FeatureSet all_of_type_feature;
 };

 interface Feature : FeatureClass, ModelElement
 {
 DataTypes::ScopeKind owner_scope ()
 raises (Reflective::MofError);
 void set_owner_scope (in DataTypes::ScopeKind new_value)
 raises (Reflective::MofError);
 Classifier owner ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_owner (in Classifier new_value)
5-20 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void unset_owner ()
 raises (Reflective::MofError);
 }; // end of interface Feature

 interface StructuralFeatureClass : FeatureClass
 {
 readonly attribute StructuralFeatureSet all_of_type_structural_feature;
 };

 interface StructuralFeature : StructuralFeatureClass, Feature
 {
 DataTypes::Multiplicity multiplicity ()
 raises (Reflective::MofError);
 void set_multiplicity (in DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 DataTypes::ChangeableKind changeability ()
 raises (Reflective::MofError);
 void set_changeability (in DataTypes::ChangeableKind new_value)
 raises (Reflective::MofError);
 DataTypes::ScopeKind target_scope ()
 raises (Reflective::MofError);
 void set_target_scope (in DataTypes::ScopeKind new_value)
 raises (Reflective::MofError);
 Classifier type ()
 raises (Reflective::MofError);
 void set_type (in Classifier new_value)
 raises (Reflective::MofError);
 }; // end of interface StructuralFeature

 interface AssociationEndClass : ModelElementClass
 {
 readonly attribute AssociationEndSet all_of_type_association_end;
 readonly attribute AssociationEndSet all_of_class_association_end;
 AssociationEnd create_association_end (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_navigable,
 in DataTypes::OrderingKind ordering,
 in DataTypes::AggregationKind aggregation,
 in DataTypes::ScopeKind target_scope,
 in DataTypes::Multiplicity multiplicity,
 in DataTypes::ChangeableKind changeability)
 raises (Reflective::MofError);
 };

 interface AssociationEnd : AssociationEndClass, ModelElement
 {
 boolean is_navigable ()
 raises (Reflective::MofError);
UML V1.3 June 1999 5-21

5 UML CORBAfacility InterfaceDefinition
 void set_is_navigable (in boolean new_value)
 raises (Reflective::MofError);
 DataTypes::OrderingKind ordering ()
 raises (Reflective::MofError);
 void set_ordering (in DataTypes::OrderingKind new_value)
 raises (Reflective::MofError);
 DataTypes::AggregationKind aggregation ()
 raises (Reflective::MofError);
 void set_aggregation (in DataTypes::AggregationKind new_value)
 raises (Reflective::MofError);
 DataTypes::ScopeKind target_scope ()
 raises (Reflective::MofError);
 void set_target_scope (in DataTypes::ScopeKind new_value)
 raises (Reflective::MofError);
 DataTypes::Multiplicity multiplicity ()
 raises (Reflective::MofError);
 void set_multiplicity (in DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 DataTypes::ChangeableKind changeability ()
 raises (Reflective::MofError);
 void set_changeability (in DataTypes::ChangeableKind new_value)
 raises (Reflective::MofError);
 Core::Association association ()
 raises (Reflective::MofError);
 void set_association (in Core::Association new_value)
 raises (Reflective::MofError);
 UmlAttributeUList qualifier ()
 raises (Reflective::MofError);
 void set_qualifier (in UmlAttributeUList new_value)
 raises (Reflective::MofError);
 void add_qualifier (in UmlAttribute new_element)
 raises (Reflective::MofError);
 void add_qualifier_before (
 in UmlAttribute new_element,
 in UmlAttribute before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_qualifier (
 in UmlAttribute old_element,
 in UmlAttribute new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_qualifier (in UmlAttribute old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Classifier type ()
 raises (Reflective::MofError);
 void set_type (in Classifier new_value)
 raises (Reflective::MofError);
 ClassifierSet specification ()
 raises (Reflective::MofError);
 void set_specification (in ClassifierSet new_value)
 raises (Reflective::MofError);
 void add_specification (in Classifier new_element)
5-22 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void modify_specification (
 in Classifier old_element,
 in Classifier new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_specification (in Classifier old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AssociationEnd

 interface UmlInterfaceClass : ClassifierClass
 {
 readonly attribute UmlInterfaceSet all_of_type_uml_interface;
 readonly attribute UmlInterfaceSet all_of_class_uml_interface;
 UmlInterface create_uml_interface (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface UmlInterface : UmlInterfaceClass, Classifier
 {
 }; // end of interface UmlInterface

 interface UmlConstraintClass : ModelElementClass
 {
 readonly attribute UmlConstraintSet all_of_type_uml_constraint;
 readonly attribute UmlConstraintSet all_of_class_uml_constraint;
 UmlConstraint create_uml_constraint (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::BooleanExpression body)
 raises (Reflective::MofError);
 };

 interface UmlConstraint : UmlConstraintClass, ModelElement
 {
 DataTypes::BooleanExpression body ()
 raises (Reflective::MofError);
 void set_body (in DataTypes::BooleanExpression new_value)
 raises (Reflective::MofError);
 ModelElementUList constrained_element ()
 raises (Reflective::MofError);
 void set_constrained_element (in ModelElementUList new_value)
 raises (Reflective::MofError);
 void unset_constrained_element ()
 raises (Reflective::MofError);
UML V1.3 June 1999 5-23

5 UML CORBAfacility InterfaceDefinition
 void add_constrained_element (in ModelElement new_element)
 raises (Reflective::MofError);
 void add_constrained_element_before (
 in ModelElement new_element,
 in ModelElement before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_constrained_element (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_constrained_element (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface UmlConstraint

 interface RelationshipClass : ModelElementClass
 {
 readonly attribute RelationshipSet all_of_type_relationship;
 };

 interface Relationship : RelationshipClass, ModelElement
 {
 }; // end of interface Relationship

 interface AssociationClass : GeneralizableElementClass, RelationshipClass
 {
 readonly attribute AssociationSet all_of_type_association;
 readonly attribute AssociationSet all_of_class_association;
 Association create_association (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Association : AssociationClass, GeneralizableElement, Relationship
 {
 AssociationEndSet connection ()
 raises (Reflective::MofError);
 void set_connection (in AssociationEndSet new_value)
 raises (Reflective::MofError);
 void add_connection (in AssociationEnd new_element)
 raises (Reflective::MofError);
 void modify_connection (
 in AssociationEnd old_element,
 in AssociationEnd new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_connection (in AssociationEnd old_element)
 raises (Reflective::NotFound, Reflective::MofError);
5-24 UML V1.3 June 1999

5.4 IDL Modules
 }; // end of interface Association

 interface UmlAttributeClass : StructuralFeatureClass
 {
 readonly attribute UmlAttributeSet all_of_type_uml_attribute;
 readonly attribute UmlAttributeSet all_of_class_uml_attribute;
 UmlAttribute create_uml_attribute (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::ScopeKind owner_scope,
 in DataTypes::Multiplicity multiplicity,
 in DataTypes::ChangeableKind changeability,
 in DataTypes::ScopeKind target_scope,
 in DataTypes::Expression initial_value)
 raises (Reflective::MofError);
 };

 interface UmlAttribute : UmlAttributeClass, StructuralFeature
 {
 DataTypes::Expression initial_value ()
 raises (Reflective::MofError);
 void set_initial_value (in DataTypes::Expression new_value)
 raises (Reflective::MofError);
 AssociationEnd association_end ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_association_end (in AssociationEnd new_value)
 raises (Reflective::MofError);
 void unset_association_end ()
 raises (Reflective::MofError);
 }; // end of interface UmlAttribute

 interface BehavioralFeatureClass : FeatureClass
 {
 readonly attribute BehavioralFeatureSet all_of_type_behavioral_feature;
 };

 interface BehavioralFeature : BehavioralFeatureClass, Feature
 {
 boolean is_query ()
 raises (Reflective::MofError);
 void set_is_query (in boolean new_value)
 raises (Reflective::MofError);
 ParameterUList parameter ()
 raises (Reflective::MofError);
 void set_parameter (in ParameterUList new_value)
 raises (Reflective::MofError);
 void add_parameter (in Core::Parameter new_element)
 raises (Reflective::MofError);
 void add_parameter_before (
 in Core::Parameter new_element,
UML V1.3 June 1999 5-25

5 UML CORBAfacility InterfaceDefinition
 in Core::Parameter before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_parameter (
 in Core::Parameter old_element,
 in Core::Parameter new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_parameter (in Core::Parameter old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface BehavioralFeature

 interface OperationClass : BehavioralFeatureClass
 {
 readonly attribute OperationSet all_of_type_operation;
 readonly attribute OperationSet all_of_class_operation;
 Operation create_operation (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::ScopeKind owner_scope,
 in boolean is_query,
 in DataTypes::CallConcurrencyKind concurrency,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in string specification)
 raises (Reflective::MofError);
 };

 interface Operation : OperationClass, BehavioralFeature
 {
 DataTypes::CallConcurrencyKind concurrency ()
 raises (Reflective::MofError);
 void set_concurrency (in DataTypes::CallConcurrencyKind new_value)
 raises (Reflective::MofError);
 boolean is_root ()
 raises (Reflective::MofError);
 void set_is_root (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_leaf ()
 raises (Reflective::MofError);
 void set_is_leaf (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_abstract ()
 raises (Reflective::MofError);
 void set_is_abstract (in boolean new_value)
 raises (Reflective::MofError);
 string specification ()
 raises (Reflective::MofError);
 void set_specification (in string new_value)
 raises (Reflective::MofError);
 MethodSet method ()
5-26 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void set_method (in MethodSet new_value)
 raises (Reflective::MofError);
 void add_method (in Core::Method new_element)
 raises (Reflective::MofError);
 void modify_method (
 in Core::Method old_element,
 in Core::Method new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_method (in Core::Method old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Operation

 interface ParameterClass : ModelElementClass
 {
 readonly attribute ParameterSet all_of_type_parameter;
 readonly attribute ParameterSet all_of_class_parameter;
 Parameter create_parameter (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::Expression default_value,
 in DataTypes::ParameterDirectionKind kind)
 raises (Reflective::MofError);
 };

 interface Parameter : ParameterClass, ModelElement
 {
 DataTypes::Expression default_value ()
 raises (Reflective::MofError);
 void set_default_value (in DataTypes::Expression new_value)
 raises (Reflective::MofError);
 DataTypes::ParameterDirectionKind kind ()
 raises (Reflective::MofError);
 void set_kind (in DataTypes::ParameterDirectionKind new_value)
 raises (Reflective::MofError);
 BehavioralFeature behavioral_feature ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_behavioral_feature (in BehavioralFeature new_value)
 raises (Reflective::MofError);
 void unset_behavioral_feature ()
 raises (Reflective::MofError);
 Classifier type ()
 raises (Reflective::MofError);
 void set_type (in Classifier new_value)
 raises (Reflective::MofError);
 }; // end of interface Parameter

 interface MethodClass : BehavioralFeatureClass
 {
 readonly attribute MethodSet all_of_type_method;
UML V1.3 June 1999 5-27

5 UML CORBAfacility InterfaceDefinition
 readonly attribute MethodSet all_of_class_method;
 Method create_method (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::ScopeKind owner_scope,
 in boolean is_query,
 in DataTypes::ProcedureExpression body)
 raises (Reflective::MofError);
 };

 interface Method : MethodClass, BehavioralFeature
 {
 DataTypes::ProcedureExpression body ()
 raises (Reflective::MofError);
 void set_body (in DataTypes::ProcedureExpression new_value)
 raises (Reflective::MofError);
 Operation specification ()
 raises (Reflective::MofError);
 void set_specification (in Operation new_value)
 raises (Reflective::MofError);
 }; // end of interface Method

 interface GeneralizationClass : RelationshipClass
 {
 readonly attribute GeneralizationSet all_of_type_generalization;
 readonly attribute GeneralizationSet all_of_class_generalization;
 Generalization create_generalization (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::Name discriminator)
 raises (Reflective::MofError);
 };

 interface Generalization : GeneralizationClass, Relationship
 {
 DataTypes::Name discriminator ()
 raises (Reflective::MofError);
 void set_discriminator (in DataTypes::Name new_value)
 raises (Reflective::MofError);
 GeneralizableElement child ()
 raises (Reflective::MofError);
 void set_child (in GeneralizableElement new_value)
 raises (Reflective::MofError);
 GeneralizableElement parent ()
 raises (Reflective::MofError);
 void set_parent (in GeneralizableElement new_value)
 raises (Reflective::MofError);
 Classifier powertype ()
 raises (Reflective::NotSet, Reflective::MofError);
5-28 UML V1.3 June 1999

5.4 IDL Modules
 void set_powertype (in Classifier new_value)
 raises (Reflective::MofError);
 void unset_powertype ()
 raises (Reflective::MofError);
 }; // end of interface Generalization

 interface UmlAssociationClassClass : ClassClass, AssociationClass
 {
 readonly attribute UmlAssociationClassSet all_of_type_uml_association_class;
 readonly attribute UmlAssociationClassSet all_of_class_uml_association_class;
 UmlAssociationClass create_uml_association_class (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in boolean is_active)
 raises (Reflective::MofError);
 };

 interface UmlAssociationClass : UmlAssociationClassClass, Class, Association
 {
 }; // end of interface UmlAssociationClass

 interface DependencyClass : RelationshipClass
 {
 readonly attribute DependencySet all_of_type_dependency;
 };

 interface Dependency : DependencyClass, Relationship
 {
 ModelElementSet client ()
 raises (Reflective::MofError);
 void set_client (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_client (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_client (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_client (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ModelElementSet supplier ()
 raises (Reflective::MofError);
 void set_supplier (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_supplier (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_supplier (
UML V1.3 June 1999 5-29

5 UML CORBAfacility InterfaceDefinition
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_supplier (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Dependency

 interface AbstractionClass : DependencyClass
 {
 readonly attribute AbstractionSet all_of_type_abstraction;
 readonly attribute AbstractionSet all_of_class_abstraction;
 Abstraction create_abstraction (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in DataTypes::MappingExpression mapping)
 raises (Reflective::MofError);
 };

 interface Abstraction : AbstractionClass, Dependency
 {
 DataTypes::MappingExpression mapping ()
 raises (Reflective::MofError);
 void set_mapping (in DataTypes::MappingExpression new_value)
 raises (Reflective::MofError);
 }; // end of interface Abstraction

 interface PresentationElementClass : ElementClass
 {
 readonly attribute PresentationElementSet all_of_type_presentation_element;
 };

 interface PresentationElement : PresentationElementClass, Element
 {
 ModelElementSet subject ()
 raises (Reflective::MofError);
 void set_subject (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_subject (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_subject (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_subject (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface PresentationElement

 interface UsageClass : DependencyClass
 {
 readonly attribute UsageSet all_of_type_usage;
5-30 UML V1.3 June 1999

5.4 IDL Modules
 readonly attribute UsageSet all_of_class_usage;
 Usage create_usage (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Usage : UsageClass, Dependency
 {
 }; // end of interface Usage

 interface BindingClass : DependencyClass
 {
 readonly attribute Core::BindingSet all_of_type_binding;
 readonly attribute Core::BindingSet all_of_class_binding;
 Core::Binding create_binding (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Binding : BindingClass, Dependency
 {
 ModelElementUList argument ()
 raises (Reflective::MofError);
 void set_argument (in ModelElementUList new_value)
 raises (Reflective::MofError);
 void add_argument (in ModelElement new_element)
 raises (Reflective::MofError);
 void add_argument_before (
 in ModelElement new_element,
 in ModelElement before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_argument (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_argument (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Binding

 interface ComponentClass : ClassifierClass
 {
 readonly attribute ComponentSet all_of_type_component;
 readonly attribute ComponentSet all_of_class_component;
 Component create_component (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
UML V1.3 June 1999 5-31

5 UML CORBAfacility InterfaceDefinition
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Component : ComponentClass, Classifier
 {
 NodeSet deployment_location ()
 raises (Reflective::MofError);
 void set_deployment_location (in NodeSet new_value)
 raises (Reflective::MofError);
 void add_deployment_location (in Node new_element)
 raises (Reflective::MofError);
 void modify_deployment_location (
 in Node old_element,
 in Node new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_deployment_location (in Node old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ElementResidenceSet resident_element ()
 raises (Reflective::MofError);
 void set_resident_element (in ElementResidenceSet new_value)
 raises (Reflective::MofError);
 void add_resident_element (in ElementResidence new_element)
 raises (Reflective::MofError);
 void modify_resident_element (
 in ElementResidence old_element,
 in ElementResidence new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_resident_element (in ElementResidence old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Component

 interface NodeClass : ClassifierClass
 {
 readonly attribute NodeSet all_of_type_node;
 readonly attribute NodeSet all_of_class_node;
 Node create_node (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Node : NodeClass, Classifier
 {
 ComponentSet resident ()
5-32 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void set_resident (in ComponentSet new_value)
 raises (Reflective::MofError);
 void add_resident (in Component new_element)
 raises (Reflective::MofError);
 void modify_resident (
 in Component old_element,
 in Component new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_resident (in Component old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Node

 interface PermissionClass : DependencyClass
 {
 readonly attribute PermissionSet all_of_type_permission;
 readonly attribute PermissionSet all_of_class_permission;
 Permission create_permission (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Permission : PermissionClass, Dependency
 {
 }; // end of interface Permission

 interface CommentClass : ModelElementClass
 {
 readonly attribute Core::CommentSet all_of_type_comment;
 readonly attribute Core::CommentSet all_of_class_comment;
 Core::Comment create_comment (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Comment : CommentClass, ModelElement
 {
 ModelElementSet annotated_element ()
 raises (Reflective::MofError);
 void set_annotated_element (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_annotated_element (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_annotated_element (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-33

5 UML CORBAfacility InterfaceDefinition
 void remove_annotated_element (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Comment

 interface FlowClass : RelationshipClass
 {
 readonly attribute FlowSet all_of_type_flow;
 readonly attribute FlowSet all_of_class_flow;
 Flow create_flow (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Flow : FlowClass, Relationship
 {
 ModelElementSet target ()
 raises (Reflective::MofError);
 void set_target (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_target (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_target (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_target (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ModelElementSet source ()
 raises (Reflective::MofError);
 void set_source (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_source (in ModelElement new_element)
 raises (Reflective::MofError);
 void modify_source (
 in ModelElement old_element,
 in ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_source (in ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Flow

 interface ElementResidenceClass : Reflective::RefObject
 {
 readonly attribute ElementResidenceSet all_of_type_element_residence;
 readonly attribute ElementResidenceSet all_of_class_element_residence;
 ElementResidence create_element_residence (
 in DataTypes::VisibilityKind visibility)
 raises (Reflective::MofError);
 };
5-34 UML V1.3 June 1999

5.4 IDL Modules
 interface ElementResidence : ElementResidenceClass
 {
 DataTypes::VisibilityKind visibility ()
 raises (Reflective::MofError);
 void set_visibility (in DataTypes::VisibilityKind new_value)
 raises (Reflective::MofError);
 ModelElement resident ()
 raises (Reflective::MofError);
 void set_resident (in ModelElement new_value)
 raises (Reflective::MofError);
 Component implementation_location ()
 raises (Reflective::MofError);
 void set_implementation_location (in Component new_value)
 raises (Reflective::MofError);
 }; // end of interface ElementResidence

 interface TemplateParameterClass : Reflective::RefObject
 {
 readonly attribute TemplateParameterSet all_of_type_template_parameter;
 readonly attribute TemplateParameterSet all_of_class_template_parameter;
 TemplateParameter create_template_parameter ()
 raises (Reflective::MofError);
 };

 interface TemplateParameter : TemplateParameterClass
 {
 ModelElement default_element ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_default_element (in ModelElement new_value)
 raises (Reflective::MofError);
 void unset_default_element ()
 raises (Reflective::MofError);
 ModelElement model_element ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_model_element (in ModelElement new_value)
 raises (Reflective::MofError);
 void unset_model_element ()
 raises (Reflective::MofError);
 ModelElement model_element2 ()
 raises (Reflective::MofError);
 void set_model_element2 (in ModelElement new_value)
 raises (Reflective::MofError);
 }; // end of interface TemplateParameter

 struct AAssociationConnectionLink
 {
 Core::Association association;
 AssociationEnd connection;
 };
 typedef sequence<AAssociationConnectionLink> AAssociationConnectionLinkSet;
UML V1.3 June 1999 5-35

5 UML CORBAfacility InterfaceDefinition
 interface AAssociationConnection : Reflective::RefAssociation
 {
 AAssociationConnectionLinkSet all_a_association_connection_links()
 raises (Reflective::MofError);
 boolean exists (
 in Core::Association association,
 in AssociationEnd connection)
 raises (Reflective::MofError);
 Core::Association association (in AssociationEnd connection)
 raises (Reflective::MofError);
 AssociationEndSet connection (in Core::Association association)
 raises (Reflective::MofError);
 void add (
 in Core::Association association,
 in AssociationEnd connection)
 raises (Reflective::MofError);
 void modify_association (
 in Core::Association association,
 in AssociationEnd connection,
 in Core::Association new_association)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_connection (
 in Core::Association association,
 in AssociationEnd connection,
 in AssociationEnd new_connection)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Core::Association association,
 in AssociationEnd connection)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AAssociationConnection

 struct AOwnerFeatureLink
 {
 Classifier owner;
 Core::Feature feature;
 };
 typedef sequence<AOwnerFeatureLink> AOwnerFeatureLinkSet;

 interface AOwnerFeature : Reflective::RefAssociation
 {
 AOwnerFeatureLinkSet all_a_owner_feature_links()
 raises (Reflective::MofError);
 boolean exists (
 in Classifier owner,
 in Core::Feature feature)
 raises (Reflective::MofError);
 Classifier owner (in Core::Feature feature)
 raises (Reflective::MofError);
 FeatureUList feature (in Classifier owner)
5-36 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void add (
 in Classifier owner,
 in Core::Feature feature)
 raises (Reflective::MofError);
 void add_before_feature (
 in Classifier owner,
 in Core::Feature feature,
 in Core::Feature before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_owner (
 in Classifier owner,
 in Core::Feature feature,
 in Classifier new_owner)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_feature (
 in Classifier owner,
 in Core::Feature feature,
 in Core::Feature new_feature)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Classifier owner,
 in Core::Feature feature)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AOwnerFeature

 struct ASpecificationMethodLink
 {
 Operation specification;
 Core::Method method;
 };
 typedef sequence<ASpecificationMethodLink> ASpecificationMethodLinkSet;

 interface ASpecificationMethod : Reflective::RefAssociation
 {
 ASpecificationMethodLinkSet all_a_specification_method_links()
 raises (Reflective::MofError);
 boolean exists (
 in Operation specification,
 in Core::Method method)
 raises (Reflective::MofError);
 Operation specification (in Core::Method method)
 raises (Reflective::MofError);
 MethodSet method (in Operation specification)
 raises (Reflective::MofError);
 void add (
 in Operation specification,
 in Core::Method method)
 raises (Reflective::MofError);
 void modify_specification (
 in Operation specification,
UML V1.3 June 1999 5-37

5 UML CORBAfacility InterfaceDefinition
 in Core::Method method,
 in Operation new_specification)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_method (
 in Operation specification,
 in Core::Method method,
 in Core::Method new_method)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Operation specification,
 in Core::Method method)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASpecificationMethod

 struct AStructuralFeatureTypeLink
 {
 StructuralFeature structural_feature;
 Classifier type;
 };
 typedef sequence<AStructuralFeatureTypeLink> AStructuralFeatureTypeLinkSet;

 interface AStructuralFeatureType : Reflective::RefAssociation
 {
 AStructuralFeatureTypeLinkSet all_a_structural_feature_type_links()
 raises (Reflective::MofError);
 boolean exists (
 in StructuralFeature structural_feature,
 in Classifier type)
 raises (Reflective::MofError);
 Classifier type (in StructuralFeature structural_feature)
 raises (Reflective::MofError);
 void add (
 in StructuralFeature structural_feature,
 in Classifier type)
 raises (Reflective::MofError);
 void modify_type (
 in StructuralFeature structural_feature,
 in Classifier type,
 in Classifier new_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StructuralFeature structural_feature,
 in Classifier type)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AStructuralFeatureType

 struct ANamespaceOwnedElementLink
 {
 Core::Namespace namespace;
 ModelElement owned_element;
 };
5-38 UML V1.3 June 1999

5.4 IDL Modules
 typedef sequence<ANamespaceOwnedElementLink> ANamespaceOwnedElementLinkSet;

 interface ANamespaceOwnedElement : Reflective::RefAssociation
 {
 ANamespaceOwnedElementLinkSet all_a_namespace_owned_element_links()
 raises (Reflective::MofError);
 boolean exists (
 in Core::Namespace namespace,
 in ModelElement owned_element)
 raises (Reflective::MofError);
 Core::Namespace namespace (in ModelElement owned_element)
 raises (Reflective::MofError);
 ModelElementSet owned_element (in Core::Namespace namespace)
 raises (Reflective::MofError);
 void add (
 in Core::Namespace namespace,
 in ModelElement owned_element)
 raises (Reflective::MofError);
 void modify_namespace (
 in Core::Namespace namespace,
 in ModelElement owned_element,
 in Core::Namespace new_namespace)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_owned_element (
 in Core::Namespace namespace,
 in ModelElement owned_element,
 in ModelElement new_owned_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Core::Namespace namespace,
 in ModelElement owned_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ANamespaceOwnedElement

 struct ABehavioralFeatureParameterLink
 {
 BehavioralFeature behavioral_feature;
 Core::Parameter parameter;
 };
 typedef sequence<ABehavioralFeatureParameterLink>

ABehavioralFeatureParameterLinkSet;

 interface ABehavioralFeatureParameter : Reflective::RefAssociation
 {
 ABehavioralFeatureParameterLinkSet all_a_behavioral_feature_parameter_links()
 raises (Reflective::MofError);
 boolean exists (
 in BehavioralFeature behavioral_feature,
 in Core::Parameter parameter)
 raises (Reflective::MofError);
 BehavioralFeature behavioral_feature (in Core::Parameter parameter)
UML V1.3 June 1999 5-39

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 ParameterUList parameter (in BehavioralFeature behavioral_feature)
 raises (Reflective::MofError);
 void add (
 in BehavioralFeature behavioral_feature,
 in Core::Parameter parameter)
 raises (Reflective::MofError);
 void add_before_parameter (
 in BehavioralFeature behavioral_feature,
 in Core::Parameter parameter,
 in Core::Parameter before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_behavioral_feature (
 in BehavioralFeature behavioral_feature,
 in Core::Parameter parameter,
 in BehavioralFeature new_behavioral_feature)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_parameter (
 in BehavioralFeature behavioral_feature,
 in Core::Parameter parameter,
 in Core::Parameter new_parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in BehavioralFeature behavioral_feature,
 in Core::Parameter parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ABehavioralFeatureParameter

 struct AParameterTypeLink
 {
 Core::Parameter parameter;
 Classifier type;
 };
 typedef sequence<AParameterTypeLink> AParameterTypeLinkSet;

 interface AParameterType : Reflective::RefAssociation
 {
 AParameterTypeLinkSet all_a_parameter_type_links()
 raises (Reflective::MofError);
 boolean exists (
 in Core::Parameter parameter,
 in Classifier type)
 raises (Reflective::MofError);
 Classifier type (in Core::Parameter parameter)
 raises (Reflective::MofError);
 void add (
 in Core::Parameter parameter,
 in Classifier type)
 raises (Reflective::MofError);
 void modify_type (
 in Core::Parameter parameter,
5-40 UML V1.3 June 1999

5.4 IDL Modules
 in Classifier type,
 in Classifier new_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Core::Parameter parameter,
 in Classifier type)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AParameterType

 struct AChildGeneralizationLink
 {
 GeneralizableElement child;
 Core::Generalization generalization;
 };
 typedef sequence<AChildGeneralizationLink> AChildGeneralizationLinkSet;

 interface AChildGeneralization : Reflective::RefAssociation
 {
 AChildGeneralizationLinkSet all_a_child_generalization_links()
 raises (Reflective::MofError);
 boolean exists (
 in GeneralizableElement child,
 in Core::Generalization generalization)
 raises (Reflective::MofError);
 GeneralizableElement child (in Core::Generalization generalization)
 raises (Reflective::MofError);
 GeneralizationSet generalization (in GeneralizableElement child)
 raises (Reflective::MofError);
 void add (
 in GeneralizableElement child,
 in Core::Generalization generalization)
 raises (Reflective::MofError);
 void modify_child (
 in GeneralizableElement child,
 in Core::Generalization generalization,
 in GeneralizableElement new_child)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_generalization (
 in GeneralizableElement child,
 in Core::Generalization generalization,
 in Core::Generalization new_generalization)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in GeneralizableElement child,
 in Core::Generalization generalization)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AChildGeneralization

 struct AParentSpecializationLink
 {
 GeneralizableElement parent;
UML V1.3 June 1999 5-41

5 UML CORBAfacility InterfaceDefinition
 Generalization specialization;
 };
 typedef sequence<AParentSpecializationLink> AParentSpecializationLinkSet;

 interface AParentSpecialization : Reflective::RefAssociation
 {
 AParentSpecializationLinkSet all_a_parent_specialization_links()
 raises (Reflective::MofError);
 boolean exists (
 in GeneralizableElement parent,
 in Generalization specialization)
 raises (Reflective::MofError);
 GeneralizableElement parent (in Generalization specialization)
 raises (Reflective::MofError);
 GeneralizationSet specialization (in GeneralizableElement parent)
 raises (Reflective::MofError);
 void add (
 in GeneralizableElement parent,
 in Generalization specialization)
 raises (Reflective::MofError);
 void modify_parent (
 in GeneralizableElement parent,
 in Generalization specialization,
 in GeneralizableElement new_parent)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_specialization (
 in GeneralizableElement parent,
 in Generalization specialization,
 in Generalization new_specialization)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in GeneralizableElement parent,
 in Generalization specialization)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AParentSpecialization

 struct AQualifierAssociationEndLink
 {
 UmlAttribute qualifier;
 AssociationEnd association_end;
 };
 typedef sequence<AQualifierAssociationEndLink> AQualifierAssociationEndLinkSet;

 interface AQualifierAssociationEnd : Reflective::RefAssociation
 {
 AQualifierAssociationEndLinkSet all_a_qualifier_association_end_links()
 raises (Reflective::MofError);
 boolean exists (
 in UmlAttribute qualifier,
 in AssociationEnd association_end)
 raises (Reflective::MofError);
5-42 UML V1.3 June 1999

5.4 IDL Modules
 UmlAttributeUList qualifier (in AssociationEnd association_end)
 raises (Reflective::MofError);
 AssociationEnd association_end (in UmlAttribute qualifier)
 raises (Reflective::MofError);
 void add (
 in UmlAttribute qualifier,
 in AssociationEnd association_end)
 raises (Reflective::MofError);
 void add_before_qualifier (
 in UmlAttribute qualifier,
 in AssociationEnd association_end,
 in UmlAttribute before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_qualifier (
 in UmlAttribute qualifier,
 in AssociationEnd association_end,
 in UmlAttribute new_qualifier)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_association_end (
 in UmlAttribute qualifier,
 in AssociationEnd association_end,
 in AssociationEnd new_association_end)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in UmlAttribute qualifier,
 in AssociationEnd association_end)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AQualifierAssociationEnd

 struct ATypeAssociationEndLink
 {
 Classifier type;
 AssociationEnd association_end;
 };
 typedef sequence<ATypeAssociationEndLink> ATypeAssociationEndLinkSet;

 interface ATypeAssociationEnd : Reflective::RefAssociation
 {
 ATypeAssociationEndLinkSet all_a_type_association_end_links()
 raises (Reflective::MofError);
 boolean exists (
 in Classifier type,
 in AssociationEnd association_end)
 raises (Reflective::MofError);
 Classifier type (in AssociationEnd association_end)
 raises (Reflective::MofError);
 void add (
 in Classifier type,
 in AssociationEnd association_end)
 raises (Reflective::MofError);
 void modify_type (
UML V1.3 June 1999 5-43

5 UML CORBAfacility InterfaceDefinition
 in Classifier type,
 in AssociationEnd association_end,
 in Classifier new_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Classifier type,
 in AssociationEnd association_end)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATypeAssociationEnd

 struct AParticipantSpecificationLink
 {
 AssociationEnd participant;
 Classifier specification;
 };
 typedef sequence<AParticipantSpecificationLink> AParticipantSpecificationLinkSet;

 interface AParticipantSpecification : Reflective::RefAssociation
 {
 AParticipantSpecificationLinkSet all_a_participant_specification_links()
 raises (Reflective::MofError);
 boolean exists (
 in AssociationEnd participant,
 in Classifier specification)
 raises (Reflective::MofError);
 AssociationEndSet participant (in Classifier specification)
 raises (Reflective::MofError);
 ClassifierSet specification (in AssociationEnd participant)
 raises (Reflective::MofError);
 void add (
 in AssociationEnd participant,
 in Classifier specification)
 raises (Reflective::MofError);
 void modify_participant (
 in AssociationEnd participant,
 in Classifier specification,
 in AssociationEnd new_participant)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_specification (
 in AssociationEnd participant,
 in Classifier specification,
 in Classifier new_specification)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in AssociationEnd participant,
 in Classifier specification)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AParticipantSpecification

 struct AClientClientDependencyLink
 {
5-44 UML V1.3 June 1999

5.4 IDL Modules
 ModelElement client;
 Dependency client_dependency;
 };
 typedef sequence<AClientClientDependencyLink> AClientClientDependencyLinkSet;

 interface AClientClientDependency : Reflective::RefAssociation
 {
 AClientClientDependencyLinkSet all_a_client_client_dependency_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement client,
 in Dependency client_dependency)
 raises (Reflective::MofError);
 ModelElementSet client (in Dependency client_dependency)
 raises (Reflective::MofError);
 DependencySet client_dependency (in ModelElement client)
 raises (Reflective::MofError);
 void add (
 in ModelElement client,
 in Dependency client_dependency)
 raises (Reflective::MofError);
 void modify_client (
 in ModelElement client,
 in Dependency client_dependency,
 in ModelElement new_client)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_client_dependency (
 in ModelElement client,
 in Dependency client_dependency,
 in Dependency new_client_dependency)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement client,
 in Dependency client_dependency)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AClientClientDependency

 struct AConstrainedElementConstraintLink
 {
 ModelElement constrained_element;
 UmlConstraint uml_constraint;
 };
 typedef sequence<AConstrainedElementConstraintLink>

AConstrainedElementConstraintLinkSet;

 interface AConstrainedElementConstraint : Reflective::RefAssociation
 {
 AConstrainedElementConstraintLinkSet all_a_constrained_element_constraint_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement constrained_element,
UML V1.3 June 1999 5-45

5 UML CORBAfacility InterfaceDefinition
 in UmlConstraint uml_constraint)
 raises (Reflective::MofError);
 ModelElementUList constrained_element (in UmlConstraint uml_constraint)
 raises (Reflective::MofError);
 UmlConstraintSet uml_constraint (in ModelElement constrained_element)
 raises (Reflective::MofError);
 void add (
 in ModelElement constrained_element,
 in UmlConstraint uml_constraint)
 raises (Reflective::MofError);
 void add_before_constrained_element (
 in ModelElement constrained_element,
 in UmlConstraint uml_constraint,
 in ModelElement before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_constrained_element (
 in ModelElement constrained_element,
 in UmlConstraint uml_constraint,
 in ModelElement new_constrained_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_uml_constraint (
 in ModelElement constrained_element,
 in UmlConstraint uml_constraint,
 in UmlConstraint new_uml_constraint)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement constrained_element,
 in UmlConstraint uml_constraint)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AConstrainedElementConstraint

 struct ASupplierSupplierDependencyLink
 {
 ModelElement supplier;
 Dependency supplier_dependency;
 };
 typedef sequence<ASupplierSupplierDependencyLink>

ASupplierSupplierDependencyLinkSet;

 interface ASupplierSupplierDependency : Reflective::RefAssociation
 {
 ASupplierSupplierDependencyLinkSet all_a_supplier_supplier_dependency_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement supplier,
 in Dependency supplier_dependency)
 raises (Reflective::MofError);
 ModelElementSet supplier (in Dependency supplier_dependency)
 raises (Reflective::MofError);
 DependencySet supplier_dependency (in ModelElement supplier)
 raises (Reflective::MofError);
5-46 UML V1.3 June 1999

5.4 IDL Modules
 void add (
 in ModelElement supplier,
 in Dependency supplier_dependency)
 raises (Reflective::MofError);
 void modify_supplier (
 in ModelElement supplier,
 in Dependency supplier_dependency,
 in ModelElement new_supplier)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_supplier_dependency (
 in ModelElement supplier,
 in Dependency supplier_dependency,
 in Dependency new_supplier_dependency)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement supplier,
 in Dependency supplier_dependency)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASupplierSupplierDependency

 struct APresentationSubjectLink
 {
 PresentationElement presentation;
 ModelElement subject;
 };
 typedef sequence<APresentationSubjectLink> APresentationSubjectLinkSet;

 interface APresentationSubject : Reflective::RefAssociation
 {
 APresentationSubjectLinkSet all_a_presentation_subject_links()
 raises (Reflective::MofError);
 boolean exists (
 in PresentationElement presentation,
 in ModelElement subject)
 raises (Reflective::MofError);
 PresentationElementSet presentation (in ModelElement subject)
 raises (Reflective::MofError);
 ModelElementSet subject (in PresentationElement presentation)
 raises (Reflective::MofError);
 void add (
 in PresentationElement presentation,
 in ModelElement subject)
 raises (Reflective::MofError);
 void modify_presentation (
 in PresentationElement presentation,
 in ModelElement subject,
 in PresentationElement new_presentation)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_subject (
 in PresentationElement presentation,
 in ModelElement subject,
UML V1.3 June 1999 5-47

5 UML CORBAfacility InterfaceDefinition
 in ModelElement new_subject)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in PresentationElement presentation,
 in ModelElement subject)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface APresentationSubject

 struct ADeploymentLocationResidentLink
 {
 Node deployment_location;
 Component resident;
 };
 typedef sequence<ADeploymentLocationResidentLink>

ADeploymentLocationResidentLinkSet;

 interface ADeploymentLocationResident : Reflective::RefAssociation
 {
 ADeploymentLocationResidentLinkSet all_a_deployment_location_resident_links()
 raises (Reflective::MofError);
 boolean exists (
 in Node deployment_location,
 in Component resident)
 raises (Reflective::MofError);
 NodeSet deployment_location (in Component resident)
 raises (Reflective::MofError);
 ComponentSet resident (in Node deployment_location)
 raises (Reflective::MofError);
 void add (
 in Node deployment_location,
 in Component resident)
 raises (Reflective::MofError);
 void modify_deployment_location (
 in Node deployment_location,
 in Component resident,
 in Node new_deployment_location)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_resident (
 in Node deployment_location,
 in Component resident,
 in Component new_resident)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Node deployment_location,
 in Component resident)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ADeploymentLocationResident

 struct ATargetFlowTargetLink
 {
 Flow target_flow;
5-48 UML V1.3 June 1999

5.4 IDL Modules
 ModelElement target;
 };
 typedef sequence<ATargetFlowTargetLink> ATargetFlowTargetLinkSet;

 interface ATargetFlowTarget : Reflective::RefAssociation
 {
 ATargetFlowTargetLinkSet all_a_target_flow_target_links()
 raises (Reflective::MofError);
 boolean exists (
 in Flow target_flow,
 in ModelElement target)
 raises (Reflective::MofError);
 FlowSet target_flow (in ModelElement target)
 raises (Reflective::MofError);
 ModelElementSet target (in Flow target_flow)
 raises (Reflective::MofError);
 void add (
 in Flow target_flow,
 in ModelElement target)
 raises (Reflective::MofError);
 void modify_target_flow (
 in Flow target_flow,
 in ModelElement target,
 in Flow new_target_flow)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_target (
 in Flow target_flow,
 in ModelElement target,
 in ModelElement new_target)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Flow target_flow,
 in ModelElement target)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATargetFlowTarget

 struct ASourceFlowSourceLink
 {
 Flow source_flow;
 ModelElement source;
 };
 typedef sequence<ASourceFlowSourceLink> ASourceFlowSourceLinkSet;

 interface ASourceFlowSource : Reflective::RefAssociation
 {
 ASourceFlowSourceLinkSet all_a_source_flow_source_links()
 raises (Reflective::MofError);
 boolean exists (
 in Flow source_flow,
 in ModelElement source)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-49

5 UML CORBAfacility InterfaceDefinition
 FlowSet source_flow (in ModelElement source)
 raises (Reflective::MofError);
 ModelElementSet source (in Flow source_flow)
 raises (Reflective::MofError);
 void add (
 in Flow source_flow,
 in ModelElement source)
 raises (Reflective::MofError);
 void modify_source_flow (
 in Flow source_flow,
 in ModelElement source,
 in Flow new_source_flow)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_source (
 in Flow source_flow,
 in ModelElement source,
 in ModelElement new_source)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Flow source_flow,
 in ModelElement source)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASourceFlowSource

 struct ADefaultElementTemplateParameter3Link
 {
 ModelElement default_element;
 TemplateParameter template_parameter3;
 };
 typedef sequence<ADefaultElementTemplateParameter3Link>

ADefaultElementTemplateParameter3LinkSet;

 interface ADefaultElementTemplateParameter3 : Reflective::RefAssociation
 {
 ADefaultElementTemplateParameter3LinkSet

all_a_default_element_template_parameter3_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement default_element,
 in TemplateParameter template_parameter3)
 raises (Reflective::MofError);
 ModelElement default_element (in TemplateParameter template_parameter3)
 raises (Reflective::MofError);
 TemplateParameterSet template_parameter3 (in ModelElement default_element)
 raises (Reflective::MofError);
 void add (
 in ModelElement default_element,
 in TemplateParameter template_parameter3)
 raises (Reflective::MofError);
 void modify_default_element (
 in ModelElement default_element,
5-50 UML V1.3 June 1999

5.4 IDL Modules
 in TemplateParameter template_parameter3,
 in ModelElement new_default_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_template_parameter3 (
 in ModelElement default_element,
 in TemplateParameter template_parameter3,
 in TemplateParameter new_template_parameter3)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement default_element,
 in TemplateParameter template_parameter3)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ADefaultElementTemplateParameter3

 struct ABindingArgumentLink
 {
 Core::Binding binding;
 ModelElement argument;
 };
 typedef sequence<ABindingArgumentLink> ABindingArgumentLinkSet;

 interface ABindingArgument : Reflective::RefAssociation
 {
 ABindingArgumentLinkSet all_a_binding_argument_links()
 raises (Reflective::MofError);
 boolean exists (
 in Core::Binding binding,
 in ModelElement argument)
 raises (Reflective::MofError);
 Core::Binding binding (in ModelElement argument)
 raises (Reflective::MofError);
 ModelElementUList argument (in Core::Binding binding)
 raises (Reflective::MofError);
 void add (
 in Core::Binding binding,
 in ModelElement argument)
 raises (Reflective::MofError);
 void add_before_argument (
 in Core::Binding binding,
 in ModelElement argument,
 in ModelElement before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_binding (
 in Core::Binding binding,
 in ModelElement argument,
 in Core::Binding new_binding)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_argument (
 in Core::Binding binding,
 in ModelElement argument,
 in ModelElement new_argument)
UML V1.3 June 1999 5-51

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Core::Binding binding,
 in ModelElement argument)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ABindingArgument

 struct APowertypePowertypeRangeLink
 {
 Classifier powertype;
 Generalization powertype_range;
 };
 typedef sequence<APowertypePowertypeRangeLink>

APowertypePowertypeRangeLinkSet;

 interface APowertypePowertypeRange : Reflective::RefAssociation
 {
 APowertypePowertypeRangeLinkSet all_a_powertype_powertype_range_links()
 raises (Reflective::MofError);
 boolean exists (
 in Classifier powertype,
 in Generalization powertype_range)
 raises (Reflective::MofError);
 Classifier powertype (in Generalization powertype_range)
 raises (Reflective::MofError);
 GeneralizationSet powertype_range (in Classifier powertype)
 raises (Reflective::MofError);
 void add (
 in Classifier powertype,
 in Generalization powertype_range)
 raises (Reflective::MofError);
 void modify_powertype (
 in Classifier powertype,
 in Generalization powertype_range,
 in Classifier new_powertype)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_powertype_range (
 in Classifier powertype,
 in Generalization powertype_range,
 in Generalization new_powertype_range)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Classifier powertype,
 in Generalization powertype_range)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface APowertypePowertypeRange

 struct ACommentAnnotatedElementLink
 {
 Core::Comment comment;
 ModelElement annotated_element;
5-52 UML V1.3 June 1999

5.4 IDL Modules
 };
 typedef sequence<ACommentAnnotatedElementLink>

ACommentAnnotatedElementLinkSet;

 interface ACommentAnnotatedElement : Reflective::RefAssociation
 {
 ACommentAnnotatedElementLinkSet all_a_comment_annotated_element_links()
 raises (Reflective::MofError);
 boolean exists (
 in Core::Comment comment,
 in ModelElement annotated_element)
 raises (Reflective::MofError);
 CommentSet comment (in ModelElement annotated_element)
 raises (Reflective::MofError);
 ModelElementSet annotated_element (in Core::Comment comment)
 raises (Reflective::MofError);
 void add (
 in Core::Comment comment,
 in ModelElement annotated_element)
 raises (Reflective::MofError);
 void modify_comment (
 in Core::Comment comment,
 in ModelElement annotated_element,
 in Core::Comment new_comment)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_annotated_element (
 in Core::Comment comment,
 in ModelElement annotated_element,
 in ModelElement new_annotated_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Core::Comment comment,
 in ModelElement annotated_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ACommentAnnotatedElement

 struct AResidentElementResidenceLink
 {
 ModelElement resident;
 ElementResidence element_residence;
 };
 typedef sequence<AResidentElementResidenceLink> AResidentElementResidenceLinkSet;

 interface AResidentElementResidence : Reflective::RefAssociation
 {
 AResidentElementResidenceLinkSet all_a_resident_element_residence_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement resident,
 in ElementResidence element_residence)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-53

5 UML CORBAfacility InterfaceDefinition
 ModelElement resident (in ElementResidence element_residence)
 raises (Reflective::MofError);
 ElementResidenceSet element_residence (in ModelElement resident)
 raises (Reflective::MofError);
 void add (
 in ModelElement resident,
 in ElementResidence element_residence)
 raises (Reflective::MofError);
 void modify_resident (
 in ModelElement resident,
 in ElementResidence element_residence,
 in ModelElement new_resident)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_element_residence (
 in ModelElement resident,
 in ElementResidence element_residence,
 in ElementResidence new_element_residence)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement resident,
 in ElementResidence element_residence)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AResidentElementResidence

 struct AImplementationLocationResidentElementLink
 {
 Component implementation_location;
 ElementResidence resident_element;
 };
 typedef sequence<AImplementationLocationResidentElementLink>

AImplementationLocationResidentElementLinkSet;

 interface AImplementationLocationResidentElement : Reflective::RefAssociation
 {
 AImplementationLocationResidentElementLinkSet

all_a_implementation_location_resident_element_links()
 raises (Reflective::MofError);
 boolean exists (
 in Component implementation_location,
 in ElementResidence resident_element)
 raises (Reflective::MofError);
 Component implementation_location (in ElementResidence resident_element)
 raises (Reflective::MofError);
 ElementResidenceSet resident_element (in Component implementation_location)
 raises (Reflective::MofError);
 void add (
 in Component implementation_location,
 in ElementResidence resident_element)
 raises (Reflective::MofError);
 void modify_implementation_location (
 in Component implementation_location,
5-54 UML V1.3 June 1999

5.4 IDL Modules
 in ElementResidence resident_element,
 in Component new_implementation_location)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_resident_element (
 in Component implementation_location,
 in ElementResidence resident_element,
 in ElementResidence new_resident_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Component implementation_location,
 in ElementResidence resident_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AImplementationLocationResidentElement

 struct AModelElementTemplateParameterLink
 {
 ModelElement model_element;
 TemplateParameter template_parameter;
 };
 typedef sequence<AModelElementTemplateParameterLink>

AModelElementTemplateParameterLinkSet;

 interface AModelElementTemplateParameter : Reflective::RefAssociation
 {
 AModelElementTemplateParameterLinkSet

all_a_model_element_template_parameter_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement model_element,
 in TemplateParameter template_parameter)
 raises (Reflective::MofError);
 ModelElement model_element (in TemplateParameter template_parameter)
 raises (Reflective::MofError);
 TemplateParameterUList template_parameter (in ModelElement model_element)
 raises (Reflective::MofError);
 void add (
 in ModelElement model_element,
 in TemplateParameter template_parameter)
 raises (Reflective::MofError);
 void add_before_template_parameter (
 in ModelElement model_element,
 in TemplateParameter template_parameter,
 in TemplateParameter before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_model_element (
 in ModelElement model_element,
 in TemplateParameter template_parameter,
 in ModelElement new_model_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_template_parameter (
 in ModelElement model_element,
UML V1.3 June 1999 5-55

5 UML CORBAfacility InterfaceDefinition
 in TemplateParameter template_parameter,
 in TemplateParameter new_template_parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement model_element,
 in TemplateParameter template_parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AModelElementTemplateParameter

 struct AModelElement2TemplateParameter2Link
 {
 ModelElement model_element2;
 TemplateParameter template_parameter2;
 };
 typedef sequence<AModelElement2TemplateParameter2Link>

AModelElement2TemplateParameter2LinkSet;

 interface AModelElement2TemplateParameter2 : Reflective::RefAssociation
 {
 AModelElement2TemplateParameter2LinkSet

all_a_model_element2_template_parameter2_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelElement model_element2,
 in TemplateParameter template_parameter2)
 raises (Reflective::MofError);
 ModelElement model_element2 (in TemplateParameter template_parameter2)
 raises (Reflective::MofError);
 TemplateParameterSet template_parameter2 (in ModelElement model_element2)
 raises (Reflective::MofError);
 void add (
 in ModelElement model_element2,
 in TemplateParameter template_parameter2)
 raises (Reflective::MofError);
 void modify_model_element2 (
 in ModelElement model_element2,
 in TemplateParameter template_parameter2,
 in ModelElement new_model_element2)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_template_parameter2 (
 in ModelElement model_element2,
 in TemplateParameter template_parameter2,
 in TemplateParameter new_template_parameter2)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelElement model_element2,
 in TemplateParameter template_parameter2)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AModelElement2TemplateParameter2

 interface CorePackage : Reflective::RefPackage
5-56 UML V1.3 June 1999

5.4 IDL Modules
 {
 readonly attribute ClassifierClass classifier_ref;
 readonly attribute ClassClass class_ref;
 readonly attribute DataTypeClass data_type_ref;
 readonly attribute StructuralFeatureClass structural_feature_ref;
 readonly attribute NamespaceClass namespace_ref;
 readonly attribute AssociationEndClass association_end_ref;
 readonly attribute UmlInterfaceClass uml_interface_ref;
 readonly attribute UmlConstraintClass uml_constraint_ref;
 readonly attribute AssociationClass association_ref;
 readonly attribute ElementClass element_ref;
 readonly attribute GeneralizableElementClass generalizable_element_ref;
 readonly attribute UmlAttributeClass uml_attribute_ref;
 readonly attribute OperationClass operation_ref;
 readonly attribute ParameterClass parameter_ref;
 readonly attribute MethodClass method_ref;
 readonly attribute GeneralizationClass generalization_ref;
 readonly attribute UmlAssociationClassClass uml_association_class_ref;
 readonly attribute FeatureClass feature_ref;
 readonly attribute BehavioralFeatureClass behavioral_feature_ref;
 readonly attribute ModelElementClass model_element_ref;
 readonly attribute DependencyClass dependency_ref;
 readonly attribute AbstractionClass abstraction_ref;
 readonly attribute PresentationElementClass presentation_element_ref;
 readonly attribute UsageClass usage_ref;
 readonly attribute BindingClass binding_ref;
 readonly attribute ComponentClass component_ref;
 readonly attribute NodeClass node_ref;
 readonly attribute PermissionClass permission_ref;
 readonly attribute CommentClass comment_ref;
 readonly attribute FlowClass flow_ref;
 readonly attribute RelationshipClass relationship_ref;
 readonly attribute ElementResidenceClass element_residence_ref;
 readonly attribute TemplateParameterClass template_parameter_ref;
 readonly attribute AAssociationConnection a_association_connection_ref;
 readonly attribute AOwnerFeature a_owner_feature_ref;
 readonly attribute ASpecificationMethod a_specification_method_ref;
 readonly attribute AStructuralFeatureType a_structural_feature_type_ref;
 readonly attribute ANamespaceOwnedElement a_namespace_owned_element_ref;
 readonly attribute ABehavioralFeatureParameter a_behavioral_feature_parameter_ref;
 readonly attribute AParameterType a_parameter_type_ref;
 readonly attribute AChildGeneralization a_child_generalization_ref;
 readonly attribute AParentSpecialization a_parent_specialization_ref;
 readonly attribute AQualifierAssociationEnd a_qualifier_association_end_ref;
 readonly attribute ATypeAssociationEnd a_type_association_end_ref;
 readonly attribute AParticipantSpecification a_participant_specification_ref;
 readonly attribute AClientClientDependency a_client_client_dependency_ref;
 readonly attribute AConstrainedElementConstraint

a_constrained_element_constraint_ref;
 readonly attribute ASupplierSupplierDependency a_supplier_supplier_dependency_ref;
 readonly attribute APresentationSubject a_presentation_subject_ref;
UML V1.3 June 1999 5-57

5 UML CORBAfacility InterfaceDefinition
 readonly attribute ADeploymentLocationResident a_deployment_location_resident_ref;
 readonly attribute ATargetFlowTarget a_target_flow_target_ref;
 readonly attribute ASourceFlowSource a_source_flow_source_ref;
 readonly attribute ADefaultElementTemplateParameter3

a_default_element_template_parameter3_ref;
 readonly attribute ABindingArgument a_binding_argument_ref;
 readonly attribute APowertypePowertypeRange a_powertype_powertype_range_ref;
 readonly attribute ACommentAnnotatedElement a_comment_annotated_element_ref;
 readonly attribute AResidentElementResidence a_resident_element_residence_ref;
 readonly attribute AImplementationLocationResidentElement

a_implementation_location_resident_element_ref;
 readonly attribute AModelElementTemplateParameter

a_model_element_template_parameter_ref;
 readonly attribute AModelElement2TemplateParameter2

a_model_element2_template_parameter2_ref;
 };
 }; // end of module Core

 module ExtensionMechanisms
 {
 interface StereotypeClass;
 interface Stereotype;
 typedef sequence<Stereotype> StereotypeSet;
 interface TaggedValueClass;
 interface TaggedValue;
 typedef sequence<TaggedValue> TaggedValueSet;
 interface ExtensionMechanismsPackage;

 interface StereotypeClass : Core::GeneralizableElementClass
 {
 readonly attribute StereotypeSet all_of_type_stereotype;
 readonly attribute StereotypeSet all_of_class_stereotype;
 Stereotype create_stereotype (
 in DataTypes::Name name,
 in DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in DataTypes::Geometry icon,
 in DataTypes::Name base_class)
 raises (Reflective::MofError);
 };

 interface Stereotype : StereotypeClass, Core::GeneralizableElement
 {
 DataTypes::Geometry icon ()
 raises (Reflective::MofError);
 void set_icon (in DataTypes::Geometry new_value)
 raises (Reflective::MofError);
 DataTypes::Name base_class ()
5-58 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void set_base_class (in DataTypes::Name new_value)
 raises (Reflective::MofError);
 TaggedValueSet required_tag ()
 raises (Reflective::MofError);
 void set_required_tag (in TaggedValueSet new_value)
 raises (Reflective::MofError);
 void add_required_tag (in TaggedValue new_element)
 raises (Reflective::MofError);
 void modify_required_tag (
 in TaggedValue old_element,
 in TaggedValue new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_required_tag (in TaggedValue old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Core::ModelElementSet extended_element ()
 raises (Reflective::MofError);
 void set_extended_element (in Core::ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_extended_element (in Core::ModelElement new_element)
 raises (Reflective::MofError);
 void modify_extended_element (
 in Core::ModelElement old_element,
 in Core::ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_extended_element (in Core::ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Core::UmlConstraintSet stereotype_constraint ()
 raises (Reflective::MofError);
 void set_stereotype_constraint (in Core::UmlConstraintSet new_value)
 raises (Reflective::MofError);
 void add_stereotype_constraint (in Core::UmlConstraint new_element)
 raises (Reflective::MofError);
 void modify_stereotype_constraint (
 in Core::UmlConstraint old_element,
 in Core::UmlConstraint new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_stereotype_constraint (in Core::UmlConstraint old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Stereotype

 interface TaggedValueClass : Reflective::RefObject
 {
 readonly attribute TaggedValueSet all_of_type_tagged_value;
 readonly attribute TaggedValueSet all_of_class_tagged_value;
 TaggedValue create_tagged_value (
 in DataTypes::Name tag,
 in string uml_value)
 raises (Reflective::MofError);
 };
UML V1.3 June 1999 5-59

5 UML CORBAfacility InterfaceDefinition
 interface TaggedValue : TaggedValueClass
 {
 DataTypes::Name tag ()
 raises (Reflective::MofError);
 void set_tag (in DataTypes::Name new_value)
 raises (Reflective::MofError);
 string uml_value ()
 raises (Reflective::MofError);
 void set_uml_value (in string new_value)
 raises (Reflective::MofError);
 ExtensionMechanisms::Stereotype stereotype ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_stereotype (in ExtensionMechanisms::Stereotype new_value)
 raises (Reflective::MofError);
 void unset_stereotype ()
 raises (Reflective::MofError);
 Core::ModelElement model_element ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_model_element (in Core::ModelElement new_value)
 raises (Reflective::MofError);
 void unset_model_element ()
 raises (Reflective::MofError);
 }; // end of interface TaggedValue

 struct ARequiredTagStereotypeLink
 {
 TaggedValue required_tag;
 ExtensionMechanisms::Stereotype stereotype;
 };
 typedef sequence<ARequiredTagStereotypeLink> ARequiredTagStereotypeLinkSet;

 interface ARequiredTagStereotype : Reflective::RefAssociation
 {
 ARequiredTagStereotypeLinkSet all_a_required_tag_stereotype_links()
 raises (Reflective::MofError);
 boolean exists (
 in TaggedValue required_tag,
 in ExtensionMechanisms::Stereotype stereotype)
 raises (Reflective::MofError);
 TaggedValueSet required_tag (in ExtensionMechanisms::Stereotype stereotype)
 raises (Reflective::MofError);
 ExtensionMechanisms::Stereotype stereotype (in TaggedValue required_tag)
 raises (Reflective::MofError);
 void add (
 in TaggedValue required_tag,
 in ExtensionMechanisms::Stereotype stereotype)
 raises (Reflective::MofError);
 void modify_required_tag (
 in TaggedValue required_tag,
 in ExtensionMechanisms::Stereotype stereotype,
 in TaggedValue new_required_tag)
5-60 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_stereotype (
 in TaggedValue required_tag,
 in ExtensionMechanisms::Stereotype stereotype,
 in ExtensionMechanisms::Stereotype new_stereotype)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in TaggedValue required_tag,
 in ExtensionMechanisms::Stereotype stereotype)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ARequiredTagStereotype

 struct AStereotypeExtendedElementLink
 {
 ExtensionMechanisms::Stereotype stereotype;
 Core::ModelElement extended_element;
 };
 typedef sequence<AStereotypeExtendedElementLink>

AStereotypeExtendedElementLinkSet;

 interface AStereotypeExtendedElement : Reflective::RefAssociation
 {
 AStereotypeExtendedElementLinkSet all_a_stereotype_extended_element_links()
 raises (Reflective::MofError);
 boolean exists (
 in ExtensionMechanisms::Stereotype stereotype,
 in Core::ModelElement extended_element)
 raises (Reflective::MofError);
 ExtensionMechanisms::Stereotype stereotype (in Core::ModelElement extended_element)
 raises (Reflective::MofError);
 Core::ModelElementSet extended_element (in ExtensionMechanisms::Stereotype

stereotype)
 raises (Reflective::MofError);
 void add (
 in ExtensionMechanisms::Stereotype stereotype,
 in Core::ModelElement extended_element)
 raises (Reflective::MofError);
 void modify_stereotype (
 in ExtensionMechanisms::Stereotype stereotype,
 in Core::ModelElement extended_element,
 in ExtensionMechanisms::Stereotype new_stereotype)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_extended_element (
 in ExtensionMechanisms::Stereotype stereotype,
 in Core::ModelElement extended_element,
 in Core::ModelElement new_extended_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ExtensionMechanisms::Stereotype stereotype,
 in Core::ModelElement extended_element)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-61

5 UML CORBAfacility InterfaceDefinition
 }; // end of interface AStereotypeExtendedElement

 struct AConstrainedElement2StereotypeConstraintLink
 {
 Stereotype constrained_element2;
 Core::UmlConstraint stereotype_constraint;
 };
 typedef sequence<AConstrainedElement2StereotypeConstraintLink>

AConstrainedElement2StereotypeConstraintLinkSet;

 interface AConstrainedElement2StereotypeConstraint : Reflective::RefAssociation
 {
 AConstrainedElement2StereotypeConstraintLinkSet

all_a_constrained_element2_stereotype_constraint_link
s()

 raises (Reflective::MofError);
 boolean exists (
 in Stereotype constrained_element2,
 in Core::UmlConstraint stereotype_constraint)
 raises (Reflective::MofError);
 Stereotype constrained_element2 (in Core::UmlConstraint stereotype_constraint)
 raises (Reflective::MofError);
 Core::UmlConstraintSet stereotype_constraint (in Stereotype constrained_element2)
 raises (Reflective::MofError);
 void add (
 in Stereotype constrained_element2,
 in Core::UmlConstraint stereotype_constraint)
 raises (Reflective::MofError);
 void modify_constrained_element2 (
 in Stereotype constrained_element2,
 in Core::UmlConstraint stereotype_constraint,
 in Stereotype new_constrained_element2)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_stereotype_constraint (
 in Stereotype constrained_element2,
 in Core::UmlConstraint stereotype_constraint,
 in Core::UmlConstraint new_stereotype_constraint)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Stereotype constrained_element2,
 in Core::UmlConstraint stereotype_constraint)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AConstrainedElement2StereotypeConstraint

 struct AModelElementTaggedValueLink
 {
 Core::ModelElement model_element;
 TaggedValue tagged_value;
 };
 typedef sequence<AModelElementTaggedValueLink> AModelElementTaggedValueLinkSet;
5-62 UML V1.3 June 1999

5.4 IDL Modules
 interface AModelElementTaggedValue : Reflective::RefAssociation
 {
 AModelElementTaggedValueLinkSet all_a_model_element_tagged_value_links()
 raises (Reflective::MofError);
 boolean exists (
 in Core::ModelElement model_element,
 in TaggedValue tagged_value)
 raises (Reflective::MofError);
 Core::ModelElement model_element (in TaggedValue tagged_value)
 raises (Reflective::MofError);
 TaggedValueSet tagged_value (in Core::ModelElement model_element)
 raises (Reflective::MofError);
 void add (
 in Core::ModelElement model_element,
 in TaggedValue tagged_value)
 raises (Reflective::MofError);
 void modify_model_element (
 in Core::ModelElement model_element,
 in TaggedValue tagged_value,
 in Core::ModelElement new_model_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_tagged_value (
 in Core::ModelElement model_element,
 in TaggedValue tagged_value,
 in TaggedValue new_tagged_value)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Core::ModelElement model_element,
 in TaggedValue tagged_value)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AModelElementTaggedValue

 interface ExtensionMechanismsPackage : Reflective::RefPackage
 {
 readonly attribute StereotypeClass stereotype_ref;
 readonly attribute TaggedValueClass tagged_value_ref;
 readonly attribute ARequiredTagStereotype a_required_tag_stereotype_ref;
 readonly attribute AStereotypeExtendedElement a_stereotype_extended_element_ref;
 readonly attribute AConstrainedElement2StereotypeConstraint

a_constrained_element2_stereotype_constraint_ref;
 readonly attribute AModelElementTaggedValue a_model_element_tagged_value_ref;
 };
 }; // end of module ExtensionMechanisms

 interface FoundationPackageFactory
 {
 FoundationPackage create_foundation_package ()
 raises (Reflective::MofError);
 };

 interface FoundationPackage : Reflective::RefPackage
UML V1.3 June 1999 5-63

5 UML CORBAfacility InterfaceDefinition
 {
 readonly attribute DataTypes::DataTypesPackage data_types_ref;
 readonly attribute Core::CorePackage core_ref;
 readonly attribute ExtensionMechanisms::ExtensionMechanismsPackage

extension_mechanisms_ref;
 };
};
5-64 UML V1.3 June 1999

5.4 IDL Modules
5.4.3 BehavioralElements

#pragma prefix "org.omg.Uml"
#include "Reflective.idl"
#include "Foundation.idl"

module BehavioralElements
{
 typedef sequence<Foundation::Core::Classifier> ClassifierSet;
 typedef sequence<Foundation::Core::ModelElement> ModelElementSet;
 typedef sequence<Foundation::Core::BehavioralFeature> BehavioralFeatureSet;
 typedef sequence<Foundation::Core::Feature> FeatureSet;
 typedef sequence<Foundation::Core::Parameter> ParameterSet;
 typedef sequence<Foundation::Core::Parameter> ParameterUList;
 typedef sequence<Foundation::Core::UmlAttribute> UmlAttributeSet;
 interface BehavioralElementsPackage;

 module CommonBehavior
 {
 interface InstanceClass;
 interface Instance;
 typedef sequence<Instance> InstanceSet;
 interface SignalClass;
 interface Signal;
 typedef sequence<Signal> SignalSet;
 interface CreateActionClass;
 interface CreateAction;
 typedef sequence<CreateAction> CreateActionSet;
 interface DestroyActionClass;
 interface DestroyAction;
 typedef sequence<DestroyAction> DestroyActionSet;
 interface UninterpretedActionClass;
 interface UninterpretedAction;
 typedef sequence<UninterpretedAction> UninterpretedActionSet;
 interface ActionClass;
 interface Action;
 typedef sequence<Action> ActionSet;
 typedef sequence<Action> ActionUList;
 interface AttributeLinkClass;
 interface AttributeLink;
 typedef sequence<AttributeLink> AttributeLinkSet;
 interface LinkObjectClass;
 interface LinkObject;
 typedef sequence<LinkObject> LinkObjectSet;
 interface UmlObjectClass;
 interface UmlObject;
 typedef sequence<UmlObject> UmlObjectSet;
 interface DataValueClass;
 interface DataValue;
 typedef sequence<DataValue> DataValueSet;
UML V1.3 June 1999 5-65

5 UML CORBAfacility InterfaceDefinition
 interface CallActionClass;
 interface CallAction;
 typedef sequence<CallAction> CallActionSet;
 interface SendActionClass;
 interface SendAction;
 typedef sequence<SendAction> SendActionSet;
 interface ActionSequenceClass;
 interface ActionSequence;
 typedef sequence<ActionSequence> ActionSequenceSet;
 interface ArgumentClass;
 interface Argument;
 typedef sequence<Argument> ArgumentSet;
 typedef sequence<Argument> ArgumentUList;
 interface ReceptionClass;
 interface Reception;
 typedef sequence<Reception> ReceptionSet;
 interface LinkClass;
 interface Link;
 typedef sequence<Link> LinkSet;
 interface LinkEndClass;
 interface LinkEnd;
 typedef sequence<LinkEnd> LinkEndSet;
 interface ReturnActionClass;
 interface ReturnAction;
 typedef sequence<ReturnAction> ReturnActionSet;
 interface TerminateActionClass;
 interface TerminateAction;
 typedef sequence<TerminateAction> TerminateActionSet;
 interface StimulusClass;
 interface Stimulus;
 typedef sequence<Stimulus> StimulusSet;
 interface UmlExceptionClass;
 interface UmlException;
 typedef sequence<UmlException> UmlExceptionSet;
 interface ComponentInstanceClass;
 interface ComponentInstance;
 typedef sequence<ComponentInstance> ComponentInstanceSet;
 interface NodeInstanceClass;
 interface NodeInstance;
 typedef sequence<NodeInstance> NodeInstanceSet;
 interface CommonBehaviorPackage;

 interface InstanceClass : Foundation::Core::ModelElementClass
 {
 readonly attribute InstanceSet all_of_type_instance;
 readonly attribute InstanceSet all_of_class_instance;
 Instance create_instance (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
5-66 UML V1.3 June 1999

5.4 IDL Modules
 };

 interface Instance : InstanceClass, Foundation::Core::ModelElement
 {
 ClassifierSet classifier ()
 raises (Reflective::MofError);
 void set_classifier (in ClassifierSet new_value)
 raises (Reflective::MofError);
 void add_classifier (in Foundation::Core::Classifier new_element)
 raises (Reflective::MofError);
 void modify_classifier (
 in Foundation::Core::Classifier old_element,
 in Foundation::Core::Classifier new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_classifier (in Foundation::Core::Classifier old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 AttributeLinkSet attribute_link ()
 raises (Reflective::MofError);
 void set_attribute_link (in AttributeLinkSet new_value)
 raises (Reflective::MofError);
 void add_attribute_link (in AttributeLink new_element)
 raises (Reflective::MofError);
 void modify_attribute_link (
 in AttributeLink old_element,
 in AttributeLink new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_attribute_link (in AttributeLink old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 LinkEndSet link_end ()
 raises (Reflective::MofError);
 void set_link_end (in LinkEndSet new_value)
 raises (Reflective::MofError);
 void add_link_end (in LinkEnd new_element)
 raises (Reflective::MofError);
 void modify_link_end (
 in LinkEnd old_element,
 in LinkEnd new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_link_end (in LinkEnd old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 AttributeLinkSet slot ()
 raises (Reflective::MofError);
 void set_slot (in AttributeLinkSet new_value)
 raises (Reflective::MofError);
 void unset_slot ()
 raises (Reflective::MofError);
 void add_slot (in AttributeLink new_element)
 raises (Reflective::MofError);
 void modify_slot (
 in AttributeLink old_element,
 in AttributeLink new_element)
UML V1.3 June 1999 5-67

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_slot (in AttributeLink old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 StimulusSet stimulus1 ()
 raises (Reflective::MofError);
 void set_stimulus1 (in StimulusSet new_value)
 raises (Reflective::MofError);
 void add_stimulus1 (in Stimulus new_element)
 raises (Reflective::MofError);
 void modify_stimulus1 (
 in Stimulus old_element,
 in Stimulus new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_stimulus1 (in Stimulus old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 StimulusSet stimulus3 ()
 raises (Reflective::MofError);
 void set_stimulus3 (in StimulusSet new_value)
 raises (Reflective::MofError);
 void add_stimulus3 (in Stimulus new_element)
 raises (Reflective::MofError);
 void modify_stimulus3 (
 in Stimulus old_element,
 in Stimulus new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_stimulus3 (in Stimulus old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ComponentInstance component_instance ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_component_instance (in ComponentInstance new_value)
 raises (Reflective::MofError);
 void unset_component_instance ()
 raises (Reflective::MofError);
 StimulusSet stimulus2 ()
 raises (Reflective::MofError);
 void set_stimulus2 (in StimulusSet new_value)
 raises (Reflective::MofError);
 void add_stimulus2 (in Stimulus new_element)
 raises (Reflective::MofError);
 void modify_stimulus2 (
 in Stimulus old_element,
 in Stimulus new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_stimulus2 (in Stimulus old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Instance

 interface SignalClass : Foundation::Core::ClassifierClass
 {
 readonly attribute SignalSet all_of_type_signal;
 readonly attribute SignalSet all_of_class_signal;
5-68 UML V1.3 June 1999

5.4 IDL Modules
 Signal create_signal (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Signal : SignalClass, Foundation::Core::Classifier
 {
 ReceptionSet reception ()
 raises (Reflective::MofError);
 void set_reception (in ReceptionSet new_value)
 raises (Reflective::MofError);
 void unset_reception ()
 raises (Reflective::MofError);
 void add_reception (in CommonBehavior::Reception new_element)
 raises (Reflective::MofError);
 void modify_reception (
 in CommonBehavior::Reception old_element,
 in CommonBehavior::Reception new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_reception (in CommonBehavior::Reception old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 BehavioralFeatureSet uml_context ()
 raises (Reflective::MofError);
 void set_uml_context (in BehavioralFeatureSet new_value)
 raises (Reflective::MofError);
 void add_uml_context (in Foundation::Core::BehavioralFeature new_element)
 raises (Reflective::MofError);
 void modify_uml_context (
 in Foundation::Core::BehavioralFeature old_element,
 in Foundation::Core::BehavioralFeature new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_uml_context (in Foundation::Core::BehavioralFeature old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 SendActionSet send_action ()
 raises (Reflective::MofError);
 void set_send_action (in SendActionSet new_value)
 raises (Reflective::MofError);
 void add_send_action (in SendAction new_element)
 raises (Reflective::MofError);
 void modify_send_action (
 in SendAction old_element,
 in SendAction new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_send_action (in SendAction old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Signal
UML V1.3 June 1999 5-69

5 UML CORBAfacility InterfaceDefinition
 interface ActionClass : Foundation::Core::ModelElementClass
 {
 readonly attribute ActionSet all_of_type_action;
 readonly attribute ActionSet all_of_class_action;
 Action create_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface Action : ActionClass, Foundation::Core::ModelElement
 {
 Foundation::DataTypes::IterationExpression recurrence ()
 raises (Reflective::MofError);
 void set_recurrence (in Foundation::DataTypes::IterationExpression new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::ObjectSetExpression target ()
 raises (Reflective::MofError);
 void set_target (in Foundation::DataTypes::ObjectSetExpression new_value)
 raises (Reflective::MofError);
 boolean is_asynchronous ()
 raises (Reflective::MofError);
 void set_is_asynchronous (in boolean new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::ActionExpression script ()
 raises (Reflective::MofError);
 void set_script (in Foundation::DataTypes::ActionExpression new_value)
 raises (Reflective::MofError);
 ArgumentUList actual_argument ()
 raises (Reflective::MofError);
 void set_actual_argument (in ArgumentUList new_value)
 raises (Reflective::MofError);
 void add_actual_argument (in Argument new_element)
 raises (Reflective::MofError);
 void add_actual_argument_before (
 in Argument new_element,
 in Argument before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_actual_argument (
 in Argument old_element,
 in Argument new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_actual_argument (in Argument old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ActionSequence action_sequence ()
5-70 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotSet, Reflective::MofError);
 void set_action_sequence (in ActionSequence new_value)
 raises (Reflective::MofError);
 void unset_action_sequence ()
 raises (Reflective::MofError);
 StimulusSet stimulus ()
 raises (Reflective::MofError);
 void set_stimulus (in StimulusSet new_value)
 raises (Reflective::MofError);
 void add_stimulus (in CommonBehavior::Stimulus new_element)
 raises (Reflective::MofError);
 void modify_stimulus (
 in CommonBehavior::Stimulus old_element,
 in CommonBehavior::Stimulus new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_stimulus (in CommonBehavior::Stimulus old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Action

 interface CreateActionClass : ActionClass
 {
 readonly attribute CreateActionSet all_of_type_create_action;
 readonly attribute CreateActionSet all_of_class_create_action;
 CreateAction create_create_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface CreateAction : CreateActionClass, Action
 {
 Foundation::Core::Classifier instantiation ()
 raises (Reflective::MofError);
 void set_instantiation (in Foundation::Core::Classifier new_value)
 raises (Reflective::MofError);
 }; // end of interface CreateAction

 interface DestroyActionClass : ActionClass
 {
 readonly attribute DestroyActionSet all_of_type_destroy_action;
 readonly attribute DestroyActionSet all_of_class_destroy_action;
 DestroyAction create_destroy_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
UML V1.3 June 1999 5-71

5 UML CORBAfacility InterfaceDefinition
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface DestroyAction : DestroyActionClass, Action
 {
 }; // end of interface DestroyAction

 interface UninterpretedActionClass : ActionClass
 {
 readonly attribute UninterpretedActionSet all_of_type_uninterpreted_action;
 readonly attribute UninterpretedActionSet all_of_class_uninterpreted_action;
 UninterpretedAction create_uninterpreted_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface UninterpretedAction : UninterpretedActionClass, Action
 {
 }; // end of interface UninterpretedAction

 interface AttributeLinkClass : Foundation::Core::ModelElementClass
 {
 readonly attribute AttributeLinkSet all_of_type_attribute_link;
 readonly attribute AttributeLinkSet all_of_class_attribute_link;
 AttributeLink create_attribute_link (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface AttributeLink : AttributeLinkClass, Foundation::Core::ModelElement
 {
 Foundation::Core::UmlAttribute uml_attribute ()
 raises (Reflective::MofError);
 void set_uml_attribute (in Foundation::Core::UmlAttribute new_value)
 raises (Reflective::MofError);
 CommonBehavior::Instance uml_value ()
 raises (Reflective::MofError);
 void set_uml_value (in CommonBehavior::Instance new_value)
 raises (Reflective::MofError);
 CommonBehavior::Instance instance ()
5-72 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void set_instance (in CommonBehavior::Instance new_value)
 raises (Reflective::MofError);
 LinkEnd link_end ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_link_end (in LinkEnd new_value)
 raises (Reflective::MofError);
 void unset_link_end ()
 raises (Reflective::MofError);
 }; // end of interface AttributeLink

 interface UmlObjectClass : InstanceClass
 {
 readonly attribute UmlObjectSet all_of_type_uml_object;
 readonly attribute UmlObjectSet all_of_class_uml_object;
 UmlObject create_uml_object (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface UmlObject : UmlObjectClass, Instance
 {
 }; // end of interface UmlObject

 interface LinkClass : Foundation::Core::ModelElementClass
 {
 readonly attribute LinkSet all_of_type_link;
 readonly attribute LinkSet all_of_class_link;
 Link create_link (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Link : LinkClass, Foundation::Core::ModelElement
 {
 Foundation::Core::Association association ()
 raises (Reflective::MofError);
 void set_association (in Foundation::Core::Association new_value)
 raises (Reflective::MofError);
 LinkEndSet connection ()
 raises (Reflective::MofError);
 void set_connection (in LinkEndSet new_value)
 raises (Reflective::MofError);
 void add_connection (in LinkEnd new_element)
 raises (Reflective::MofError);
 void modify_connection (
 in LinkEnd old_element,
UML V1.3 June 1999 5-73

5 UML CORBAfacility InterfaceDefinition
 in LinkEnd new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_connection (in LinkEnd old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 StimulusSet stimulus ()
 raises (Reflective::MofError);
 void set_stimulus (in StimulusSet new_value)
 raises (Reflective::MofError);
 void add_stimulus (in CommonBehavior::Stimulus new_element)
 raises (Reflective::MofError);
 void modify_stimulus (
 in CommonBehavior::Stimulus old_element,
 in CommonBehavior::Stimulus new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_stimulus (in CommonBehavior::Stimulus old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Link

 interface LinkObjectClass : UmlObjectClass, LinkClass
 {
 readonly attribute LinkObjectSet all_of_type_link_object;
 readonly attribute LinkObjectSet all_of_class_link_object;
 LinkObject create_link_object (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface LinkObject : LinkObjectClass, UmlObject, Link
 {
 }; // end of interface LinkObject

 interface DataValueClass : InstanceClass
 {
 readonly attribute DataValueSet all_of_type_data_value;
 readonly attribute DataValueSet all_of_class_data_value;
 DataValue create_data_value (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface DataValue : DataValueClass, Instance
 {
 }; // end of interface DataValue

 interface CallActionClass : ActionClass
 {
 readonly attribute CallActionSet all_of_type_call_action;
5-74 UML V1.3 June 1999

5.4 IDL Modules
 readonly attribute CallActionSet all_of_class_call_action;
 CallAction create_call_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface CallAction : CallActionClass, Action
 {
 Foundation::Core::Operation operation ()
 raises (Reflective::MofError);
 void set_operation (in Foundation::Core::Operation new_value)
 raises (Reflective::MofError);
 }; // end of interface CallAction

 interface SendActionClass : ActionClass
 {
 readonly attribute SendActionSet all_of_type_send_action;
 readonly attribute SendActionSet all_of_class_send_action;
 SendAction create_send_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface SendAction : SendActionClass, Action
 {
 CommonBehavior::Signal signal ()
 raises (Reflective::MofError);
 void set_signal (in CommonBehavior::Signal new_value)
 raises (Reflective::MofError);
 }; // end of interface SendAction

 interface ActionSequenceClass : CommonBehavior::ActionClass
 {
 readonly attribute ActionSequenceSet all_of_type_action_sequence;
 readonly attribute ActionSequenceSet all_of_class_action_sequence;
 ActionSequence create_action_sequence (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
UML V1.3 June 1999 5-75

5 UML CORBAfacility InterfaceDefinition
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface ActionSequence : ActionSequenceClass, CommonBehavior::Action
 {
 ActionUList action ()
 raises (Reflective::MofError);
 void set_action (in ActionUList new_value)
 raises (Reflective::MofError);
 void unset_action ()
 raises (Reflective::MofError);
 void add_action (in CommonBehavior::Action new_element)
 raises (Reflective::MofError);
 void add_action_before (
 in CommonBehavior::Action new_element,
 in CommonBehavior::Action before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_action (
 in CommonBehavior::Action old_element,
 in CommonBehavior::Action new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_action (in CommonBehavior::Action old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ActionSequence

 interface ArgumentClass : Foundation::Core::ModelElementClass
 {
 readonly attribute ArgumentSet all_of_type_argument;
 readonly attribute ArgumentSet all_of_class_argument;
 Argument create_argument (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::Expression uml_value)
 raises (Reflective::MofError);
 };

 interface Argument : ArgumentClass, Foundation::Core::ModelElement
 {
 Foundation::DataTypes::Expression uml_value ()
 raises (Reflective::MofError);
 void set_uml_value (in Foundation::DataTypes::Expression new_value)
 raises (Reflective::MofError);
 CommonBehavior::Action action ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_action (in CommonBehavior::Action new_value)
 raises (Reflective::MofError);
5-76 UML V1.3 June 1999

5.4 IDL Modules
 void unset_action ()
 raises (Reflective::MofError);
 }; // end of interface Argument

 interface ReceptionClass : Foundation::Core::BehavioralFeatureClass
 {
 readonly attribute ReceptionSet all_of_type_reception;
 readonly attribute ReceptionSet all_of_class_reception;
 Reception create_reception (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::ScopeKind owner_scope,
 in boolean is_query,
 in string specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Reception : ReceptionClass, Foundation::Core::BehavioralFeature
 {
 string specification ()
 raises (Reflective::MofError);
 void set_specification (in string new_value)
 raises (Reflective::MofError);
 boolean is_root ()
 raises (Reflective::MofError);
 void set_is_root (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_leaf ()
 raises (Reflective::MofError);
 void set_is_leaf (in boolean new_value)
 raises (Reflective::MofError);
 boolean is_abstract ()
 raises (Reflective::MofError);
 void set_is_abstract (in boolean new_value)
 raises (Reflective::MofError);
 CommonBehavior::Signal signal ()
 raises (Reflective::MofError);
 void set_signal (in CommonBehavior::Signal new_value)
 raises (Reflective::MofError);
 }; // end of interface Reception

 interface LinkEndClass : Foundation::Core::ModelElementClass
 {
 readonly attribute LinkEndSet all_of_type_link_end;
 readonly attribute LinkEndSet all_of_class_link_end;
 LinkEnd create_link_end (
 in Foundation::DataTypes::Name name,
UML V1.3 June 1999 5-77

5 UML CORBAfacility InterfaceDefinition
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface LinkEnd : LinkEndClass, Foundation::Core::ModelElement
 {
 CommonBehavior::Instance instance ()
 raises (Reflective::MofError);
 void set_instance (in CommonBehavior::Instance new_value)
 raises (Reflective::MofError);
 CommonBehavior::Link link ()
 raises (Reflective::MofError);
 void set_link (in CommonBehavior::Link new_value)
 raises (Reflective::MofError);
 Foundation::Core::AssociationEnd association_end ()
 raises (Reflective::MofError);
 void set_association_end (in Foundation::Core::AssociationEnd new_value)
 raises (Reflective::MofError);
 AttributeLinkSet qualified_value ()
 raises (Reflective::MofError);
 void set_qualified_value (in AttributeLinkSet new_value)
 raises (Reflective::MofError);
 void unset_qualified_value ()
 raises (Reflective::MofError);
 void add_qualified_value (in AttributeLink new_element)
 raises (Reflective::MofError);
 void modify_qualified_value (
 in AttributeLink old_element,
 in AttributeLink new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_qualified_value (in AttributeLink old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface LinkEnd

 interface ReturnActionClass : ActionClass
 {
 readonly attribute ReturnActionSet all_of_type_return_action;
 readonly attribute ReturnActionSet all_of_class_return_action;
 ReturnAction create_return_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface ReturnAction : ReturnActionClass, Action
5-78 UML V1.3 June 1999

5.4 IDL Modules
 {
 }; // end of interface ReturnAction

 interface TerminateActionClass : ActionClass
 {
 readonly attribute TerminateActionSet all_of_type_terminate_action;
 readonly attribute TerminateActionSet all_of_class_terminate_action;
 TerminateAction create_terminate_action (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::IterationExpression recurrence,
 in Foundation::DataTypes::ObjectSetExpression target,
 in boolean is_asynchronous,
 in Foundation::DataTypes::ActionExpression script)
 raises (Reflective::MofError);
 };

 interface TerminateAction : TerminateActionClass, Action
 {
 }; // end of interface TerminateAction

 interface StimulusClass : Foundation::Core::ModelElementClass
 {
 readonly attribute StimulusSet all_of_type_stimulus;
 readonly attribute StimulusSet all_of_class_stimulus;
 Stimulus create_stimulus (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Stimulus : StimulusClass, Foundation::Core::ModelElement
 {
 InstanceSet argument ()
 raises (Reflective::MofError);
 void set_argument (in InstanceSet new_value)
 raises (Reflective::MofError);
 void add_argument (in Instance new_element)
 raises (Reflective::MofError);
 void modify_argument (
 in Instance old_element,
 in Instance new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_argument (in Instance old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Instance sender ()
 raises (Reflective::MofError);
 void set_sender (in Instance new_value)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-79

5 UML CORBAfacility InterfaceDefinition
 Instance receiver ()
 raises (Reflective::MofError);
 void set_receiver (in Instance new_value)
 raises (Reflective::MofError);
 Link communication_link ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_communication_link (in Link new_value)
 raises (Reflective::MofError);
 void unset_communication_link ()
 raises (Reflective::MofError);
 Action dispatch_action ()
 raises (Reflective::MofError);
 void set_dispatch_action (in Action new_value)
 raises (Reflective::MofError);
 }; // end of interface Stimulus

 interface UmlExceptionClass : SignalClass
 {
 readonly attribute UmlExceptionSet all_of_type_uml_exception;
 readonly attribute UmlExceptionSet all_of_class_uml_exception;
 UmlException create_uml_exception (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface UmlException : UmlExceptionClass, Signal
 {
 }; // end of interface UmlException

 interface ComponentInstanceClass : InstanceClass
 {
 readonly attribute ComponentInstanceSet all_of_type_component_instance;
 readonly attribute ComponentInstanceSet all_of_class_component_instance;
 ComponentInstance create_component_instance (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface ComponentInstance : ComponentInstanceClass, Instance
 {
 NodeInstance node_instance ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_node_instance (in NodeInstance new_value)
 raises (Reflective::MofError);
5-80 UML V1.3 June 1999

5.4 IDL Modules
 void unset_node_instance ()
 raises (Reflective::MofError);
 InstanceSet resident ()
 raises (Reflective::MofError);
 void set_resident (in InstanceSet new_value)
 raises (Reflective::MofError);
 void add_resident (in Instance new_element)
 raises (Reflective::MofError);
 void modify_resident (
 in Instance old_element,
 in Instance new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_resident (in Instance old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ComponentInstance

 interface NodeInstanceClass : InstanceClass
 {
 readonly attribute NodeInstanceSet all_of_type_node_instance;
 readonly attribute NodeInstanceSet all_of_class_node_instance;
 NodeInstance create_node_instance (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface NodeInstance : NodeInstanceClass, Instance
 {
 ComponentInstanceSet resident ()
 raises (Reflective::MofError);
 void set_resident (in ComponentInstanceSet new_value)
 raises (Reflective::MofError);
 void add_resident (in ComponentInstance new_element)
 raises (Reflective::MofError);
 void modify_resident (
 in ComponentInstance old_element,
 in ComponentInstance new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_resident (in ComponentInstance old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface NodeInstance

 struct AInstanceClassifierLink
 {
 CommonBehavior::Instance instance;
 Foundation::Core::Classifier classifier;
 };
 typedef sequence<AInstanceClassifierLink> AInstanceClassifierLinkSet;

 interface AInstanceClassifier : Reflective::RefAssociation
UML V1.3 June 1999 5-81

5 UML CORBAfacility InterfaceDefinition
 {
 AInstanceClassifierLinkSet all_a_instance_classifier_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Instance instance,
 in Foundation::Core::Classifier classifier)
 raises (Reflective::MofError);
 InstanceSet instance (in Foundation::Core::Classifier classifier)
 raises (Reflective::MofError);
 ClassifierSet classifier (in CommonBehavior::Instance instance)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Instance instance,
 in Foundation::Core::Classifier classifier)
 raises (Reflective::MofError);
 void modify_instance (
 in CommonBehavior::Instance instance,
 in Foundation::Core::Classifier classifier,
 in CommonBehavior::Instance new_instance)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_classifier (
 in CommonBehavior::Instance instance,
 in Foundation::Core::Classifier classifier,
 in Foundation::Core::Classifier new_classifier)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Instance instance,
 in Foundation::Core::Classifier classifier)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AInstanceClassifier

 struct AActualArgumentActionLink
 {
 Argument actual_argument;
 CommonBehavior::Action action;
 };
 typedef sequence<AActualArgumentActionLink> AActualArgumentActionLinkSet;

 interface AActualArgumentAction : Reflective::RefAssociation
 {
 AActualArgumentActionLinkSet all_a_actual_argument_action_links()
 raises (Reflective::MofError);
 boolean exists (
 in Argument actual_argument,
 in CommonBehavior::Action action)
 raises (Reflective::MofError);
 ArgumentUList actual_argument (in CommonBehavior::Action action)
 raises (Reflective::MofError);
 CommonBehavior::Action action (in Argument actual_argument)
 raises (Reflective::MofError);
 void add (
5-82 UML V1.3 June 1999

5.4 IDL Modules
 in Argument actual_argument,
 in CommonBehavior::Action action)
 raises (Reflective::MofError);
 void add_before_actual_argument (
 in Argument actual_argument,
 in CommonBehavior::Action action,
 in Argument before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_actual_argument (
 in Argument actual_argument,
 in CommonBehavior::Action action,
 in Argument new_actual_argument)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_action (
 in Argument actual_argument,
 in CommonBehavior::Action action,
 in CommonBehavior::Action new_action)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Argument actual_argument,
 in CommonBehavior::Action action)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AActualArgumentAction

 struct ACreateActionInstantiationLink
 {
 CreateAction create_action;
 Foundation::Core::Classifier instantiation;
 };
 typedef sequence<ACreateActionInstantiationLink> ACreateActionInstantiationLinkSet;

 interface ACreateActionInstantiation : Reflective::RefAssociation
 {
 ACreateActionInstantiationLinkSet all_a_create_action_instantiation_links()
 raises (Reflective::MofError);
 boolean exists (
 in CreateAction create_action,
 in Foundation::Core::Classifier instantiation)
 raises (Reflective::MofError);
 CreateActionSet create_action (in Foundation::Core::Classifier instantiation)
 raises (Reflective::MofError);
 Foundation::Core::Classifier instantiation (in CreateAction create_action)
 raises (Reflective::MofError);
 void add (
 in CreateAction create_action,
 in Foundation::Core::Classifier instantiation)
 raises (Reflective::MofError);
 void modify_create_action (
 in CreateAction create_action,
 in Foundation::Core::Classifier instantiation,
 in CreateAction new_create_action)
UML V1.3 June 1999 5-83

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_instantiation (
 in CreateAction create_action,
 in Foundation::Core::Classifier instantiation,
 in Foundation::Core::Classifier new_instantiation)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CreateAction create_action,
 in Foundation::Core::Classifier instantiation)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ACreateActionInstantiation

 struct AAttributeLinkAttributeLink
 {
 AttributeLink attribute_link;
 Foundation::Core::UmlAttribute uml_attribute;
 };
 typedef sequence<AAttributeLinkAttributeLink> AAttributeLinkAttributeLinkSet;

 interface AAttributeLinkAttribute : Reflective::RefAssociation
 {
 AAttributeLinkAttributeLinkSet all_a_attribute_link_attribute_links()
 raises (Reflective::MofError);
 boolean exists (
 in AttributeLink attribute_link,
 in Foundation::Core::UmlAttribute uml_attribute)
 raises (Reflective::MofError);
 AttributeLinkSet attribute_link (in Foundation::Core::UmlAttribute uml_attribute)
 raises (Reflective::MofError);
 Foundation::Core::UmlAttribute uml_attribute (in AttributeLink attribute_link)
 raises (Reflective::MofError);
 void add (
 in AttributeLink attribute_link,
 in Foundation::Core::UmlAttribute uml_attribute)
 raises (Reflective::MofError);
 void modify_attribute_link (
 in AttributeLink attribute_link,
 in Foundation::Core::UmlAttribute uml_attribute,
 in AttributeLink new_attribute_link)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_uml_attribute (
 in AttributeLink attribute_link,
 in Foundation::Core::UmlAttribute uml_attribute,
 in Foundation::Core::UmlAttribute new_uml_attribute)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in AttributeLink attribute_link,
 in Foundation::Core::UmlAttribute uml_attribute)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AAttributeLinkAttribute
5-84 UML V1.3 June 1999

5.4 IDL Modules
 struct AAttributeLinkValueLink
 {
 AttributeLink attribute_link;
 Instance uml_value;
 };
 typedef sequence<AAttributeLinkValueLink> AAttributeLinkValueLinkSet;

 interface AAttributeLinkValue : Reflective::RefAssociation
 {
 AAttributeLinkValueLinkSet all_a_attribute_link_value_links()
 raises (Reflective::MofError);
 boolean exists (
 in AttributeLink attribute_link,
 in Instance uml_value)
 raises (Reflective::MofError);
 AttributeLinkSet attribute_link (in Instance uml_value)
 raises (Reflective::MofError);
 Instance uml_value (in AttributeLink attribute_link)
 raises (Reflective::MofError);
 void add (
 in AttributeLink attribute_link,
 in Instance uml_value)
 raises (Reflective::MofError);
 void modify_attribute_link (
 in AttributeLink attribute_link,
 in Instance uml_value,
 in AttributeLink new_attribute_link)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_uml_value (
 in AttributeLink attribute_link,
 in Instance uml_value,
 in Instance new_uml_value)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in AttributeLink attribute_link,
 in Instance uml_value)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AAttributeLinkValue

 struct AInstanceLinkEndLink
 {
 CommonBehavior::Instance instance;
 LinkEnd link_end;
 };
 typedef sequence<AInstanceLinkEndLink> AInstanceLinkEndLinkSet;

 interface AInstanceLinkEnd : Reflective::RefAssociation
 {
 AInstanceLinkEndLinkSet all_a_instance_link_end_links()
 raises (Reflective::MofError);
 boolean exists (
UML V1.3 June 1999 5-85

5 UML CORBAfacility InterfaceDefinition
 in CommonBehavior::Instance instance,
 in LinkEnd link_end)
 raises (Reflective::MofError);
 CommonBehavior::Instance instance (in LinkEnd link_end)
 raises (Reflective::MofError);
 LinkEndSet link_end (in CommonBehavior::Instance instance)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Instance instance,
 in LinkEnd link_end)
 raises (Reflective::MofError);
 void modify_instance (
 in CommonBehavior::Instance instance,
 in LinkEnd link_end,
 in CommonBehavior::Instance new_instance)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_link_end (
 in CommonBehavior::Instance instance,
 in LinkEnd link_end,
 in LinkEnd new_link_end)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Instance instance,
 in LinkEnd link_end)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AInstanceLinkEnd

 struct ASignalReceptionLink
 {
 CommonBehavior::Signal signal;
 CommonBehavior::Reception reception;
 };
 typedef sequence<ASignalReceptionLink> ASignalReceptionLinkSet;

 interface ASignalReception : Reflective::RefAssociation
 {
 ASignalReceptionLinkSet all_a_signal_reception_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Signal signal,
 in CommonBehavior::Reception reception)
 raises (Reflective::MofError);
 CommonBehavior::Signal signal (in CommonBehavior::Reception reception)
 raises (Reflective::MofError);
 ReceptionSet reception (in CommonBehavior::Signal signal)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Signal signal,
 in CommonBehavior::Reception reception)
 raises (Reflective::MofError);
 void modify_signal (
5-86 UML V1.3 June 1999

5.4 IDL Modules
 in CommonBehavior::Signal signal,
 in CommonBehavior::Reception reception,
 in CommonBehavior::Signal new_signal)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_reception (
 in CommonBehavior::Signal signal,
 in CommonBehavior::Reception reception,
 in CommonBehavior::Reception new_reception)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Signal signal,
 in CommonBehavior::Reception reception)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASignalReception

 struct ASlotInstanceLink
 {
 AttributeLink slot;
 CommonBehavior::Instance instance;
 };
 typedef sequence<ASlotInstanceLink> ASlotInstanceLinkSet;

 interface ASlotInstance : Reflective::RefAssociation
 {
 ASlotInstanceLinkSet all_a_slot_instance_links()
 raises (Reflective::MofError);
 boolean exists (
 in AttributeLink slot,
 in CommonBehavior::Instance instance)
 raises (Reflective::MofError);
 AttributeLinkSet slot (in CommonBehavior::Instance instance)
 raises (Reflective::MofError);
 CommonBehavior::Instance instance (in AttributeLink slot)
 raises (Reflective::MofError);
 void add (
 in AttributeLink slot,
 in CommonBehavior::Instance instance)
 raises (Reflective::MofError);
 void modify_slot (
 in AttributeLink slot,
 in CommonBehavior::Instance instance,
 in AttributeLink new_slot)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_instance (
 in AttributeLink slot,
 in CommonBehavior::Instance instance,
 in CommonBehavior::Instance new_instance)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in AttributeLink slot,
 in CommonBehavior::Instance instance)
UML V1.3 June 1999 5-87

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASlotInstance

 struct AArgumentStimulus1Link
 {
 Instance argument;
 Stimulus stimulus1;
 };
 typedef sequence<AArgumentStimulus1Link> AArgumentStimulus1LinkSet;

 interface AArgumentStimulus1 : Reflective::RefAssociation
 {
 AArgumentStimulus1LinkSet all_a_argument_stimulus1_links()
 raises (Reflective::MofError);
 boolean exists (
 in Instance argument,
 in Stimulus stimulus1)
 raises (Reflective::MofError);
 InstanceSet argument (in Stimulus stimulus1)
 raises (Reflective::MofError);
 StimulusSet stimulus1 (in Instance argument)
 raises (Reflective::MofError);
 void add (
 in Instance argument,
 in Stimulus stimulus1)
 raises (Reflective::MofError);
 void modify_argument (
 in Instance argument,
 in Stimulus stimulus1,
 in Instance new_argument)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_stimulus1 (
 in Instance argument,
 in Stimulus stimulus1,
 in Stimulus new_stimulus1)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Instance argument,
 in Stimulus stimulus1)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AArgumentStimulus1

 struct AContextRaisedSignalLink
 {
 Foundation::Core::BehavioralFeature uml_context;
 Signal raised_signal;
 };
 typedef sequence<AContextRaisedSignalLink> AContextRaisedSignalLinkSet;

 interface AContextRaisedSignal : Reflective::RefAssociation
 {
5-88 UML V1.3 June 1999

5.4 IDL Modules
 AContextRaisedSignalLinkSet all_a_context_raised_signal_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::BehavioralFeature uml_context,
 in Signal raised_signal)
 raises (Reflective::MofError);
 BehavioralFeatureSet uml_context (in Signal raised_signal)
 raises (Reflective::MofError);
 SignalSet raised_signal (in Foundation::Core::BehavioralFeature uml_context)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::BehavioralFeature uml_context,
 in Signal raised_signal)
 raises (Reflective::MofError);
 void modify_uml_context (
 in Foundation::Core::BehavioralFeature uml_context,
 in Signal raised_signal,
 in Foundation::Core::BehavioralFeature new_uml_context)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_raised_signal (
 in Foundation::Core::BehavioralFeature uml_context,
 in Signal raised_signal,
 in Signal new_raised_signal)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::BehavioralFeature uml_context,
 in Signal raised_signal)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AContextRaisedSignal

 struct AAssociationLinkLink
 {
 Foundation::Core::Association association;
 CommonBehavior::Link link;
 };
 typedef sequence<AAssociationLinkLink> AAssociationLinkLinkSet;

 interface AAssociationLink : Reflective::RefAssociation
 {
 AAssociationLinkLinkSet all_a_association_link_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::Association association,
 in CommonBehavior::Link link)
 raises (Reflective::MofError);
 Foundation::Core::Association association (in CommonBehavior::Link link)
 raises (Reflective::MofError);
 LinkSet link (in Foundation::Core::Association association)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::Association association,
UML V1.3 June 1999 5-89

5 UML CORBAfacility InterfaceDefinition
 in CommonBehavior::Link link)
 raises (Reflective::MofError);
 void modify_association (
 in Foundation::Core::Association association,
 in CommonBehavior::Link link,
 in Foundation::Core::Association new_association)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_link (
 in Foundation::Core::Association association,
 in CommonBehavior::Link link,
 in CommonBehavior::Link new_link)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::Association association,
 in CommonBehavior::Link link)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AAssociationLink

 struct ALinkConnectionLink
 {
 CommonBehavior::Link link;
 LinkEnd connection;
 };
 typedef sequence<ALinkConnectionLink> ALinkConnectionLinkSet;

 interface ALinkConnection : Reflective::RefAssociation
 {
 ALinkConnectionLinkSet all_a_link_connection_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Link link,
 in LinkEnd connection)
 raises (Reflective::MofError);
 CommonBehavior::Link link (in LinkEnd connection)
 raises (Reflective::MofError);
 LinkEndSet connection (in CommonBehavior::Link link)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Link link,
 in LinkEnd connection)
 raises (Reflective::MofError);
 void modify_link (
 in CommonBehavior::Link link,
 in LinkEnd connection,
 in CommonBehavior::Link new_link)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_connection (
 in CommonBehavior::Link link,
 in LinkEnd connection,
 in LinkEnd new_connection)
 raises (Reflective::NotFound, Reflective::MofError);
5-90 UML V1.3 June 1999

5.4 IDL Modules
 void remove (
 in CommonBehavior::Link link,
 in LinkEnd connection)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ALinkConnection

 struct AAssociationEndLinkEndLink
 {
 Foundation::Core::AssociationEnd association_end;
 LinkEnd link_end;
 };
 typedef sequence<AAssociationEndLinkEndLink> AAssociationEndLinkEndLinkSet;

 interface AAssociationEndLinkEnd : Reflective::RefAssociation
 {
 AAssociationEndLinkEndLinkSet all_a_association_end_link_end_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::AssociationEnd association_end,
 in LinkEnd link_end)
 raises (Reflective::MofError);
 Foundation::Core::AssociationEnd association_end (in LinkEnd link_end)
 raises (Reflective::MofError);
 LinkEndSet link_end (in Foundation::Core::AssociationEnd association_end)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::AssociationEnd association_end,
 in LinkEnd link_end)
 raises (Reflective::MofError);
 void modify_association_end (
 in Foundation::Core::AssociationEnd association_end,
 in LinkEnd link_end,
 in Foundation::Core::AssociationEnd new_association_end)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_link_end (
 in Foundation::Core::AssociationEnd association_end,
 in LinkEnd link_end,
 in LinkEnd new_link_end)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::AssociationEnd association_end,
 in LinkEnd link_end)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AAssociationEndLinkEnd

 struct AStimulus3SenderLink
 {
 Stimulus stimulus3;
 Instance sender;
 };
 typedef sequence<AStimulus3SenderLink> AStimulus3SenderLinkSet;
UML V1.3 June 1999 5-91

5 UML CORBAfacility InterfaceDefinition
 interface AStimulus3Sender : Reflective::RefAssociation
 {
 AStimulus3SenderLinkSet all_a_stimulus3_sender_links()
 raises (Reflective::MofError);
 boolean exists (
 in Stimulus stimulus3,
 in Instance sender)
 raises (Reflective::MofError);
 StimulusSet stimulus3 (in Instance sender)
 raises (Reflective::MofError);
 Instance sender (in Stimulus stimulus3)
 raises (Reflective::MofError);
 void add (
 in Stimulus stimulus3,
 in Instance sender)
 raises (Reflective::MofError);
 void modify_stimulus3 (
 in Stimulus stimulus3,
 in Instance sender,
 in Stimulus new_stimulus3)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_sender (
 in Stimulus stimulus3,
 in Instance sender,
 in Instance new_sender)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Stimulus stimulus3,
 in Instance sender)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AStimulus3Sender

 struct ACallActionOperationLink
 {
 CallAction call_action;
 Foundation::Core::Operation operation;
 };
 typedef sequence<ACallActionOperationLink> ACallActionOperationLinkSet;

 interface ACallActionOperation : Reflective::RefAssociation
 {
 ACallActionOperationLinkSet all_a_call_action_operation_links()
 raises (Reflective::MofError);
 boolean exists (
 in CallAction call_action,
 in Foundation::Core::Operation operation)
 raises (Reflective::MofError);
 CallActionSet call_action (in Foundation::Core::Operation operation)
 raises (Reflective::MofError);
 Foundation::Core::Operation operation (in CallAction call_action)
5-92 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void add (
 in CallAction call_action,
 in Foundation::Core::Operation operation)
 raises (Reflective::MofError);
 void modify_call_action (
 in CallAction call_action,
 in Foundation::Core::Operation operation,
 in CallAction new_call_action)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_operation (
 in CallAction call_action,
 in Foundation::Core::Operation operation,
 in Foundation::Core::Operation new_operation)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CallAction call_action,
 in Foundation::Core::Operation operation)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ACallActionOperation

 struct AActionSequenceActionLink
 {
 ActionSequence action_sequence;
 CommonBehavior::Action action;
 };
 typedef sequence<AActionSequenceActionLink> AActionSequenceActionLinkSet;

 interface AActionSequenceAction : Reflective::RefAssociation
 {
 AActionSequenceActionLinkSet all_a_action_sequence_action_links()
 raises (Reflective::MofError);
 boolean exists (
 in ActionSequence action_sequence,
 in CommonBehavior::Action action)
 raises (Reflective::MofError);
 ActionSequence action_sequence (in CommonBehavior::Action action)
 raises (Reflective::MofError);
 ActionUList action (in ActionSequence action_sequence)
 raises (Reflective::MofError);
 void add (
 in ActionSequence action_sequence,
 in CommonBehavior::Action action)
 raises (Reflective::MofError);
 void add_before_action (
 in ActionSequence action_sequence,
 in CommonBehavior::Action action,
 in CommonBehavior::Action before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_action_sequence (
 in ActionSequence action_sequence,
UML V1.3 June 1999 5-93

5 UML CORBAfacility InterfaceDefinition
 in CommonBehavior::Action action,
 in ActionSequence new_action_sequence)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_action (
 in ActionSequence action_sequence,
 in CommonBehavior::Action action,
 in CommonBehavior::Action new_action)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ActionSequence action_sequence,
 in CommonBehavior::Action action)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AActionSequenceAction

 struct AResidentNodeInstanceLink
 {
 ComponentInstance resident;
 NodeInstance node_instance;
 };
 typedef sequence<AResidentNodeInstanceLink> AResidentNodeInstanceLinkSet;

 interface AResidentNodeInstance : Reflective::RefAssociation
 {
 AResidentNodeInstanceLinkSet all_a_resident_node_instance_links()
 raises (Reflective::MofError);
 boolean exists (
 in ComponentInstance resident,
 in NodeInstance node_instance)
 raises (Reflective::MofError);
 ComponentInstanceSet resident (in NodeInstance node_instance)
 raises (Reflective::MofError);
 NodeInstance node_instance (in ComponentInstance resident)
 raises (Reflective::MofError);
 void add (
 in ComponentInstance resident,
 in NodeInstance node_instance)
 raises (Reflective::MofError);
 void modify_resident (
 in ComponentInstance resident,
 in NodeInstance node_instance,
 in ComponentInstance new_resident)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_node_instance (
 in ComponentInstance resident,
 in NodeInstance node_instance,
 in NodeInstance new_node_instance)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ComponentInstance resident,
 in NodeInstance node_instance)
 raises (Reflective::NotFound, Reflective::MofError);
5-94 UML V1.3 June 1999

5.4 IDL Modules
 }; // end of interface AResidentNodeInstance

 struct AResidentComponentInstanceLink
 {
 Instance resident;
 ComponentInstance component_instance;
 };
 typedef sequence<AResidentComponentInstanceLink>

AResidentComponentInstanceLinkSet;

 interface AResidentComponentInstance : Reflective::RefAssociation
 {
 AResidentComponentInstanceLinkSet all_a_resident_component_instance_links()
 raises (Reflective::MofError);
 boolean exists (
 in Instance resident,
 in ComponentInstance component_instance)
 raises (Reflective::MofError);
 InstanceSet resident (in ComponentInstance component_instance)
 raises (Reflective::MofError);
 ComponentInstance component_instance (in Instance resident)
 raises (Reflective::MofError);
 void add (
 in Instance resident,
 in ComponentInstance component_instance)
 raises (Reflective::MofError);
 void modify_resident (
 in Instance resident,
 in ComponentInstance component_instance,
 in Instance new_resident)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_component_instance (
 in Instance resident,
 in ComponentInstance component_instance,
 in ComponentInstance new_component_instance)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Instance resident,
 in ComponentInstance component_instance)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AResidentComponentInstance

 struct AReceiverStimulus2Link
 {
 Instance receiver;
 Stimulus stimulus2;
 };
 typedef sequence<AReceiverStimulus2Link> AReceiverStimulus2LinkSet;

 interface AReceiverStimulus2 : Reflective::RefAssociation
 {
UML V1.3 June 1999 5-95

5 UML CORBAfacility InterfaceDefinition
 AReceiverStimulus2LinkSet all_a_receiver_stimulus2_links()
 raises (Reflective::MofError);
 boolean exists (
 in Instance receiver,
 in Stimulus stimulus2)
 raises (Reflective::MofError);
 Instance receiver (in Stimulus stimulus2)
 raises (Reflective::MofError);
 StimulusSet stimulus2 (in Instance receiver)
 raises (Reflective::MofError);
 void add (
 in Instance receiver,
 in Stimulus stimulus2)
 raises (Reflective::MofError);
 void modify_receiver (
 in Instance receiver,
 in Stimulus stimulus2,
 in Instance new_receiver)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_stimulus2 (
 in Instance receiver,
 in Stimulus stimulus2,
 in Stimulus new_stimulus2)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Instance receiver,
 in Stimulus stimulus2)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AReceiverStimulus2

 struct AStimulusCommunicationLinkLink
 {
 CommonBehavior::Stimulus stimulus;
 Link communication_link;
 };
 typedef sequence<AStimulusCommunicationLinkLink>

AStimulusCommunicationLinkLinkSet;

 interface AStimulusCommunicationLink : Reflective::RefAssociation
 {
 AStimulusCommunicationLinkLinkSet all_a_stimulus_communication_link_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Stimulus stimulus,
 in Link communication_link)
 raises (Reflective::MofError);
 StimulusSet stimulus (in Link communication_link)
 raises (Reflective::MofError);
 Link communication_link (in CommonBehavior::Stimulus stimulus)
 raises (Reflective::MofError);
 void add (
5-96 UML V1.3 June 1999

5.4 IDL Modules
 in CommonBehavior::Stimulus stimulus,
 in Link communication_link)
 raises (Reflective::MofError);
 void modify_stimulus (
 in CommonBehavior::Stimulus stimulus,
 in Link communication_link,
 in CommonBehavior::Stimulus new_stimulus)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_communication_link (
 in CommonBehavior::Stimulus stimulus,
 in Link communication_link,
 in Link new_communication_link)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Stimulus stimulus,
 in Link communication_link)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AStimulusCommunicationLink

 struct ADispatchActionStimulusLink
 {
 Action dispatch_action;
 CommonBehavior::Stimulus stimulus;
 };
 typedef sequence<ADispatchActionStimulusLink> ADispatchActionStimulusLinkSet;

 interface ADispatchActionStimulus : Reflective::RefAssociation
 {
 ADispatchActionStimulusLinkSet all_a_dispatch_action_stimulus_links()
 raises (Reflective::MofError);
 boolean exists (
 in Action dispatch_action,
 in CommonBehavior::Stimulus stimulus)
 raises (Reflective::MofError);
 Action dispatch_action (in CommonBehavior::Stimulus stimulus)
 raises (Reflective::MofError);
 StimulusSet stimulus (in Action dispatch_action)
 raises (Reflective::MofError);
 void add (
 in Action dispatch_action,
 in CommonBehavior::Stimulus stimulus)
 raises (Reflective::MofError);
 void modify_dispatch_action (
 in Action dispatch_action,
 in CommonBehavior::Stimulus stimulus,
 in Action new_dispatch_action)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_stimulus (
 in Action dispatch_action,
 in CommonBehavior::Stimulus stimulus,
 in CommonBehavior::Stimulus new_stimulus)
UML V1.3 June 1999 5-97

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Action dispatch_action,
 in CommonBehavior::Stimulus stimulus)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ADispatchActionStimulus

 struct ASignalSendActionLink
 {
 CommonBehavior::Signal signal;
 SendAction send_action;
 };
 typedef sequence<ASignalSendActionLink> ASignalSendActionLinkSet;

 interface ASignalSendAction : Reflective::RefAssociation
 {
 ASignalSendActionLinkSet all_a_signal_send_action_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Signal signal,
 in SendAction send_action)
 raises (Reflective::MofError);
 CommonBehavior::Signal signal (in SendAction send_action)
 raises (Reflective::MofError);
 SendActionSet send_action (in CommonBehavior::Signal signal)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Signal signal,
 in SendAction send_action)
 raises (Reflective::MofError);
 void modify_signal (
 in CommonBehavior::Signal signal,
 in SendAction send_action,
 in CommonBehavior::Signal new_signal)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_send_action (
 in CommonBehavior::Signal signal,
 in SendAction send_action,
 in SendAction new_send_action)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Signal signal,
 in SendAction send_action)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASignalSendAction

 struct ALinkEndQualifiedValueLink
 {
 LinkEnd link_end;
 AttributeLink qualified_value;
 };
5-98 UML V1.3 June 1999

5.4 IDL Modules
 typedef sequence<ALinkEndQualifiedValueLink> ALinkEndQualifiedValueLinkSet;

 interface ALinkEndQualifiedValue : Reflective::RefAssociation
 {
 ALinkEndQualifiedValueLinkSet all_a_link_end_qualified_value_links()
 raises (Reflective::MofError);
 boolean exists (
 in LinkEnd link_end,
 in AttributeLink qualified_value)
 raises (Reflective::MofError);
 LinkEnd link_end (in AttributeLink qualified_value)
 raises (Reflective::MofError);
 AttributeLinkSet qualified_value (in LinkEnd link_end)
 raises (Reflective::MofError);
 void add (
 in LinkEnd link_end,
 in AttributeLink qualified_value)
 raises (Reflective::MofError);
 void modify_link_end (
 in LinkEnd link_end,
 in AttributeLink qualified_value,
 in LinkEnd new_link_end)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_qualified_value (
 in LinkEnd link_end,
 in AttributeLink qualified_value,
 in AttributeLink new_qualified_value)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in LinkEnd link_end,
 in AttributeLink qualified_value)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ALinkEndQualifiedValue

 interface CommonBehaviorPackage : Reflective::RefPackage
 {
 readonly attribute InstanceClass instance_ref;
 readonly attribute SignalClass signal_ref;
 readonly attribute CreateActionClass create_action_ref;
 readonly attribute DestroyActionClass destroy_action_ref;
 readonly attribute UninterpretedActionClass uninterpreted_action_ref;
 readonly attribute ActionClass action_ref;
 readonly attribute AttributeLinkClass attribute_link_ref;
 readonly attribute LinkObjectClass link_object_ref;
 readonly attribute UmlObjectClass uml_object_ref;
 readonly attribute DataValueClass data_value_ref;
 readonly attribute CallActionClass call_action_ref;
 readonly attribute SendActionClass send_action_ref;
 readonly attribute ActionSequenceClass action_sequence_ref;
 readonly attribute ArgumentClass argument_ref;
 readonly attribute ReceptionClass reception_ref;
UML V1.3 June 1999 5-99

5 UML CORBAfacility InterfaceDefinition
 readonly attribute LinkClass link_ref;
 readonly attribute LinkEndClass link_end_ref;
 readonly attribute ReturnActionClass return_action_ref;
 readonly attribute TerminateActionClass terminate_action_ref;
 readonly attribute StimulusClass stimulus_ref;
 readonly attribute UmlExceptionClass uml_exception_ref;
 readonly attribute ComponentInstanceClass component_instance_ref;
 readonly attribute NodeInstanceClass node_instance_ref;
 readonly attribute AInstanceClassifier a_instance_classifier_ref;
 readonly attribute AActualArgumentAction a_actual_argument_action_ref;
 readonly attribute ACreateActionInstantiation a_create_action_instantiation_ref;
 readonly attribute AAttributeLinkAttribute a_attribute_link_attribute_ref;
 readonly attribute AAttributeLinkValue a_attribute_link_value_ref;
 readonly attribute AInstanceLinkEnd a_instance_link_end_ref;
 readonly attribute ASignalReception a_signal_reception_ref;
 readonly attribute ASlotInstance a_slot_instance_ref;
 readonly attribute AArgumentStimulus1 a_argument_stimulus1_ref;
 readonly attribute AContextRaisedSignal a_context_raised_signal_ref;
 readonly attribute AAssociationLink a_association_link_ref;
 readonly attribute ALinkConnection a_link_connection_ref;
 readonly attribute AAssociationEndLinkEnd a_association_end_link_end_ref;
 readonly attribute AStimulus3Sender a_stimulus3_sender_ref;
 readonly attribute ACallActionOperation a_call_action_operation_ref;
 readonly attribute AActionSequenceAction a_action_sequence_action_ref;
 readonly attribute AResidentNodeInstance a_resident_node_instance_ref;
 readonly attribute AResidentComponentInstance a_resident_component_instance_ref;
 readonly attribute AReceiverStimulus2 a_receiver_stimulus2_ref;
 readonly attribute AStimulusCommunicationLink a_stimulus_communication_link_ref;
 readonly attribute ADispatchActionStimulus a_dispatch_action_stimulus_ref;
 readonly attribute ASignalSendAction a_signal_send_action_ref;
 readonly attribute ALinkEndQualifiedValue a_link_end_qualified_value_ref;
 };
 }; // end of module CommonBehavior

 module UseCases
 {
 interface UseCaseClass;
 interface UseCase;
 typedef sequence<UseCase> UseCaseSet;
 interface ActorClass;
 interface Actor;
 typedef sequence<Actor> ActorSet;
 interface UseCaseInstanceClass;
 interface UseCaseInstance;
 typedef sequence<UseCaseInstance> UseCaseInstanceSet;
 interface ExtendClass;
 interface Extend;
 typedef sequence<Extend> ExtendSet;
 interface IncludeClass;
 interface Include;
 typedef sequence<Include> IncludeSet;
5-100 UML V1.3 June 1999

5.4 IDL Modules
 interface ExtensionPointClass;
 interface ExtensionPoint;
 typedef sequence<ExtensionPoint> ExtensionPointSet;
 typedef sequence<ExtensionPoint> ExtensionPointUList;
 interface UseCasesPackage;

 interface UseCaseClass : Foundation::Core::ClassifierClass
 {
 readonly attribute UseCaseSet all_of_type_use_case;
 readonly attribute UseCaseSet all_of_class_use_case;
 UseCase create_use_case (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface UseCase : UseCaseClass, Foundation::Core::Classifier
 {
 ExtendSet extend2 ()
 raises (Reflective::MofError);
 void set_extend2 (in ExtendSet new_value)
 raises (Reflective::MofError);
 void add_extend2 (in UseCases::Extend new_element)
 raises (Reflective::MofError);
 void modify_extend2 (
 in UseCases::Extend old_element,
 in UseCases::Extend new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_extend2 (in UseCases::Extend old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ExtendSet extend ()
 raises (Reflective::MofError);
 void set_extend (in ExtendSet new_value)
 raises (Reflective::MofError);
 void add_extend (in UseCases::Extend new_element)
 raises (Reflective::MofError);
 void modify_extend (
 in UseCases::Extend old_element,
 in UseCases::Extend new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_extend (in UseCases::Extend old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 IncludeSet include ()
 raises (Reflective::MofError);
 void set_include (in IncludeSet new_value)
 raises (Reflective::MofError);
 void add_include (in UseCases::Include new_element)
UML V1.3 June 1999 5-101

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 void modify_include (
 in UseCases::Include old_element,
 in UseCases::Include new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_include (in UseCases::Include old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 IncludeSet include2 ()
 raises (Reflective::MofError);
 void set_include2 (in IncludeSet new_value)
 raises (Reflective::MofError);
 void add_include2 (in UseCases::Include new_element)
 raises (Reflective::MofError);
 void modify_include2 (
 in UseCases::Include old_element,
 in UseCases::Include new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_include2 (in UseCases::Include old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ExtensionPointSet extension_point ()
 raises (Reflective::MofError);
 void set_extension_point (in ExtensionPointSet new_value)
 raises (Reflective::MofError);
 void add_extension_point (in ExtensionPoint new_element)
 raises (Reflective::MofError);
 void modify_extension_point (
 in ExtensionPoint old_element,
 in ExtensionPoint new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_extension_point (in ExtensionPoint old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface UseCase

 interface ActorClass : Foundation::Core::ClassifierClass
 {
 readonly attribute ActorSet all_of_type_actor;
 readonly attribute ActorSet all_of_class_actor;
 Actor create_actor (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Actor : ActorClass, Foundation::Core::Classifier
 {
 }; // end of interface Actor
5-102 UML V1.3 June 1999

5.4 IDL Modules
 interface UseCaseInstanceClass : CommonBehavior::InstanceClass
 {
 readonly attribute UseCaseInstanceSet all_of_type_use_case_instance;
 readonly attribute UseCaseInstanceSet all_of_class_use_case_instance;
 UseCaseInstance create_use_case_instance (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface UseCaseInstance : UseCaseInstanceClass, CommonBehavior::Instance
 {
 }; // end of interface UseCaseInstance

 interface ExtendClass : Foundation::Core::RelationshipClass
 {
 readonly attribute ExtendSet all_of_type_extend;
 readonly attribute ExtendSet all_of_class_extend;
 Extend create_extend (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::BooleanExpression condition)
 raises (Reflective::MofError);
 };

 interface Extend : ExtendClass, Foundation::Core::Relationship
 {
 Foundation::DataTypes::BooleanExpression condition ()
 raises (Reflective::MofError);
 void set_condition (in Foundation::DataTypes::BooleanExpression new_value)
 raises (Reflective::MofError);
 UseCase base ()
 raises (Reflective::MofError);
 void set_base (in UseCase new_value)
 raises (Reflective::MofError);
 UseCase extension ()
 raises (Reflective::MofError);
 void set_extension (in UseCase new_value)
 raises (Reflective::MofError);
 ExtensionPointUList extension_point ()
 raises (Reflective::MofError);
 void set_extension_point (in ExtensionPointUList new_value)
 raises (Reflective::MofError);
 void add_extension_point (in ExtensionPoint new_element)
 raises (Reflective::MofError);
 void add_extension_point_before (
 in ExtensionPoint new_element,
 in ExtensionPoint before_element)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-103

5 UML CORBAfacility InterfaceDefinition
 void modify_extension_point (
 in ExtensionPoint old_element,
 in ExtensionPoint new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_extension_point (in ExtensionPoint old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Extend

 interface IncludeClass : Foundation::Core::RelationshipClass
 {
 readonly attribute IncludeSet all_of_type_include;
 readonly attribute IncludeSet all_of_class_include;
 Include create_include (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Include : IncludeClass, Foundation::Core::Relationship
 {
 UseCase addition ()
 raises (Reflective::MofError);
 void set_addition (in UseCase new_value)
 raises (Reflective::MofError);
 UseCase base ()
 raises (Reflective::MofError);
 void set_base (in UseCase new_value)
 raises (Reflective::MofError);
 }; // end of interface Include

 interface ExtensionPointClass : Foundation::Core::ModelElementClass
 {
 readonly attribute ExtensionPointSet all_of_type_extension_point;
 readonly attribute ExtensionPointSet all_of_class_extension_point;
 ExtensionPoint create_extension_point (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::LocationReference location)
 raises (Reflective::MofError);
 };

 interface ExtensionPoint : ExtensionPointClass, Foundation::Core::ModelElement
 {
 Foundation::DataTypes::LocationReference location ()
 raises (Reflective::MofError);
 void set_location (in Foundation::DataTypes::LocationReference new_value)
 raises (Reflective::MofError);
 UseCase use_case ()
 raises (Reflective::MofError);
5-104 UML V1.3 June 1999

5.4 IDL Modules
 void set_use_case (in UseCase new_value)
 raises (Reflective::MofError);
 ExtendSet extend ()
 raises (Reflective::MofError);
 void set_extend (in ExtendSet new_value)
 raises (Reflective::MofError);
 void add_extend (in UseCases::Extend new_element)
 raises (Reflective::MofError);
 void modify_extend (
 in UseCases::Extend old_element,
 in UseCases::Extend new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_extend (in UseCases::Extend old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ExtensionPoint

 struct ABaseExtend2Link
 {
 UseCase base;
 Extend extend2;
 };
 typedef sequence<ABaseExtend2Link> ABaseExtend2LinkSet;

 interface ABaseExtend2 : Reflective::RefAssociation
 {
 ABaseExtend2LinkSet all_a_base_extend2_links()
 raises (Reflective::MofError);
 boolean exists (
 in UseCase base,
 in Extend extend2)
 raises (Reflective::MofError);
 UseCase base (in Extend extend2)
 raises (Reflective::MofError);
 ExtendSet extend2 (in UseCase base)
 raises (Reflective::MofError);
 void add (
 in UseCase base,
 in Extend extend2)
 raises (Reflective::MofError);
 void modify_base (
 in UseCase base,
 in Extend extend2,
 in UseCase new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_extend2 (
 in UseCase base,
 in Extend extend2,
 in Extend new_extend2)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in UseCase base,
UML V1.3 June 1999 5-105

5 UML CORBAfacility InterfaceDefinition
 in Extend extend2)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ABaseExtend2

 struct AExtensionExtendLink
 {
 UseCase extension;
 UseCases::Extend extend;
 };
 typedef sequence<AExtensionExtendLink> AExtensionExtendLinkSet;

 interface AExtensionExtend : Reflective::RefAssociation
 {
 AExtensionExtendLinkSet all_a_extension_extend_links()
 raises (Reflective::MofError);
 boolean exists (
 in UseCase extension,
 in UseCases::Extend extend)
 raises (Reflective::MofError);
 UseCase extension (in UseCases::Extend extend)
 raises (Reflective::MofError);
 ExtendSet extend (in UseCase extension)
 raises (Reflective::MofError);
 void add (
 in UseCase extension,
 in UseCases::Extend extend)
 raises (Reflective::MofError);
 void modify_extension (
 in UseCase extension,
 in UseCases::Extend extend,
 in UseCase new_extension)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_extend (
 in UseCase extension,
 in UseCases::Extend extend,
 in UseCases::Extend new_extend)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in UseCase extension,
 in UseCases::Extend extend)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AExtensionExtend

 struct AIncludeAdditionLink
 {
 UseCases::Include include;
 UseCase addition;
 };
 typedef sequence<AIncludeAdditionLink> AIncludeAdditionLinkSet;

 interface AIncludeAddition : Reflective::RefAssociation
5-106 UML V1.3 June 1999

5.4 IDL Modules
 {
 AIncludeAdditionLinkSet all_a_include_addition_links()
 raises (Reflective::MofError);
 boolean exists (
 in UseCases::Include include,
 in UseCase addition)
 raises (Reflective::MofError);
 IncludeSet include (in UseCase addition)
 raises (Reflective::MofError);
 UseCase addition (in UseCases::Include include)
 raises (Reflective::MofError);
 void add (
 in UseCases::Include include,
 in UseCase addition)
 raises (Reflective::MofError);
 void modify_include (
 in UseCases::Include include,
 in UseCase addition,
 in UseCases::Include new_include)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_addition (
 in UseCases::Include include,
 in UseCase addition,
 in UseCase new_addition)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in UseCases::Include include,
 in UseCase addition)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AIncludeAddition

 struct AInclude2BaseLink
 {
 Include include2;
 UseCase base;
 };
 typedef sequence<AInclude2BaseLink> AInclude2BaseLinkSet;

 interface AInclude2Base : Reflective::RefAssociation
 {
 AInclude2BaseLinkSet all_a_include2_base_links()
 raises (Reflective::MofError);
 boolean exists (
 in Include include2,
 in UseCase base)
 raises (Reflective::MofError);
 IncludeSet include2 (in UseCase base)
 raises (Reflective::MofError);
 UseCase base (in Include include2)
 raises (Reflective::MofError);
 void add (
UML V1.3 June 1999 5-107

5 UML CORBAfacility InterfaceDefinition
 in Include include2,
 in UseCase base)
 raises (Reflective::MofError);
 void modify_include2 (
 in Include include2,
 in UseCase base,
 in Include new_include2)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_base (
 in Include include2,
 in UseCase base,
 in UseCase new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Include include2,
 in UseCase base)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AInclude2Base

 struct AExtensionPointUseCaseLink
 {
 ExtensionPoint extension_point;
 UseCase use_case;
 };
 typedef sequence<AExtensionPointUseCaseLink> AExtensionPointUseCaseLinkSet;

 interface AExtensionPointUseCase : Reflective::RefAssociation
 {
 AExtensionPointUseCaseLinkSet all_a_extension_point_use_case_links()
 raises (Reflective::MofError);
 boolean exists (
 in ExtensionPoint extension_point,
 in UseCase use_case)
 raises (Reflective::MofError);
 ExtensionPointSet extension_point (in UseCase use_case)
 raises (Reflective::MofError);
 UseCase use_case (in ExtensionPoint extension_point)
 raises (Reflective::MofError);
 void add (
 in ExtensionPoint extension_point,
 in UseCase use_case)
 raises (Reflective::MofError);
 void modify_extension_point (
 in ExtensionPoint extension_point,
 in UseCase use_case,
 in ExtensionPoint new_extension_point)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_use_case (
 in ExtensionPoint extension_point,
 in UseCase use_case,
 in UseCase new_use_case)
5-108 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ExtensionPoint extension_point,
 in UseCase use_case)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AExtensionPointUseCase

 struct AExtensionPointExtendLink
 {
 ExtensionPoint extension_point;
 UseCases::Extend extend;
 };
 typedef sequence<AExtensionPointExtendLink> AExtensionPointExtendLinkSet;

 interface AExtensionPointExtend : Reflective::RefAssociation
 {
 AExtensionPointExtendLinkSet all_a_extension_point_extend_links()
 raises (Reflective::MofError);
 boolean exists (
 in ExtensionPoint extension_point,
 in UseCases::Extend extend)
 raises (Reflective::MofError);
 ExtensionPointUList extension_point (in UseCases::Extend extend)
 raises (Reflective::MofError);
 ExtendSet extend (in ExtensionPoint extension_point)
 raises (Reflective::MofError);
 void add (
 in ExtensionPoint extension_point,
 in UseCases::Extend extend)
 raises (Reflective::MofError);
 void add_before_extension_point (
 in ExtensionPoint extension_point,
 in UseCases::Extend extend,
 in ExtensionPoint before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_extension_point (
 in ExtensionPoint extension_point,
 in UseCases::Extend extend,
 in ExtensionPoint new_extension_point)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_extend (
 in ExtensionPoint extension_point,
 in UseCases::Extend extend,
 in UseCases::Extend new_extend)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ExtensionPoint extension_point,
 in UseCases::Extend extend)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AExtensionPointExtend
UML V1.3 June 1999 5-109

5 UML CORBAfacility InterfaceDefinition
 interface UseCasesPackage : Reflective::RefPackage
 {
 readonly attribute UseCaseClass use_case_ref;
 readonly attribute ActorClass actor_ref;
 readonly attribute UseCaseInstanceClass use_case_instance_ref;
 readonly attribute ExtendClass extend_ref;
 readonly attribute IncludeClass include_ref;
 readonly attribute ExtensionPointClass extension_point_ref;
 readonly attribute ABaseExtend2 a_base_extend2_ref;
 readonly attribute AExtensionExtend a_extension_extend_ref;
 readonly attribute AIncludeAddition a_include_addition_ref;
 readonly attribute AInclude2Base a_include2_base_ref;
 readonly attribute AExtensionPointUseCase a_extension_point_use_case_ref;
 readonly attribute AExtensionPointExtend a_extension_point_extend_ref;
 };
 }; // end of module UseCases

 module StateMachines
 {
 interface StateMachineClass;
 interface StateMachine;
 typedef sequence<StateMachine> StateMachineSet;
 interface EventClass;
 interface Event;
 typedef sequence<Event> EventSet;
 interface StateClass;
 interface State;
 typedef sequence<State> StateSet;
 interface TimeEventClass;
 interface TimeEvent;
 typedef sequence<TimeEvent> TimeEventSet;
 interface CallEventClass;
 interface CallEvent;
 typedef sequence<CallEvent> CallEventSet;
 interface SignalEventClass;
 interface SignalEvent;
 typedef sequence<SignalEvent> SignalEventSet;
 interface TransitionClass;
 interface Transition;
 typedef sequence<Transition> TransitionSet;
 interface StateVertexClass;
 interface StateVertex;
 typedef sequence<StateVertex> StateVertexSet;
 interface CompositeStateClass;
 interface CompositeState;
 typedef sequence<CompositeState> CompositeStateSet;
 interface ChangeEventClass;
 interface ChangeEvent;
 typedef sequence<ChangeEvent> ChangeEventSet;
 interface GuardClass;
 interface Guard;
5-110 UML V1.3 June 1999

5.4 IDL Modules
 typedef sequence<Guard> GuardSet;
 interface PseudostateClass;
 interface Pseudostate;
 typedef sequence<Pseudostate> PseudostateSet;
 interface SimpleStateClass;
 interface SimpleState;
 typedef sequence<SimpleState> SimpleStateSet;
 interface SubmachineStateClass;
 interface SubmachineState;
 typedef sequence<SubmachineState> SubmachineStateSet;
 interface SynchStateClass;
 interface SynchState;
 typedef sequence<SynchState> SynchStateSet;
 interface StubStateClass;
 interface StubState;
 typedef sequence<StubState> StubStateSet;
 interface FinalStateClass;
 interface FinalState;
 typedef sequence<FinalState> FinalStateSet;
 interface StateMachinesPackage;

 interface StateMachineClass : Foundation::Core::ModelElementClass
 {
 readonly attribute StateMachineSet all_of_type_state_machine;
 readonly attribute StateMachineSet all_of_class_state_machine;
 StateMachine create_state_machine (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface StateMachine : StateMachineClass, Foundation::Core::ModelElement
 {
 Foundation::Core::ModelElement uml_context ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_uml_context (in Foundation::Core::ModelElement new_value)
 raises (Reflective::MofError);
 void unset_uml_context ()
 raises (Reflective::MofError);
 State top ()
 raises (Reflective::MofError);
 void set_top (in State new_value)
 raises (Reflective::MofError);
 TransitionSet transitions ()
 raises (Reflective::MofError);
 void set_transitions (in TransitionSet new_value)
 raises (Reflective::MofError);
 void add_transitions (in Transition new_element)
 raises (Reflective::MofError);
 void modify_transitions (
UML V1.3 June 1999 5-111

5 UML CORBAfacility InterfaceDefinition
 in Transition old_element,
 in Transition new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_transitions (in Transition old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 SubmachineStateSet sub_machine_state ()
 raises (Reflective::MofError);
 void set_sub_machine_state (in SubmachineStateSet new_value)
 raises (Reflective::MofError);
 void add_sub_machine_state (in SubmachineState new_element)
 raises (Reflective::MofError);
 void modify_sub_machine_state (
 in SubmachineState old_element,
 in SubmachineState new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_sub_machine_state (in SubmachineState old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface StateMachine

 interface EventClass : Foundation::Core::ModelElementClass
 {
 readonly attribute EventSet all_of_type_event;
 };

 interface Event : EventClass, Foundation::Core::ModelElement
 {
 ParameterUList parameter ()
 raises (Reflective::MofError);
 void set_parameter (in ParameterUList new_value)
 raises (Reflective::MofError);
 void unset_parameter ()
 raises (Reflective::MofError);
 void add_parameter (in Foundation::Core::Parameter new_element)
 raises (Reflective::MofError);
 void add_parameter_before (
 in Foundation::Core::Parameter new_element,
 in Foundation::Core::Parameter before_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_parameter (
 in Foundation::Core::Parameter old_element,
 in Foundation::Core::Parameter new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_parameter (in Foundation::Core::Parameter old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 StateSet state ()
 raises (Reflective::MofError);
 void set_state (in StateSet new_value)
 raises (Reflective::MofError);
 void unset_state ()
 raises (Reflective::MofError);
 void add_state (in StateMachines::State new_element)
5-112 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 void modify_state (
 in StateMachines::State old_element,
 in StateMachines::State new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_state (in StateMachines::State old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 TransitionSet transition ()
 raises (Reflective::MofError);
 void set_transition (in TransitionSet new_value)
 raises (Reflective::MofError);
 void add_transition (in StateMachines::Transition new_element)
 raises (Reflective::MofError);
 void modify_transition (
 in StateMachines::Transition old_element,
 in StateMachines::Transition new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_transition (in StateMachines::Transition old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Event

 interface StateVertexClass : Foundation::Core::ModelElementClass
 {
 readonly attribute StateVertexSet all_of_type_state_vertex;
 };

 interface StateVertex : StateVertexClass, Foundation::Core::ModelElement
 {
 CompositeState container ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_container (in CompositeState new_value)
 raises (Reflective::MofError);
 void unset_container ()
 raises (Reflective::MofError);
 TransitionSet outgoing ()
 raises (Reflective::MofError);
 void set_outgoing (in TransitionSet new_value)
 raises (Reflective::MofError);
 void add_outgoing (in Transition new_element)
 raises (Reflective::MofError);
 void modify_outgoing (
 in Transition old_element,
 in Transition new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_outgoing (in Transition old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 TransitionSet incoming ()
 raises (Reflective::MofError);
 void set_incoming (in TransitionSet new_value)
 raises (Reflective::MofError);
 void add_incoming (in Transition new_element)
UML V1.3 June 1999 5-113

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 void modify_incoming (
 in Transition old_element,
 in Transition new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_incoming (in Transition old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface StateVertex

 interface StateClass : StateVertexClass
 {
 readonly attribute StateSet all_of_type_state;
 readonly attribute StateSet all_of_class_state;
 State create_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface State : StateClass, StateVertex
 {
 CommonBehavior::Action entry ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_entry (in CommonBehavior::Action new_value)
 raises (Reflective::MofError);
 void unset_entry ()
 raises (Reflective::MofError);
 CommonBehavior::Action exit ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_exit (in CommonBehavior::Action new_value)
 raises (Reflective::MofError);
 void unset_exit ()
 raises (Reflective::MofError);
 StateMachine state_machine ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_state_machine (in StateMachine new_value)
 raises (Reflective::MofError);
 void unset_state_machine ()
 raises (Reflective::MofError);
 EventSet deferrable_event ()
 raises (Reflective::MofError);
 void set_deferrable_event (in EventSet new_value)
 raises (Reflective::MofError);
 void unset_deferrable_event ()
 raises (Reflective::MofError);
 void add_deferrable_event (in Event new_element)
 raises (Reflective::MofError);
 void modify_deferrable_event (
 in Event old_element,
 in Event new_element)
5-114 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_deferrable_event (in Event old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 TransitionSet internal_transition ()
 raises (Reflective::MofError);
 void set_internal_transition (in TransitionSet new_value)
 raises (Reflective::MofError);
 void add_internal_transition (in Transition new_element)
 raises (Reflective::MofError);
 void modify_internal_transition (
 in Transition old_element,
 in Transition new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_internal_transition (in Transition old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 CommonBehavior::Action do_activity ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_do_activity (in CommonBehavior::Action new_value)
 raises (Reflective::MofError);
 void unset_do_activity ()
 raises (Reflective::MofError);
 }; // end of interface State

 interface TimeEventClass : EventClass
 {
 readonly attribute TimeEventSet all_of_type_time_event;
 readonly attribute TimeEventSet all_of_class_time_event;
 TimeEvent create_time_event (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::TimeExpression when)
 raises (Reflective::MofError);
 };

 interface TimeEvent : TimeEventClass, Event
 {
 Foundation::DataTypes::TimeExpression when ()
 raises (Reflective::MofError);
 void set_when (in Foundation::DataTypes::TimeExpression new_value)
 raises (Reflective::MofError);
 }; // end of interface TimeEvent

 interface CallEventClass : EventClass
 {
 readonly attribute CallEventSet all_of_type_call_event;
 readonly attribute CallEventSet all_of_class_call_event;
 CallEvent create_call_event (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
UML V1.3 June 1999 5-115

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 };

 interface CallEvent : CallEventClass, Event
 {
 Foundation::Core::Operation operation ()
 raises (Reflective::MofError);
 void set_operation (in Foundation::Core::Operation new_value)
 raises (Reflective::MofError);
 }; // end of interface CallEvent

 interface SignalEventClass : EventClass
 {
 readonly attribute SignalEventSet all_of_type_signal_event;
 readonly attribute SignalEventSet all_of_class_signal_event;
 SignalEvent create_signal_event (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface SignalEvent : SignalEventClass, Event
 {
 CommonBehavior::Signal signal ()
 raises (Reflective::MofError);
 void set_signal (in CommonBehavior::Signal new_value)
 raises (Reflective::MofError);
 }; // end of interface SignalEvent

 interface TransitionClass : Foundation::Core::ModelElementClass
 {
 readonly attribute TransitionSet all_of_type_transition;
 readonly attribute TransitionSet all_of_class_transition;
 Transition create_transition (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Transition : TransitionClass, Foundation::Core::ModelElement
 {
 StateMachines::Guard guard ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_guard (in StateMachines::Guard new_value)
 raises (Reflective::MofError);
 void unset_guard ()
 raises (Reflective::MofError);
 CommonBehavior::Action effect ()
 raises (Reflective::NotSet, Reflective::MofError);
5-116 UML V1.3 June 1999

5.4 IDL Modules
 void set_effect (in CommonBehavior::Action new_value)
 raises (Reflective::MofError);
 void unset_effect ()
 raises (Reflective::MofError);
 StateMachines::State state ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_state (in StateMachines::State new_value)
 raises (Reflective::MofError);
 void unset_state ()
 raises (Reflective::MofError);
 Event trigger ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_trigger (in Event new_value)
 raises (Reflective::MofError);
 void unset_trigger ()
 raises (Reflective::MofError);
 StateMachine state_machine ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_state_machine (in StateMachine new_value)
 raises (Reflective::MofError);
 void unset_state_machine ()
 raises (Reflective::MofError);
 StateVertex source ()
 raises (Reflective::MofError);
 void set_source (in StateVertex new_value)
 raises (Reflective::MofError);
 StateVertex target ()
 raises (Reflective::MofError);
 void set_target (in StateVertex new_value)
 raises (Reflective::MofError);
 }; // end of interface Transition

 interface CompositeStateClass : StateClass
 {
 readonly attribute CompositeStateSet all_of_type_composite_state;
 readonly attribute CompositeStateSet all_of_class_composite_state;
 CompositeState create_composite_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_concurrent)
 raises (Reflective::MofError);
 };

 interface CompositeState : CompositeStateClass, State
 {
 boolean is_concurrent ()
 raises (Reflective::MofError);
 void set_is_concurrent (in boolean new_value)
 raises (Reflective::MofError);
 StateVertexSet subvertex ()
UML V1.3 June 1999 5-117

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 void set_subvertex (in StateVertexSet new_value)
 raises (Reflective::MofError);
 void unset_subvertex ()
 raises (Reflective::MofError);
 void add_subvertex (in StateVertex new_element)
 raises (Reflective::MofError);
 void modify_subvertex (
 in StateVertex old_element,
 in StateVertex new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_subvertex (in StateVertex old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface CompositeState

 interface ChangeEventClass : EventClass
 {
 readonly attribute ChangeEventSet all_of_type_change_event;
 readonly attribute ChangeEventSet all_of_class_change_event;
 ChangeEvent create_change_event (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::BooleanExpression change_expression)
 raises (Reflective::MofError);
 };

 interface ChangeEvent : ChangeEventClass, Event
 {
 Foundation::DataTypes::BooleanExpression change_expression ()
 raises (Reflective::MofError);
 void set_change_expression (in Foundation::DataTypes::BooleanExpression new_value)
 raises (Reflective::MofError);
 }; // end of interface ChangeEvent

 interface GuardClass : Foundation::Core::ModelElementClass
 {
 readonly attribute GuardSet all_of_type_guard;
 readonly attribute GuardSet all_of_class_guard;
 Guard create_guard (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::BooleanExpression expression)
 raises (Reflective::MofError);
 };

 interface Guard : GuardClass, Foundation::Core::ModelElement
 {
 Foundation::DataTypes::BooleanExpression expression ()
 raises (Reflective::MofError);
5-118 UML V1.3 June 1999

5.4 IDL Modules
 void set_expression (in Foundation::DataTypes::BooleanExpression new_value)
 raises (Reflective::MofError);
 StateMachines::Transition transition ()
 raises (Reflective::MofError);
 void set_transition (in StateMachines::Transition new_value)
 raises (Reflective::MofError);
 }; // end of interface Guard

 interface PseudostateClass : StateVertexClass
 {
 readonly attribute PseudostateSet all_of_type_pseudostate;
 readonly attribute PseudostateSet all_of_class_pseudostate;
 Pseudostate create_pseudostate (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::PseudostateKind kind)
 raises (Reflective::MofError);
 };

 interface Pseudostate : PseudostateClass, StateVertex
 {
 Foundation::DataTypes::PseudostateKind kind ()
 raises (Reflective::MofError);
 void set_kind (in Foundation::DataTypes::PseudostateKind new_value)
 raises (Reflective::MofError);
 }; // end of interface Pseudostate

 interface SimpleStateClass : StateClass
 {
 readonly attribute SimpleStateSet all_of_type_simple_state;
 readonly attribute SimpleStateSet all_of_class_simple_state;
 SimpleState create_simple_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface SimpleState : SimpleStateClass, State
 {
 }; // end of interface SimpleState

 interface SubmachineStateClass : CompositeStateClass
 {
 readonly attribute SubmachineStateSet all_of_type_submachine_state;
 readonly attribute SubmachineStateSet all_of_class_submachine_state;
 SubmachineState create_submachine_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
UML V1.3 June 1999 5-119

5 UML CORBAfacility InterfaceDefinition
 in boolean is_concurrent)
 raises (Reflective::MofError);
 };

 interface SubmachineState : SubmachineStateClass, CompositeState
 {
 StateMachine submachine ()
 raises (Reflective::MofError);
 void set_submachine (in StateMachine new_value)
 raises (Reflective::MofError);
 }; // end of interface SubmachineState

 interface SynchStateClass : StateVertexClass
 {
 readonly attribute SynchStateSet all_of_type_synch_state;
 readonly attribute SynchStateSet all_of_class_synch_state;
 SynchState create_synch_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::UnlimitedInteger bound)
 raises (Reflective::MofError);
 };

 interface SynchState : SynchStateClass, StateVertex
 {
 Foundation::DataTypes::UnlimitedInteger bound ()
 raises (Reflective::MofError);
 void set_bound (in Foundation::DataTypes::UnlimitedInteger new_value)
 raises (Reflective::MofError);
 }; // end of interface SynchState

 interface StubStateClass : StateVertexClass
 {
 readonly attribute StubStateSet all_of_type_stub_state;
 readonly attribute StubStateSet all_of_class_stub_state;
 StubState create_stub_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in Foundation::DataTypes::Name reference_state)
 raises (Reflective::MofError);
 };

 interface StubState : StubStateClass, StateVertex
 {
 Foundation::DataTypes::Name reference_state ()
 raises (Reflective::MofError);
 void set_reference_state (in Foundation::DataTypes::Name new_value)
 raises (Reflective::MofError);
 }; // end of interface StubState
5-120 UML V1.3 June 1999

5.4 IDL Modules
 interface FinalStateClass : StateClass
 {
 readonly attribute FinalStateSet all_of_type_final_state;
 readonly attribute FinalStateSet all_of_class_final_state;
 FinalState create_final_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface FinalState : FinalStateClass, State
 {
 }; // end of interface FinalState

 struct AState1EntryLink
 {
 State state1;
 CommonBehavior::Action entry;
 };
 typedef sequence<AState1EntryLink> AState1EntryLinkSet;

 interface AState1Entry : Reflective::RefAssociation
 {
 AState1EntryLinkSet all_a_state1_entry_links()
 raises (Reflective::MofError);
 boolean exists (
 in State state1,
 in CommonBehavior::Action entry)
 raises (Reflective::MofError);
 State state1 (in CommonBehavior::Action entry)
 raises (Reflective::MofError);
 CommonBehavior::Action entry (in State state1)
 raises (Reflective::MofError);
 void add (
 in State state1,
 in CommonBehavior::Action entry)
 raises (Reflective::MofError);
 void modify_state1 (
 in State state1,
 in CommonBehavior::Action entry,
 in State new_state1)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_entry (
 in State state1,
 in CommonBehavior::Action entry,
 in CommonBehavior::Action new_entry)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in State state1,
UML V1.3 June 1999 5-121

5 UML CORBAfacility InterfaceDefinition
 in CommonBehavior::Action entry)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AState1Entry

 struct AState2ExitLink
 {
 State state2;
 CommonBehavior::Action exit;
 };
 typedef sequence<AState2ExitLink> AState2ExitLinkSet;

 interface AState2Exit : Reflective::RefAssociation
 {
 AState2ExitLinkSet all_a_state2_exit_links()
 raises (Reflective::MofError);
 boolean exists (
 in State state2,
 in CommonBehavior::Action exit)
 raises (Reflective::MofError);
 State state2 (in CommonBehavior::Action exit)
 raises (Reflective::MofError);
 CommonBehavior::Action exit (in State state2)
 raises (Reflective::MofError);
 void add (
 in State state2,
 in CommonBehavior::Action exit)
 raises (Reflective::MofError);
 void modify_state2 (
 in State state2,
 in CommonBehavior::Action exit,
 in State new_state2)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_exit (
 in State state2,
 in CommonBehavior::Action exit,
 in CommonBehavior::Action new_exit)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in State state2,
 in CommonBehavior::Action exit)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AState2Exit

 struct AEventParameterLink
 {
 StateMachines::Event event;
 Foundation::Core::Parameter parameter;
 };
 typedef sequence<AEventParameterLink> AEventParameterLinkSet;

 interface AEventParameter : Reflective::RefAssociation
5-122 UML V1.3 June 1999

5.4 IDL Modules
 {
 AEventParameterLinkSet all_a_event_parameter_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachines::Event event,
 in Foundation::Core::Parameter parameter)
 raises (Reflective::MofError);
 StateMachines::Event event (in Foundation::Core::Parameter parameter)
 raises (Reflective::MofError);
 ParameterUList parameter (in StateMachines::Event event)
 raises (Reflective::MofError);
 void add (
 in StateMachines::Event event,
 in Foundation::Core::Parameter parameter)
 raises (Reflective::MofError);
 void add_before_parameter (
 in StateMachines::Event event,
 in Foundation::Core::Parameter parameter,
 in Foundation::Core::Parameter before)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_event (
 in StateMachines::Event event,
 in Foundation::Core::Parameter parameter,
 in StateMachines::Event new_event)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_parameter (
 in StateMachines::Event event,
 in Foundation::Core::Parameter parameter,
 in Foundation::Core::Parameter new_parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachines::Event event,
 in Foundation::Core::Parameter parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AEventParameter

 struct AGuardTransitionLink
 {
 StateMachines::Guard guard;
 StateMachines::Transition transition;
 };
 typedef sequence<AGuardTransitionLink> AGuardTransitionLinkSet;

 interface AGuardTransition : Reflective::RefAssociation
 {
 AGuardTransitionLinkSet all_a_guard_transition_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachines::Guard guard,
 in StateMachines::Transition transition)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-123

5 UML CORBAfacility InterfaceDefinition
 StateMachines::Guard guard (in StateMachines::Transition transition)
 raises (Reflective::MofError);
 StateMachines::Transition transition (in StateMachines::Guard guard)
 raises (Reflective::MofError);
 void add (
 in StateMachines::Guard guard,
 in StateMachines::Transition transition)
 raises (Reflective::MofError);
 void modify_guard (
 in StateMachines::Guard guard,
 in StateMachines::Transition transition,
 in StateMachines::Guard new_guard)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_transition (
 in StateMachines::Guard guard,
 in StateMachines::Transition transition,
 in StateMachines::Transition new_transition)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachines::Guard guard,
 in StateMachines::Transition transition)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AGuardTransition

 struct ASignalOccurrenceLink
 {
 CommonBehavior::Signal signal;
 SignalEvent occurrence;
 };
 typedef sequence<ASignalOccurrenceLink> ASignalOccurrenceLinkSet;

 interface ASignalOccurrence : Reflective::RefAssociation
 {
 ASignalOccurrenceLinkSet all_a_signal_occurrence_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Signal signal,
 in SignalEvent occurrence)
 raises (Reflective::MofError);
 CommonBehavior::Signal signal (in SignalEvent occurrence)
 raises (Reflective::MofError);
 SignalEventSet occurrence (in CommonBehavior::Signal signal)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Signal signal,
 in SignalEvent occurrence)
 raises (Reflective::MofError);
 void modify_signal (
 in CommonBehavior::Signal signal,
 in SignalEvent occurrence,
 in CommonBehavior::Signal new_signal)
5-124 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_occurrence (
 in CommonBehavior::Signal signal,
 in SignalEvent occurrence,
 in SignalEvent new_occurrence)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Signal signal,
 in SignalEvent occurrence)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASignalOccurrence

 struct ABehaviorContextLink
 {
 StateMachine behavior;
 Foundation::Core::ModelElement uml_context;
 };
 typedef sequence<ABehaviorContextLink> ABehaviorContextLinkSet;

 interface ABehaviorContext : Reflective::RefAssociation
 {
 ABehaviorContextLinkSet all_a_behavior_context_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachine behavior,
 in Foundation::Core::ModelElement uml_context)
 raises (Reflective::MofError);
 StateMachineSet behavior (in Foundation::Core::ModelElement uml_context)
 raises (Reflective::MofError);
 Foundation::Core::ModelElement uml_context (in StateMachine behavior)
 raises (Reflective::MofError);
 void add (
 in StateMachine behavior,
 in Foundation::Core::ModelElement uml_context)
 raises (Reflective::MofError);
 void modify_behavior (
 in StateMachine behavior,
 in Foundation::Core::ModelElement uml_context,
 in StateMachine new_behavior)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_uml_context (
 in StateMachine behavior,
 in Foundation::Core::ModelElement uml_context,
 in Foundation::Core::ModelElement new_uml_context)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachine behavior,
 in Foundation::Core::ModelElement uml_context)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ABehaviorContext
UML V1.3 June 1999 5-125

5 UML CORBAfacility InterfaceDefinition
 struct ATopStateMachineLink
 {
 State top;
 StateMachine state_machine;
 };
 typedef sequence<ATopStateMachineLink> ATopStateMachineLinkSet;

 interface ATopStateMachine : Reflective::RefAssociation
 {
 ATopStateMachineLinkSet all_a_top_state_machine_links()
 raises (Reflective::MofError);
 boolean exists (
 in State top,
 in StateMachine state_machine)
 raises (Reflective::MofError);
 State top (in StateMachine state_machine)
 raises (Reflective::MofError);
 StateMachine state_machine (in State top)
 raises (Reflective::MofError);
 void add (
 in State top,
 in StateMachine state_machine)
 raises (Reflective::MofError);
 void modify_top (
 in State top,
 in StateMachine state_machine,
 in State new_top)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_state_machine (
 in State top,
 in StateMachine state_machine,
 in StateMachine new_state_machine)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in State top,
 in StateMachine state_machine)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATopStateMachine

 struct AStateDeferrableEventLink
 {
 StateMachines::State state;
 Event deferrable_event;
 };
 typedef sequence<AStateDeferrableEventLink> AStateDeferrableEventLinkSet;

 interface AStateDeferrableEvent : Reflective::RefAssociation
 {
 AStateDeferrableEventLinkSet all_a_state_deferrable_event_links()
 raises (Reflective::MofError);
 boolean exists (
5-126 UML V1.3 June 1999

5.4 IDL Modules
 in StateMachines::State state,
 in Event deferrable_event)
 raises (Reflective::MofError);
 StateSet state (in Event deferrable_event)
 raises (Reflective::MofError);
 EventSet deferrable_event (in StateMachines::State state)
 raises (Reflective::MofError);
 void add (
 in StateMachines::State state,
 in Event deferrable_event)
 raises (Reflective::MofError);
 void modify_state (
 in StateMachines::State state,
 in Event deferrable_event,
 in StateMachines::State new_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_deferrable_event (
 in StateMachines::State state,
 in Event deferrable_event,
 in Event new_deferrable_event)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachines::State state,
 in Event deferrable_event)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AStateDeferrableEvent

 struct AOccurrenceOperationLink
 {
 CallEvent occurrence;
 Foundation::Core::Operation operation;
 };
 typedef sequence<AOccurrenceOperationLink> AOccurrenceOperationLinkSet;

 interface AOccurrenceOperation : Reflective::RefAssociation
 {
 AOccurrenceOperationLinkSet all_a_occurrence_operation_links()
 raises (Reflective::MofError);
 boolean exists (
 in CallEvent occurrence,
 in Foundation::Core::Operation operation)
 raises (Reflective::MofError);
 CallEventSet occurrence (in Foundation::Core::Operation operation)
 raises (Reflective::MofError);
 Foundation::Core::Operation operation (in CallEvent occurrence)
 raises (Reflective::MofError);
 void add (
 in CallEvent occurrence,
 in Foundation::Core::Operation operation)
 raises (Reflective::MofError);
 void modify_occurrence (
UML V1.3 June 1999 5-127

5 UML CORBAfacility InterfaceDefinition
 in CallEvent occurrence,
 in Foundation::Core::Operation operation,
 in CallEvent new_occurrence)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_operation (
 in CallEvent occurrence,
 in Foundation::Core::Operation operation,
 in Foundation::Core::Operation new_operation)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CallEvent occurrence,
 in Foundation::Core::Operation operation)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AOccurrenceOperation

 struct AContainerSubvertexLink
 {
 CompositeState container;
 StateVertex subvertex;
 };
 typedef sequence<AContainerSubvertexLink> AContainerSubvertexLinkSet;

 interface AContainerSubvertex : Reflective::RefAssociation
 {
 AContainerSubvertexLinkSet all_a_container_subvertex_links()
 raises (Reflective::MofError);
 boolean exists (
 in CompositeState container,
 in StateVertex subvertex)
 raises (Reflective::MofError);
 CompositeState container (in StateVertex subvertex)
 raises (Reflective::MofError);
 StateVertexSet subvertex (in CompositeState container)
 raises (Reflective::MofError);
 void add (
 in CompositeState container,
 in StateVertex subvertex)
 raises (Reflective::MofError);
 void modify_container (
 in CompositeState container,
 in StateVertex subvertex,
 in CompositeState new_container)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_subvertex (
 in CompositeState container,
 in StateVertex subvertex,
 in StateVertex new_subvertex)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CompositeState container,
 in StateVertex subvertex)
5-128 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AContainerSubvertex

 struct ATransitionEffectLink
 {
 StateMachines::Transition transition;
 CommonBehavior::Action effect;
 };
 typedef sequence<ATransitionEffectLink> ATransitionEffectLinkSet;

 interface ATransitionEffect : Reflective::RefAssociation
 {
 ATransitionEffectLinkSet all_a_transition_effect_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachines::Transition transition,
 in CommonBehavior::Action effect)
 raises (Reflective::MofError);
 StateMachines::Transition transition (in CommonBehavior::Action effect)
 raises (Reflective::MofError);
 CommonBehavior::Action effect (in StateMachines::Transition transition)
 raises (Reflective::MofError);
 void add (
 in StateMachines::Transition transition,
 in CommonBehavior::Action effect)
 raises (Reflective::MofError);
 void modify_transition (
 in StateMachines::Transition transition,
 in CommonBehavior::Action effect,
 in StateMachines::Transition new_transition)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_effect (
 in StateMachines::Transition transition,
 in CommonBehavior::Action effect,
 in CommonBehavior::Action new_effect)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachines::Transition transition,
 in CommonBehavior::Action effect)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATransitionEffect

 struct AStateInternalTransitionLink
 {
 StateMachines::State state;
 Transition internal_transition;
 };
 typedef sequence<AStateInternalTransitionLink> AStateInternalTransitionLinkSet;

 interface AStateInternalTransition : Reflective::RefAssociation
 {
UML V1.3 June 1999 5-129

5 UML CORBAfacility InterfaceDefinition
 AStateInternalTransitionLinkSet all_a_state_internal_transition_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachines::State state,
 in Transition internal_transition)
 raises (Reflective::MofError);
 StateMachines::State state (in Transition internal_transition)
 raises (Reflective::MofError);
 TransitionSet internal_transition (in StateMachines::State state)
 raises (Reflective::MofError);
 void add (
 in StateMachines::State state,
 in Transition internal_transition)
 raises (Reflective::MofError);
 void modify_state (
 in StateMachines::State state,
 in Transition internal_transition,
 in StateMachines::State new_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_internal_transition (
 in StateMachines::State state,
 in Transition internal_transition,
 in Transition new_internal_transition)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachines::State state,
 in Transition internal_transition)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AStateInternalTransition

 struct ATransitionTriggerLink
 {
 StateMachines::Transition transition;
 Event trigger;
 };
 typedef sequence<ATransitionTriggerLink> ATransitionTriggerLinkSet;

 interface ATransitionTrigger : Reflective::RefAssociation
 {
 ATransitionTriggerLinkSet all_a_transition_trigger_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachines::Transition transition,
 in Event trigger)
 raises (Reflective::MofError);
 TransitionSet transition (in Event trigger)
 raises (Reflective::MofError);
 Event trigger (in StateMachines::Transition transition)
 raises (Reflective::MofError);
 void add (
 in StateMachines::Transition transition,
5-130 UML V1.3 June 1999

5.4 IDL Modules
 in Event trigger)
 raises (Reflective::MofError);
 void modify_transition (
 in StateMachines::Transition transition,
 in Event trigger,
 in StateMachines::Transition new_transition)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_trigger (
 in StateMachines::Transition transition,
 in Event trigger,
 in Event new_trigger)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in StateMachines::Transition transition,
 in Event trigger)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATransitionTrigger

 struct AStateMachineTransitionsLink
 {
 StateMachine state_machine;
 Transition transitions;
 };
 typedef sequence<AStateMachineTransitionsLink> AStateMachineTransitionsLinkSet;

 interface AStateMachineTransitions : Reflective::RefAssociation
 {
 AStateMachineTransitionsLinkSet all_a_state_machine_transitions_links()
 raises (Reflective::MofError);
 boolean exists (
 in StateMachine state_machine,
 in Transition transitions)
 raises (Reflective::MofError);
 StateMachine state_machine (in Transition transitions)
 raises (Reflective::MofError);
 TransitionSet transitions (in StateMachine state_machine)
 raises (Reflective::MofError);
 void add (
 in StateMachine state_machine,
 in Transition transitions)
 raises (Reflective::MofError);
 void modify_state_machine (
 in StateMachine state_machine,
 in Transition transitions,
 in StateMachine new_state_machine)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_transitions (
 in StateMachine state_machine,
 in Transition transitions,
 in Transition new_transitions)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-131

5 UML CORBAfacility InterfaceDefinition
 void remove (
 in StateMachine state_machine,
 in Transition transitions)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AStateMachineTransitions

 struct AOutgoingSourceLink
 {
 Transition outgoing;
 StateVertex source;
 };
 typedef sequence<AOutgoingSourceLink> AOutgoingSourceLinkSet;

 interface AOutgoingSource : Reflective::RefAssociation
 {
 AOutgoingSourceLinkSet all_a_outgoing_source_links()
 raises (Reflective::MofError);
 boolean exists (
 in Transition outgoing,
 in StateVertex source)
 raises (Reflective::MofError);
 TransitionSet outgoing (in StateVertex source)
 raises (Reflective::MofError);
 StateVertex source (in Transition outgoing)
 raises (Reflective::MofError);
 void add (
 in Transition outgoing,
 in StateVertex source)
 raises (Reflective::MofError);
 void modify_outgoing (
 in Transition outgoing,
 in StateVertex source,
 in Transition new_outgoing)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_source (
 in Transition outgoing,
 in StateVertex source,
 in StateVertex new_source)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Transition outgoing,
 in StateVertex source)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AOutgoingSource

 struct AIncomingTargetLink
 {
 Transition incoming;
 StateVertex target;
 };
 typedef sequence<AIncomingTargetLink> AIncomingTargetLinkSet;
5-132 UML V1.3 June 1999

5.4 IDL Modules
 interface AIncomingTarget : Reflective::RefAssociation
 {
 AIncomingTargetLinkSet all_a_incoming_target_links()
 raises (Reflective::MofError);
 boolean exists (
 in Transition incoming,
 in StateVertex target)
 raises (Reflective::MofError);
 TransitionSet incoming (in StateVertex target)
 raises (Reflective::MofError);
 StateVertex target (in Transition incoming)
 raises (Reflective::MofError);
 void add (
 in Transition incoming,
 in StateVertex target)
 raises (Reflective::MofError);
 void modify_incoming (
 in Transition incoming,
 in StateVertex target,
 in Transition new_incoming)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_target (
 in Transition incoming,
 in StateVertex target,
 in StateVertex new_target)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Transition incoming,
 in StateVertex target)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AIncomingTarget

 struct ASubMachineStateSubmachineLink
 {
 SubmachineState sub_machine_state;
 StateMachine submachine;
 };
 typedef sequence<ASubMachineStateSubmachineLink>

ASubMachineStateSubmachineLinkSet;

 interface ASubMachineStateSubmachine : Reflective::RefAssociation
 {
 ASubMachineStateSubmachineLinkSet all_a_sub_machine_state_submachine_links()
 raises (Reflective::MofError);
 boolean exists (
 in SubmachineState sub_machine_state,
 in StateMachine submachine)
 raises (Reflective::MofError);
 SubmachineStateSet sub_machine_state (in StateMachine submachine)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-133

5 UML CORBAfacility InterfaceDefinition
 StateMachine submachine (in SubmachineState sub_machine_state)
 raises (Reflective::MofError);
 void add (
 in SubmachineState sub_machine_state,
 in StateMachine submachine)
 raises (Reflective::MofError);
 void modify_sub_machine_state (
 in SubmachineState sub_machine_state,
 in StateMachine submachine,
 in SubmachineState new_sub_machine_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_submachine (
 in SubmachineState sub_machine_state,
 in StateMachine submachine,
 in StateMachine new_submachine)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in SubmachineState sub_machine_state,
 in StateMachine submachine)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ASubMachineStateSubmachine

 struct AState3DoActivityLink
 {
 State state3;
 CommonBehavior::Action do_activity;
 };
 typedef sequence<AState3DoActivityLink> AState3DoActivityLinkSet;

 interface AState3DoActivity : Reflective::RefAssociation
 {
 AState3DoActivityLinkSet all_a_state3_do_activity_links()
 raises (Reflective::MofError);
 boolean exists (
 in State state3,
 in CommonBehavior::Action do_activity)
 raises (Reflective::MofError);
 State state3 (in CommonBehavior::Action do_activity)
 raises (Reflective::MofError);
 CommonBehavior::Action do_activity (in State state3)
 raises (Reflective::MofError);
 void add (
 in State state3,
 in CommonBehavior::Action do_activity)
 raises (Reflective::MofError);
 void modify_state3 (
 in State state3,
 in CommonBehavior::Action do_activity,
 in State new_state3)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_do_activity (
5-134 UML V1.3 June 1999

5.4 IDL Modules
 in State state3,
 in CommonBehavior::Action do_activity,
 in CommonBehavior::Action new_do_activity)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in State state3,
 in CommonBehavior::Action do_activity)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AState3DoActivity

 interface StateMachinesPackage : Reflective::RefPackage
 {
 readonly attribute StateMachineClass state_machine_ref;
 readonly attribute EventClass event_ref;
 readonly attribute StateClass state_ref;
 readonly attribute TimeEventClass time_event_ref;
 readonly attribute CallEventClass call_event_ref;
 readonly attribute SignalEventClass signal_event_ref;
 readonly attribute TransitionClass transition_ref;
 readonly attribute StateVertexClass state_vertex_ref;
 readonly attribute CompositeStateClass composite_state_ref;
 readonly attribute ChangeEventClass change_event_ref;
 readonly attribute GuardClass guard_ref;
 readonly attribute PseudostateClass pseudostate_ref;
 readonly attribute SimpleStateClass simple_state_ref;
 readonly attribute SubmachineStateClass submachine_state_ref;
 readonly attribute SynchStateClass synch_state_ref;
 readonly attribute StubStateClass stub_state_ref;
 readonly attribute FinalStateClass final_state_ref;
 readonly attribute AState1Entry a_state1_entry_ref;
 readonly attribute AState2Exit a_state2_exit_ref;
 readonly attribute AEventParameter a_event_parameter_ref;
 readonly attribute AGuardTransition a_guard_transition_ref;
 readonly attribute ASignalOccurrence a_signal_occurrence_ref;
 readonly attribute ABehaviorContext a_behavior_context_ref;
 readonly attribute ATopStateMachine a_top_state_machine_ref;
 readonly attribute AStateDeferrableEvent a_state_deferrable_event_ref;
 readonly attribute AOccurrenceOperation a_occurrence_operation_ref;
 readonly attribute AContainerSubvertex a_container_subvertex_ref;
 readonly attribute ATransitionEffect a_transition_effect_ref;
 readonly attribute AStateInternalTransition a_state_internal_transition_ref;
 readonly attribute ATransitionTrigger a_transition_trigger_ref;
 readonly attribute AStateMachineTransitions a_state_machine_transitions_ref;
 readonly attribute AOutgoingSource a_outgoing_source_ref;
 readonly attribute AIncomingTarget a_incoming_target_ref;
 readonly attribute ASubMachineStateSubmachine

a_sub_machine_state_submachine_ref;
 readonly attribute AState3DoActivity a_state3_do_activity_ref;
 };
 }; // end of module StateMachines
UML V1.3 June 1999 5-135

5 UML CORBAfacility InterfaceDefinition
 module Collaborations
 {
 interface CollaborationClass;
 interface Collaboration;
 typedef sequence<Collaboration> CollaborationSet;
 interface ClassifierRoleClass;
 interface ClassifierRole;
 typedef sequence<ClassifierRole> ClassifierRoleSet;
 interface AssociationRoleClass;
 interface AssociationRole;
 typedef sequence<AssociationRole> AssociationRoleSet;
 interface AssociationEndRoleClass;
 interface AssociationEndRole;
 typedef sequence<AssociationEndRole> AssociationEndRoleSet;
 interface MessageClass;
 interface Message;
 typedef sequence<Message> MessageSet;
 interface InteractionClass;
 interface Interaction;
 typedef sequence<Interaction> InteractionSet;
 interface CollaborationsPackage;

 interface CollaborationClass : Foundation::Core::NamespaceClass,
Foundation::Core::GeneralizableElementClass

 {
 readonly attribute CollaborationSet all_of_type_collaboration;
 readonly attribute CollaborationSet all_of_class_collaboration;
 Collaboration create_collaboration (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Collaboration : CollaborationClass, Foundation::Core::Namespace,
Foundation::Core::GeneralizableElement

 {
 InteractionSet interaction ()
 raises (Reflective::MofError);
 void set_interaction (in InteractionSet new_value)
 raises (Reflective::MofError);
 void add_interaction (in Collaborations::Interaction new_element)
 raises (Reflective::MofError);
 void modify_interaction (
 in Collaborations::Interaction old_element,
 in Collaborations::Interaction new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_interaction (in Collaborations::Interaction old_element)
5-136 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 Foundation::Core::Classifier represented_classifier ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_represented_classifier (in Foundation::Core::Classifier new_value)
 raises (Reflective::MofError);
 void unset_represented_classifier ()
 raises (Reflective::MofError);
 Foundation::Core::Operation represented_operation ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_represented_operation (in Foundation::Core::Operation new_value)
 raises (Reflective::MofError);
 void unset_represented_operation ()
 raises (Reflective::MofError);
 ModelElementSet constraining_element ()
 raises (Reflective::MofError);
 void set_constraining_element (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_constraining_element (in Foundation::Core::ModelElement new_element)
 raises (Reflective::MofError);
 void modify_constraining_element (
 in Foundation::Core::ModelElement old_element,
 in Foundation::Core::ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_constraining_element (in Foundation::Core::ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Collaboration

 interface ClassifierRoleClass : Foundation::Core::ClassifierClass
 {
 readonly attribute ClassifierRoleSet all_of_type_classifier_role;
 readonly attribute ClassifierRoleSet all_of_class_classifier_role;
 ClassifierRole create_classifier_role (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in Foundation::DataTypes::Multiplicity multiplicity)
 raises (Reflective::MofError);
 };

 interface ClassifierRole : ClassifierRoleClass, Foundation::Core::Classifier
 {
 Foundation::DataTypes::Multiplicity multiplicity ()
 raises (Reflective::MofError);
 void set_multiplicity (in Foundation::DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 ClassifierSet base ()
 raises (Reflective::MofError);
 void set_base (in ClassifierSet new_value)
UML V1.3 June 1999 5-137

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 void add_base (in Foundation::Core::Classifier new_element)
 raises (Reflective::MofError);
 void modify_base (
 in Foundation::Core::Classifier old_element,
 in Foundation::Core::Classifier new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_base (in Foundation::Core::Classifier old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 FeatureSet available_feature ()
 raises (Reflective::MofError);
 void set_available_feature (in FeatureSet new_value)
 raises (Reflective::MofError);
 void add_available_feature (in Foundation::Core::Feature new_element)
 raises (Reflective::MofError);
 void modify_available_feature (
 in Foundation::Core::Feature old_element,
 in Foundation::Core::Feature new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_available_feature (in Foundation::Core::Feature old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 MessageSet message2 ()
 raises (Reflective::MofError);
 void set_message2 (in MessageSet new_value)
 raises (Reflective::MofError);
 void add_message2 (in Message new_element)
 raises (Reflective::MofError);
 void modify_message2 (
 in Message old_element,
 in Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_message2 (in Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 MessageSet message1 ()
 raises (Reflective::MofError);
 void set_message1 (in MessageSet new_value)
 raises (Reflective::MofError);
 void add_message1 (in Message new_element)
 raises (Reflective::MofError);
 void modify_message1 (
 in Message old_element,
 in Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_message1 (in Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ModelElementSet available_contents ()
 raises (Reflective::MofError);
 void set_available_contents (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_available_contents (in Foundation::Core::ModelElement new_element)
 raises (Reflective::MofError);
5-138 UML V1.3 June 1999

5.4 IDL Modules
 void modify_available_contents (
 in Foundation::Core::ModelElement old_element,
 in Foundation::Core::ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_available_contents (in Foundation::Core::ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ClassifierRole

 interface AssociationRoleClass : Foundation::Core::AssociationClass
 {
 readonly attribute AssociationRoleSet all_of_type_association_role;
 readonly attribute AssociationRoleSet all_of_class_association_role;
 AssociationRole create_association_role (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in Foundation::DataTypes::Multiplicity multiplicity)
 raises (Reflective::MofError);
 };

 interface AssociationRole : AssociationRoleClass, Foundation::Core::Association
 {
 Foundation::DataTypes::Multiplicity multiplicity ()
 raises (Reflective::MofError);
 void set_multiplicity (in Foundation::DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 Foundation::Core::Association base ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_base (in Foundation::Core::Association new_value)
 raises (Reflective::MofError);
 void unset_base ()
 raises (Reflective::MofError);
 MessageSet message ()
 raises (Reflective::MofError);
 void set_message (in MessageSet new_value)
 raises (Reflective::MofError);
 void add_message (in Collaborations::Message new_element)
 raises (Reflective::MofError);
 void modify_message (
 in Collaborations::Message old_element,
 in Collaborations::Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_message (in Collaborations::Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AssociationRole

 interface AssociationEndRoleClass : Foundation::Core::AssociationEndClass
 {
UML V1.3 June 1999 5-139

5 UML CORBAfacility InterfaceDefinition
 readonly attribute AssociationEndRoleSet all_of_type_association_end_role;
 readonly attribute AssociationEndRoleSet all_of_class_association_end_role;
 AssociationEndRole create_association_end_role (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_navigable,
 in Foundation::DataTypes::OrderingKind ordering,
 in Foundation::DataTypes::AggregationKind aggregation,
 in Foundation::DataTypes::ScopeKind target_scope,
 in Foundation::DataTypes::Multiplicity multiplicity,
 in Foundation::DataTypes::ChangeableKind changeability,
 in Foundation::DataTypes::Multiplicity collaboration_multiplicity)
 raises (Reflective::MofError);
 };

 interface AssociationEndRole : AssociationEndRoleClass,
Foundation::Core::AssociationEnd

 {
 Foundation::DataTypes::Multiplicity collaboration_multiplicity ()
 raises (Reflective::MofError);
 void set_collaboration_multiplicity (in Foundation::DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 Foundation::Core::AssociationEnd base ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_base (in Foundation::Core::AssociationEnd new_value)
 raises (Reflective::MofError);
 void unset_base ()
 raises (Reflective::MofError);
 UmlAttributeSet available_qualifier ()
 raises (Reflective::MofError);
 void set_available_qualifier (in UmlAttributeSet new_value)
 raises (Reflective::MofError);
 void add_available_qualifier (in Foundation::Core::UmlAttribute new_element)
 raises (Reflective::MofError);
 void modify_available_qualifier (
 in Foundation::Core::UmlAttribute old_element,
 in Foundation::Core::UmlAttribute new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_available_qualifier (in Foundation::Core::UmlAttribute old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AssociationEndRole

 interface MessageClass : Foundation::Core::ModelElementClass
 {
 readonly attribute MessageSet all_of_type_message;
 readonly attribute MessageSet all_of_class_message;
 Message create_message (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
5-140 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 };

 interface Message : MessageClass, Foundation::Core::ModelElement
 {
 Collaborations::Interaction interaction ()
 raises (Reflective::MofError);
 void set_interaction (in Collaborations::Interaction new_value)
 raises (Reflective::MofError);
 Message activator ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_activator (in Message new_value)
 raises (Reflective::MofError);
 void unset_activator ()
 raises (Reflective::MofError);
 MessageSet message4 ()
 raises (Reflective::MofError);
 void set_message4 (in MessageSet new_value)
 raises (Reflective::MofError);
 void add_message4 (in Message new_element)
 raises (Reflective::MofError);
 void modify_message4 (
 in Message old_element,
 in Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_message4 (in Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ClassifierRole sender ()
 raises (Reflective::MofError);
 void set_sender (in ClassifierRole new_value)
 raises (Reflective::MofError);
 ClassifierRole receiver ()
 raises (Reflective::MofError);
 void set_receiver (in ClassifierRole new_value)
 raises (Reflective::MofError);
 MessageSet message3 ()
 raises (Reflective::MofError);
 void set_message3 (in MessageSet new_value)
 raises (Reflective::MofError);
 void add_message3 (in Message new_element)
 raises (Reflective::MofError);
 void modify_message3 (
 in Message old_element,
 in Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_message3 (in Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 MessageSet predecessor ()
 raises (Reflective::MofError);
 void set_predecessor (in MessageSet new_value)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-141

5 UML CORBAfacility InterfaceDefinition
 void add_predecessor (in Message new_element)
 raises (Reflective::MofError);
 void modify_predecessor (
 in Message old_element,
 in Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_predecessor (in Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 AssociationRole communication_connection ()
 raises (Reflective::NotSet, Reflective::MofError);
 void set_communication_connection (in AssociationRole new_value)
 raises (Reflective::MofError);
 void unset_communication_connection ()
 raises (Reflective::MofError);
 CommonBehavior::Action action ()
 raises (Reflective::MofError);
 void set_action (in CommonBehavior::Action new_value)
 raises (Reflective::MofError);
 }; // end of interface Message

 interface InteractionClass : Foundation::Core::ModelElementClass
 {
 readonly attribute InteractionSet all_of_type_interaction;
 readonly attribute InteractionSet all_of_class_interaction;
 Interaction create_interaction (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Interaction : InteractionClass, Foundation::Core::ModelElement
 {
 MessageSet message ()
 raises (Reflective::MofError);
 void set_message (in MessageSet new_value)
 raises (Reflective::MofError);
 void add_message (in Collaborations::Message new_element)
 raises (Reflective::MofError);
 void modify_message (
 in Collaborations::Message old_element,
 in Collaborations::Message new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_message (in Collaborations::Message old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Collaboration uml_context ()
 raises (Reflective::MofError);
 void set_uml_context (in Collaboration new_value)
 raises (Reflective::MofError);
 }; // end of interface Interaction
5-142 UML V1.3 June 1999

5.4 IDL Modules
 struct AInteractionMessageLink
 {
 Collaborations::Interaction interaction;
 Collaborations::Message message;
 };
 typedef sequence<AInteractionMessageLink> AInteractionMessageLinkSet;

 interface AInteractionMessage : Reflective::RefAssociation
 {
 AInteractionMessageLinkSet all_a_interaction_message_links()
 raises (Reflective::MofError);
 boolean exists (
 in Collaborations::Interaction interaction,
 in Collaborations::Message message)
 raises (Reflective::MofError);
 Collaborations::Interaction interaction (in Collaborations::Message message)
 raises (Reflective::MofError);
 MessageSet message (in Collaborations::Interaction interaction)
 raises (Reflective::MofError);
 void add (
 in Collaborations::Interaction interaction,
 in Collaborations::Message message)
 raises (Reflective::MofError);
 void modify_interaction (
 in Collaborations::Interaction interaction,
 in Collaborations::Message message,
 in Collaborations::Interaction new_interaction)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_message (
 in Collaborations::Interaction interaction,
 in Collaborations::Message message,
 in Collaborations::Message new_message)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Collaborations::Interaction interaction,
 in Collaborations::Message message)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AInteractionMessage

 struct AContextInteractionLink
 {
 Collaboration uml_context;
 Collaborations::Interaction interaction;
 };
 typedef sequence<AContextInteractionLink> AContextInteractionLinkSet;

 interface AContextInteraction : Reflective::RefAssociation
 {
 AContextInteractionLinkSet all_a_context_interaction_links()
 raises (Reflective::MofError);
 boolean exists (
UML V1.3 June 1999 5-143

5 UML CORBAfacility InterfaceDefinition
 in Collaboration uml_context,
 in Collaborations::Interaction interaction)
 raises (Reflective::MofError);
 Collaboration uml_context (in Collaborations::Interaction interaction)
 raises (Reflective::MofError);
 InteractionSet interaction (in Collaboration uml_context)
 raises (Reflective::MofError);
 void add (
 in Collaboration uml_context,
 in Collaborations::Interaction interaction)
 raises (Reflective::MofError);
 void modify_uml_context (
 in Collaboration uml_context,
 in Collaborations::Interaction interaction,
 in Collaboration new_uml_context)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_interaction (
 in Collaboration uml_context,
 in Collaborations::Interaction interaction,
 in Collaborations::Interaction new_interaction)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Collaboration uml_context,
 in Collaborations::Interaction interaction)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AContextInteraction

 struct AClassifierRoleBaseLink
 {
 ClassifierRole classifier_role;
 Foundation::Core::Classifier base;
 };
 typedef sequence<AClassifierRoleBaseLink> AClassifierRoleBaseLinkSet;

 interface AClassifierRoleBase : Reflective::RefAssociation
 {
 AClassifierRoleBaseLinkSet all_a_classifier_role_base_links()
 raises (Reflective::MofError);
 boolean exists (
 in ClassifierRole classifier_role,
 in Foundation::Core::Classifier base)
 raises (Reflective::MofError);
 ClassifierRoleSet classifier_role (in Foundation::Core::Classifier base)
 raises (Reflective::MofError);
 ClassifierSet base (in ClassifierRole classifier_role)
 raises (Reflective::MofError);
 void add (
 in ClassifierRole classifier_role,
 in Foundation::Core::Classifier base)
 raises (Reflective::MofError);
 void modify_classifier_role (
5-144 UML V1.3 June 1999

5.4 IDL Modules
 in ClassifierRole classifier_role,
 in Foundation::Core::Classifier base,
 in ClassifierRole new_classifier_role)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_base (
 in ClassifierRole classifier_role,
 in Foundation::Core::Classifier base,
 in Foundation::Core::Classifier new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ClassifierRole classifier_role,
 in Foundation::Core::Classifier base)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AClassifierRoleBase

 struct ABaseAssociationEndRoleLink
 {
 Foundation::Core::AssociationEnd base;
 AssociationEndRole association_end_role;
 };
 typedef sequence<ABaseAssociationEndRoleLink> ABaseAssociationEndRoleLinkSet;

 interface ABaseAssociationEndRole : Reflective::RefAssociation
 {
 ABaseAssociationEndRoleLinkSet all_a_base_association_end_role_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::AssociationEnd base,
 in AssociationEndRole association_end_role)
 raises (Reflective::MofError);
 Foundation::Core::AssociationEnd base (in AssociationEndRole association_end_role)
 raises (Reflective::MofError);
 AssociationEndRoleSet association_end_role (in Foundation::Core::AssociationEnd

base)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::AssociationEnd base,
 in AssociationEndRole association_end_role)
 raises (Reflective::MofError);
 void modify_base (
 in Foundation::Core::AssociationEnd base,
 in AssociationEndRole association_end_role,
 in Foundation::Core::AssociationEnd new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_association_end_role (
 in Foundation::Core::AssociationEnd base,
 in AssociationEndRole association_end_role,
 in AssociationEndRole new_association_end_role)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::AssociationEnd base,
UML V1.3 June 1999 5-145

5 UML CORBAfacility InterfaceDefinition
 in AssociationEndRole association_end_role)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ABaseAssociationEndRole

 struct ABaseAssociationRoleLink
 {
 Foundation::Core::Association base;
 AssociationRole association_role;
 };
 typedef sequence<ABaseAssociationRoleLink> ABaseAssociationRoleLinkSet;

 interface ABaseAssociationRole : Reflective::RefAssociation
 {
 ABaseAssociationRoleLinkSet all_a_base_association_role_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::Association base,
 in AssociationRole association_role)
 raises (Reflective::MofError);
 Foundation::Core::Association base (in AssociationRole association_role)
 raises (Reflective::MofError);
 AssociationRoleSet association_role (in Foundation::Core::Association base)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::Association base,
 in AssociationRole association_role)
 raises (Reflective::MofError);
 void modify_base (
 in Foundation::Core::Association base,
 in AssociationRole association_role,
 in Foundation::Core::Association new_base)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_association_role (
 in Foundation::Core::Association base,
 in AssociationRole association_role,
 in AssociationRole new_association_role)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::Association base,
 in AssociationRole association_role)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ABaseAssociationRole

 struct AClassifierRoleAvailableFeatureLink
 {
 ClassifierRole classifier_role;
 Foundation::Core::Feature available_feature;
 };
 typedef sequence<AClassifierRoleAvailableFeatureLink>

AClassifierRoleAvailableFeatureLinkSet;
5-146 UML V1.3 June 1999

5.4 IDL Modules
 interface AClassifierRoleAvailableFeature : Reflective::RefAssociation
 {
 AClassifierRoleAvailableFeatureLinkSet all_a_classifier_role_available_feature_links()
 raises (Reflective::MofError);
 boolean exists (
 in ClassifierRole classifier_role,
 in Foundation::Core::Feature available_feature)
 raises (Reflective::MofError);
 ClassifierRoleSet classifier_role (in Foundation::Core::Feature available_feature)
 raises (Reflective::MofError);
 FeatureSet available_feature (in ClassifierRole classifier_role)
 raises (Reflective::MofError);
 void add (
 in ClassifierRole classifier_role,
 in Foundation::Core::Feature available_feature)
 raises (Reflective::MofError);
 void modify_classifier_role (
 in ClassifierRole classifier_role,
 in Foundation::Core::Feature available_feature,
 in ClassifierRole new_classifier_role)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_available_feature (
 in ClassifierRole classifier_role,
 in Foundation::Core::Feature available_feature,
 in Foundation::Core::Feature new_available_feature)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ClassifierRole classifier_role,
 in Foundation::Core::Feature available_feature)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AClassifierRoleAvailableFeature

 struct AMessage4ActivatorLink
 {
 Message message4;
 Message activator;
 };
 typedef sequence<AMessage4ActivatorLink> AMessage4ActivatorLinkSet;

 interface AMessage4Activator : Reflective::RefAssociation
 {
 AMessage4ActivatorLinkSet all_a_message4_activator_links()
 raises (Reflective::MofError);
 boolean exists (
 in Message message4,
 in Message activator)
 raises (Reflective::MofError);
 MessageSet message4 (in Message activator)
 raises (Reflective::MofError);
 Message activator (in Message message4)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-147

5 UML CORBAfacility InterfaceDefinition
 void add (
 in Message message4,
 in Message activator)
 raises (Reflective::MofError);
 void modify_message4 (
 in Message message4,
 in Message activator,
 in Message new_message4)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_activator (
 in Message message4,
 in Message activator,
 in Message new_activator)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Message message4,
 in Message activator)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AMessage4Activator

 struct ACollaborationRepresentedClassifierLink
 {
 Collaborations::Collaboration collaboration;
 Foundation::Core::Classifier represented_classifier;
 };
 typedef sequence<ACollaborationRepresentedClassifierLink>

ACollaborationRepresentedClassifierLinkSet;

 interface ACollaborationRepresentedClassifier : Reflective::RefAssociation
 {
 ACollaborationRepresentedClassifierLinkSet

all_a_collaboration_represented_classifier_links()
 raises (Reflective::MofError);
 boolean exists (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::Classifier represented_classifier)
 raises (Reflective::MofError);
 CollaborationSet collaboration (in Foundation::Core::Classifier represented_classifier)
 raises (Reflective::MofError);
 Foundation::Core::Classifier represented_classifier (in Collaborations::Collaboration

collaboration)
 raises (Reflective::MofError);
 void add (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::Classifier represented_classifier)
 raises (Reflective::MofError);
 void modify_collaboration (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::Classifier represented_classifier,
 in Collaborations::Collaboration new_collaboration)
 raises (Reflective::NotFound, Reflective::MofError);
5-148 UML V1.3 June 1999

5.4 IDL Modules
 void modify_represented_classifier (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::Classifier represented_classifier,
 in Foundation::Core::Classifier new_represented_classifier)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::Classifier represented_classifier)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ACollaborationRepresentedClassifier

 struct AMessage2SenderLink
 {
 Message message2;
 ClassifierRole sender;
 };
 typedef sequence<AMessage2SenderLink> AMessage2SenderLinkSet;

 interface AMessage2Sender : Reflective::RefAssociation
 {
 AMessage2SenderLinkSet all_a_message2_sender_links()
 raises (Reflective::MofError);
 boolean exists (
 in Message message2,
 in ClassifierRole sender)
 raises (Reflective::MofError);
 MessageSet message2 (in ClassifierRole sender)
 raises (Reflective::MofError);
 ClassifierRole sender (in Message message2)
 raises (Reflective::MofError);
 void add (
 in Message message2,
 in ClassifierRole sender)
 raises (Reflective::MofError);
 void modify_message2 (
 in Message message2,
 in ClassifierRole sender,
 in Message new_message2)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_sender (
 in Message message2,
 in ClassifierRole sender,
 in ClassifierRole new_sender)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Message message2,
 in ClassifierRole sender)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AMessage2Sender

 struct AReceiverMessage1Link
UML V1.3 June 1999 5-149

5 UML CORBAfacility InterfaceDefinition
 {
 ClassifierRole receiver;
 Message message1;
 };
 typedef sequence<AReceiverMessage1Link> AReceiverMessage1LinkSet;

 interface AReceiverMessage1 : Reflective::RefAssociation
 {
 AReceiverMessage1LinkSet all_a_receiver_message1_links()
 raises (Reflective::MofError);
 boolean exists (
 in ClassifierRole receiver,
 in Message message1)
 raises (Reflective::MofError);
 ClassifierRole receiver (in Message message1)
 raises (Reflective::MofError);
 MessageSet message1 (in ClassifierRole receiver)
 raises (Reflective::MofError);
 void add (
 in ClassifierRole receiver,
 in Message message1)
 raises (Reflective::MofError);
 void modify_receiver (
 in ClassifierRole receiver,
 in Message message1,
 in ClassifierRole new_receiver)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_message1 (
 in ClassifierRole receiver,
 in Message message1,
 in Message new_message1)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ClassifierRole receiver,
 in Message message1)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AReceiverMessage1

 struct APredecessorMessage3Link
 {
 Message predecessor;
 Message message3;
 };
 typedef sequence<APredecessorMessage3Link> APredecessorMessage3LinkSet;

 interface APredecessorMessage3 : Reflective::RefAssociation
 {
 APredecessorMessage3LinkSet all_a_predecessor_message3_links()
 raises (Reflective::MofError);
 boolean exists (
 in Message predecessor,
5-150 UML V1.3 June 1999

5.4 IDL Modules
 in Message message3)
 raises (Reflective::MofError);
 MessageSet predecessor (in Message message3)
 raises (Reflective::MofError);
 MessageSet message3 (in Message predecessor)
 raises (Reflective::MofError);
 void add (
 in Message predecessor,
 in Message message3)
 raises (Reflective::MofError);
 void modify_predecessor (
 in Message predecessor,
 in Message message3,
 in Message new_predecessor)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_message3 (
 in Message predecessor,
 in Message message3,
 in Message new_message3)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Message predecessor,
 in Message message3)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface APredecessorMessage3

 struct AMessageCommunicationConnectionLink
 {
 Collaborations::Message message;
 AssociationRole communication_connection;
 };
 typedef sequence<AMessageCommunicationConnectionLink>

AMessageCommunicationConnectionLinkSet;

 interface AMessageCommunicationConnection : Reflective::RefAssociation
 {
 AMessageCommunicationConnectionLinkSet

all_a_message_communication_connection_links()
 raises (Reflective::MofError);
 boolean exists (
 in Collaborations::Message message,
 in AssociationRole communication_connection)
 raises (Reflective::MofError);
 MessageSet message (in AssociationRole communication_connection)
 raises (Reflective::MofError);
 AssociationRole communication_connection (in Collaborations::Message message)
 raises (Reflective::MofError);
 void add (
 in Collaborations::Message message,
 in AssociationRole communication_connection)
 raises (Reflective::MofError);
UML V1.3 June 1999 5-151

5 UML CORBAfacility InterfaceDefinition
 void modify_message (
 in Collaborations::Message message,
 in AssociationRole communication_connection,
 in Collaborations::Message new_message)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_communication_connection (
 in Collaborations::Message message,
 in AssociationRole communication_connection,
 in AssociationRole new_communication_connection)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Collaborations::Message message,
 in AssociationRole communication_connection)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AMessageCommunicationConnection

 struct AClassifierRoleAvailableContentsLink
 {
 ClassifierRole classifier_role;
 Foundation::Core::ModelElement available_contents;
 };
 typedef sequence<AClassifierRoleAvailableContentsLink>

AClassifierRoleAvailableContentsLinkSet;

 interface AClassifierRoleAvailableContents : Reflective::RefAssociation
 {
 AClassifierRoleAvailableContentsLinkSet all_a_classifier_role_available_contents_links()
 raises (Reflective::MofError);
 boolean exists (
 in ClassifierRole classifier_role,
 in Foundation::Core::ModelElement available_contents)
 raises (Reflective::MofError);
 ClassifierRoleSet classifier_role (in Foundation::Core::ModelElement available_contents)
 raises (Reflective::MofError);
 ModelElementSet available_contents (in ClassifierRole classifier_role)
 raises (Reflective::MofError);
 void add (
 in ClassifierRole classifier_role,
 in Foundation::Core::ModelElement available_contents)
 raises (Reflective::MofError);
 void modify_classifier_role (
 in ClassifierRole classifier_role,
 in Foundation::Core::ModelElement available_contents,
 in ClassifierRole new_classifier_role)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_available_contents (
 in ClassifierRole classifier_role,
 in Foundation::Core::ModelElement available_contents,
 in Foundation::Core::ModelElement new_available_contents)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
5-152 UML V1.3 June 1999

5.4 IDL Modules
 in ClassifierRole classifier_role,
 in Foundation::Core::ModelElement available_contents)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AClassifierRoleAvailableContents

 struct AActionMessageLink
 {
 CommonBehavior::Action action;
 Collaborations::Message message;
 };
 typedef sequence<AActionMessageLink> AActionMessageLinkSet;

 interface AActionMessage : Reflective::RefAssociation
 {
 AActionMessageLinkSet all_a_action_message_links()
 raises (Reflective::MofError);
 boolean exists (
 in CommonBehavior::Action action,
 in Collaborations::Message message)
 raises (Reflective::MofError);
 CommonBehavior::Action action (in Collaborations::Message message)
 raises (Reflective::MofError);
 MessageSet message (in CommonBehavior::Action action)
 raises (Reflective::MofError);
 void add (
 in CommonBehavior::Action action,
 in Collaborations::Message message)
 raises (Reflective::MofError);
 void modify_action (
 in CommonBehavior::Action action,
 in Collaborations::Message message,
 in CommonBehavior::Action new_action)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_message (
 in CommonBehavior::Action action,
 in Collaborations::Message message,
 in Collaborations::Message new_message)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in CommonBehavior::Action action,
 in Collaborations::Message message)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AActionMessage

 struct AAssociationEndRoleAvailableQualifierLink
 {
 AssociationEndRole association_end_role;
 Foundation::Core::UmlAttribute available_qualifier;
 };
 typedef sequence<AAssociationEndRoleAvailableQualifierLink>

AAssociationEndRoleAvailableQualifierLinkSet;
UML V1.3 June 1999 5-153

5 UML CORBAfacility InterfaceDefinition
 interface AAssociationEndRoleAvailableQualifier : Reflective::RefAssociation
 {
 AAssociationEndRoleAvailableQualifierLinkSet

all_a_association_end_role_available_qualifier_links()
 raises (Reflective::MofError);
 boolean exists (
 in AssociationEndRole association_end_role,
 in Foundation::Core::UmlAttribute available_qualifier)
 raises (Reflective::MofError);
 AssociationEndRoleSet association_end_role (in Foundation::Core::UmlAttribute

available_qualifier)
 raises (Reflective::MofError);
 UmlAttributeSet available_qualifier (in AssociationEndRole association_end_role)
 raises (Reflective::MofError);
 void add (
 in AssociationEndRole association_end_role,
 in Foundation::Core::UmlAttribute available_qualifier)
 raises (Reflective::MofError);
 void modify_association_end_role (
 in AssociationEndRole association_end_role,
 in Foundation::Core::UmlAttribute available_qualifier,
 in AssociationEndRole new_association_end_role)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_available_qualifier (
 in AssociationEndRole association_end_role,
 in Foundation::Core::UmlAttribute available_qualifier,
 in Foundation::Core::UmlAttribute new_available_qualifier)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in AssociationEndRole association_end_role,
 in Foundation::Core::UmlAttribute available_qualifier)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AAssociationEndRoleAvailableQualifier

 struct ARepresentedOperationCollaborationLink
 {
 Foundation::Core::Operation represented_operation;
 Collaborations::Collaboration collaboration;
 };
 typedef sequence<ARepresentedOperationCollaborationLink>

ARepresentedOperationCollaborationLinkSet;

 interface ARepresentedOperationCollaboration : Reflective::RefAssociation
 {
 ARepresentedOperationCollaborationLinkSet

all_a_represented_operation_collaboration_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::Operation represented_operation,
 in Collaborations::Collaboration collaboration)
5-154 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::MofError);
 Foundation::Core::Operation represented_operation (in Collaborations::Collaboration

collaboration)
 raises (Reflective::MofError);
 CollaborationSet collaboration (in Foundation::Core::Operation represented_operation)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::Operation represented_operation,
 in Collaborations::Collaboration collaboration)
 raises (Reflective::MofError);
 void modify_represented_operation (
 in Foundation::Core::Operation represented_operation,
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::Operation new_represented_operation)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_collaboration (
 in Foundation::Core::Operation represented_operation,
 in Collaborations::Collaboration collaboration,
 in Collaborations::Collaboration new_collaboration)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::Operation represented_operation,
 in Collaborations::Collaboration collaboration)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ARepresentedOperationCollaboration

 struct ACollaborationConstrainingElementLink
 {
 Collaborations::Collaboration collaboration;
 Foundation::Core::ModelElement constraining_element;
 };
 typedef sequence<ACollaborationConstrainingElementLink>

ACollaborationConstrainingElementLinkSet;

 interface ACollaborationConstrainingElement : Reflective::RefAssociation
 {
 ACollaborationConstrainingElementLinkSet

all_a_collaboration_constraining_element_links()
 raises (Reflective::MofError);
 boolean exists (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::ModelElement constraining_element)
 raises (Reflective::MofError);
 CollaborationSet collaboration (in Foundation::Core::ModelElement

constraining_element)
 raises (Reflective::MofError);
 ModelElementSet constraining_element (in Collaborations::Collaboration collaboration)
 raises (Reflective::MofError);
 void add (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::ModelElement constraining_element)
UML V1.3 June 1999 5-155

5 UML CORBAfacility InterfaceDefinition
 raises (Reflective::MofError);
 void modify_collaboration (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::ModelElement constraining_element,
 in Collaborations::Collaboration new_collaboration)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_constraining_element (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::ModelElement constraining_element,
 in Foundation::Core::ModelElement new_constraining_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Collaborations::Collaboration collaboration,
 in Foundation::Core::ModelElement constraining_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ACollaborationConstrainingElement

 interface CollaborationsPackage : Reflective::RefPackage
 {
 readonly attribute CollaborationClass collaboration_ref;
 readonly attribute ClassifierRoleClass classifier_role_ref;
 readonly attribute AssociationRoleClass association_role_ref;
 readonly attribute AssociationEndRoleClass association_end_role_ref;
 readonly attribute MessageClass message_ref;
 readonly attribute InteractionClass interaction_ref;
 readonly attribute AInteractionMessage a_interaction_message_ref;
 readonly attribute AContextInteraction a_context_interaction_ref;
 readonly attribute AClassifierRoleBase a_classifier_role_base_ref;
 readonly attribute ABaseAssociationEndRole a_base_association_end_role_ref;
 readonly attribute ABaseAssociationRole a_base_association_role_ref;
 readonly attribute AClassifierRoleAvailableFeature

a_classifier_role_available_feature_ref;
 readonly attribute AMessage4Activator a_message4_activator_ref;
 readonly attribute ACollaborationRepresentedClassifier

a_collaboration_represented_classifier_ref;
 readonly attribute AMessage2Sender a_message2_sender_ref;
 readonly attribute AReceiverMessage1 a_receiver_message1_ref;
 readonly attribute APredecessorMessage3 a_predecessor_message3_ref;
 readonly attribute AMessageCommunicationConnection

a_message_communication_connection_ref;
 readonly attribute AClassifierRoleAvailableContents

a_classifier_role_available_contents_ref;
 readonly attribute AActionMessage a_action_message_ref;
 readonly attribute AAssociationEndRoleAvailableQualifier

a_association_end_role_available_qualifier_ref;
 readonly attribute ARepresentedOperationCollaboration

a_represented_operation_collaboration_ref;
 readonly attribute ACollaborationConstrainingElement

a_collaboration_constraining_element_ref;
 };
 }; // end of module Collaborations
5-156 UML V1.3 June 1999

5.4 IDL Modules
 module ActivityGraphs
 {
 interface ActivityGraphClass;
 interface ActivityGraph;
 typedef sequence<ActivityGraph> ActivityGraphSet;
 interface PartitionClass;
 interface Partition;
 typedef sequence<Partition> PartitionSet;
 interface SubactivityStateClass;
 interface SubactivityState;
 typedef sequence<SubactivityState> SubactivityStateSet;
 interface CallStateClass;
 interface CallState;
 typedef sequence<CallState> CallStateSet;
 interface ObjectFlowStateClass;
 interface ObjectFlowState;
 typedef sequence<ObjectFlowState> ObjectFlowStateSet;
 interface ClassifierInStateClass;
 interface ClassifierInState;
 typedef sequence<ClassifierInState> ClassifierInStateSet;
 interface ActionStateClass;
 interface ActionState;
 typedef sequence<ActionState> ActionStateSet;
 interface ActivityGraphsPackage;

 interface ActivityGraphClass : StateMachines::StateMachineClass
 {
 readonly attribute ActivityGraphSet all_of_type_activity_graph;
 readonly attribute ActivityGraphSet all_of_class_activity_graph;
 ActivityGraph create_activity_graph (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface ActivityGraph : ActivityGraphClass, StateMachines::StateMachine
 {
 PartitionSet partition ()
 raises (Reflective::MofError);
 void set_partition (in PartitionSet new_value)
 raises (Reflective::MofError);
 void unset_partition ()
 raises (Reflective::MofError);
 void add_partition (in ActivityGraphs::Partition new_element)
 raises (Reflective::MofError);
 void modify_partition (
 in ActivityGraphs::Partition old_element,
 in ActivityGraphs::Partition new_element)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-157

5 UML CORBAfacility InterfaceDefinition
 void remove_partition (in ActivityGraphs::Partition old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ActivityGraph

 interface PartitionClass : Foundation::Core::ModelElementClass
 {
 readonly attribute PartitionSet all_of_type_partition;
 readonly attribute PartitionSet all_of_class_partition;
 Partition create_partition (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification)
 raises (Reflective::MofError);
 };

 interface Partition : PartitionClass, Foundation::Core::ModelElement
 {
 ModelElementSet contents ()
 raises (Reflective::MofError);
 void set_contents (in ModelElementSet new_value)
 raises (Reflective::MofError);
 void add_contents (in Foundation::Core::ModelElement new_element)
 raises (Reflective::MofError);
 void modify_contents (
 in Foundation::Core::ModelElement old_element,
 in Foundation::Core::ModelElement new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_contents (in Foundation::Core::ModelElement old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 ActivityGraph activity_graph ()
 raises (Reflective::MofError);
 void set_activity_graph (in ActivityGraph new_value)
 raises (Reflective::MofError);
 }; // end of interface Partition

 interface SubactivityStateClass : StateMachines::SubmachineStateClass
 {
 readonly attribute SubactivityStateSet all_of_type_subactivity_state;
 readonly attribute SubactivityStateSet all_of_class_subactivity_state;
 SubactivityState create_subactivity_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_concurrent,
 in boolean is_dynamic,
 in Foundation::DataTypes::ArgListsExpression dynamic_arguments,
 in Foundation::DataTypes::Multiplicity dynamic_multiplicity)
 raises (Reflective::MofError);
 };

 interface SubactivityState : SubactivityStateClass, StateMachines::SubmachineState
5-158 UML V1.3 June 1999

5.4 IDL Modules
 {
 boolean is_dynamic ()
 raises (Reflective::MofError);
 void set_is_dynamic (in boolean new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::ArgListsExpression dynamic_arguments ()
 raises (Reflective::MofError);
 void set_dynamic_arguments (in Foundation::DataTypes::ArgListsExpression new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::Multiplicity dynamic_multiplicity ()
 raises (Reflective::MofError);
 void set_dynamic_multiplicity (in Foundation::DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 }; // end of interface SubactivityState

 interface ActionStateClass : StateMachines::SimpleStateClass
 {
 readonly attribute ActionStateSet all_of_type_action_state;
 readonly attribute ActionStateSet all_of_class_action_state;
 ActionState create_action_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_dynamic,
 in Foundation::DataTypes::ArgListsExpression dynamic_arguments,
 in Foundation::DataTypes::Multiplicity dynamic_multiplicity)
 raises (Reflective::MofError);
 };

 interface ActionState : ActionStateClass, StateMachines::SimpleState
 {
 boolean is_dynamic ()
 raises (Reflective::MofError);
 void set_is_dynamic (in boolean new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::ArgListsExpression dynamic_arguments ()
 raises (Reflective::MofError);
 void set_dynamic_arguments (in Foundation::DataTypes::ArgListsExpression new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::Multiplicity dynamic_multiplicity ()
 raises (Reflective::MofError);
 void set_dynamic_multiplicity (in Foundation::DataTypes::Multiplicity new_value)
 raises (Reflective::MofError);
 }; // end of interface ActionState

 interface CallStateClass : ActionStateClass
 {
 readonly attribute CallStateSet all_of_type_call_state;
 readonly attribute CallStateSet all_of_class_call_state;
 CallState create_call_state (
 in Foundation::DataTypes::Name name,
UML V1.3 June 1999 5-159

5 UML CORBAfacility InterfaceDefinition
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_dynamic,
 in Foundation::DataTypes::ArgListsExpression dynamic_arguments,
 in Foundation::DataTypes::Multiplicity dynamic_multiplicity)
 raises (Reflective::MofError);
 };

 interface CallState : CallStateClass, ActionState
 {
 }; // end of interface CallState

 interface ObjectFlowStateClass : StateMachines::SimpleStateClass
 {
 readonly attribute ObjectFlowStateSet all_of_type_object_flow_state;
 readonly attribute ObjectFlowStateSet all_of_class_object_flow_state;
 ObjectFlowState create_object_flow_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_synch)
 raises (Reflective::MofError);
 };

 interface ObjectFlowState : ObjectFlowStateClass, StateMachines::SimpleState
 {
 boolean is_synch ()
 raises (Reflective::MofError);
 void set_is_synch (in boolean new_value)
 raises (Reflective::MofError);
 ParameterSet parameter ()
 raises (Reflective::MofError);
 void set_parameter (in ParameterSet new_value)
 raises (Reflective::MofError);
 void add_parameter (in Foundation::Core::Parameter new_element)
 raises (Reflective::MofError);
 void modify_parameter (
 in Foundation::Core::Parameter old_element,
 in Foundation::Core::Parameter new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_parameter (in Foundation::Core::Parameter old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 Foundation::Core::Classifier type ()
 raises (Reflective::MofError);
 void set_type (in Foundation::Core::Classifier new_value)
 raises (Reflective::MofError);
 }; // end of interface ObjectFlowState

 interface ClassifierInStateClass : Foundation::Core::ClassifierClass
 {
 readonly attribute ClassifierInStateSet all_of_type_classifier_in_state;
5-160 UML V1.3 June 1999

5.4 IDL Modules
 readonly attribute ClassifierInStateSet all_of_class_classifier_in_state;
 ClassifierInState create_classifier_in_state (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface ClassifierInState : ClassifierInStateClass, Foundation::Core::Classifier
 {
 Foundation::Core::Classifier type ()
 raises (Reflective::MofError);
 void set_type (in Foundation::Core::Classifier new_value)
 raises (Reflective::MofError);
 StateMachines::StateSet in_state ()
 raises (Reflective::MofError);
 void set_in_state (in StateMachines::StateSet new_value)
 raises (Reflective::MofError);
 void add_in_state (in StateMachines::State new_element)
 raises (Reflective::MofError);
 void modify_in_state (
 in StateMachines::State old_element,
 in StateMachines::State new_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove_in_state (in StateMachines::State old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ClassifierInState

 struct AParameterStateLink
 {
 Foundation::Core::Parameter parameter;
 ObjectFlowState state;
 };
 typedef sequence<AParameterStateLink> AParameterStateLinkSet;

 interface AParameterState : Reflective::RefAssociation
 {
 AParameterStateLinkSet all_a_parameter_state_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::Parameter parameter,
 in ObjectFlowState state)
 raises (Reflective::MofError);
 ParameterSet parameter (in ObjectFlowState state)
 raises (Reflective::MofError);
 ObjectFlowStateSet state (in Foundation::Core::Parameter parameter)
 raises (Reflective::MofError);
 void add (
UML V1.3 June 1999 5-161

5 UML CORBAfacility InterfaceDefinition
 in Foundation::Core::Parameter parameter,
 in ObjectFlowState state)
 raises (Reflective::MofError);
 void modify_parameter (
 in Foundation::Core::Parameter parameter,
 in ObjectFlowState state,
 in Foundation::Core::Parameter new_parameter)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_state (
 in Foundation::Core::Parameter parameter,
 in ObjectFlowState state,
 in ObjectFlowState new_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::Parameter parameter,
 in ObjectFlowState state)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AParameterState

 struct ATypeClassifierInStateLink
 {
 Foundation::Core::Classifier type;
 ClassifierInState classifier_in_state;
 };
 typedef sequence<ATypeClassifierInStateLink> ATypeClassifierInStateLinkSet;

 interface ATypeClassifierInState : Reflective::RefAssociation
 {
 ATypeClassifierInStateLinkSet all_a_type_classifier_in_state_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::Classifier type,
 in ClassifierInState classifier_in_state)
 raises (Reflective::MofError);
 Foundation::Core::Classifier type (in ClassifierInState classifier_in_state)
 raises (Reflective::MofError);
 ClassifierInStateSet classifier_in_state (in Foundation::Core::Classifier type)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::Classifier type,
 in ClassifierInState classifier_in_state)
 raises (Reflective::MofError);
 void modify_type (
 in Foundation::Core::Classifier type,
 in ClassifierInState classifier_in_state,
 in Foundation::Core::Classifier new_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_classifier_in_state (
 in Foundation::Core::Classifier type,
 in ClassifierInState classifier_in_state,
 in ClassifierInState new_classifier_in_state)
5-162 UML V1.3 June 1999

5.4 IDL Modules
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::Classifier type,
 in ClassifierInState classifier_in_state)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATypeClassifierInState

 struct AContentsPartitionLink
 {
 Foundation::Core::ModelElement contents;
 ActivityGraphs::Partition partition;
 };
 typedef sequence<AContentsPartitionLink> AContentsPartitionLinkSet;

 interface AContentsPartition : Reflective::RefAssociation
 {
 AContentsPartitionLinkSet all_a_contents_partition_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::ModelElement contents,
 in ActivityGraphs::Partition partition)
 raises (Reflective::MofError);
 ModelElementSet contents (in ActivityGraphs::Partition partition)
 raises (Reflective::MofError);
 PartitionSet partition (in Foundation::Core::ModelElement contents)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::ModelElement contents,
 in ActivityGraphs::Partition partition)
 raises (Reflective::MofError);
 void modify_contents (
 in Foundation::Core::ModelElement contents,
 in ActivityGraphs::Partition partition,
 in Foundation::Core::ModelElement new_contents)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_partition (
 in Foundation::Core::ModelElement contents,
 in ActivityGraphs::Partition partition,
 in ActivityGraphs::Partition new_partition)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::ModelElement contents,
 in ActivityGraphs::Partition partition)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AContentsPartition

 struct AActivityGraphPartitionLink
 {
 ActivityGraph activity_graph;
 ActivityGraphs::Partition partition;
 };
UML V1.3 June 1999 5-163

5 UML CORBAfacility InterfaceDefinition
 typedef sequence<AActivityGraphPartitionLink> AActivityGraphPartitionLinkSet;

 interface AActivityGraphPartition : Reflective::RefAssociation
 {
 AActivityGraphPartitionLinkSet all_a_activity_graph_partition_links()
 raises (Reflective::MofError);
 boolean exists (
 in ActivityGraph activity_graph,
 in ActivityGraphs::Partition partition)
 raises (Reflective::MofError);
 ActivityGraph activity_graph (in ActivityGraphs::Partition partition)
 raises (Reflective::MofError);
 PartitionSet partition (in ActivityGraph activity_graph)
 raises (Reflective::MofError);
 void add (
 in ActivityGraph activity_graph,
 in ActivityGraphs::Partition partition)
 raises (Reflective::MofError);
 void modify_activity_graph (
 in ActivityGraph activity_graph,
 in ActivityGraphs::Partition partition,
 in ActivityGraph new_activity_graph)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_partition (
 in ActivityGraph activity_graph,
 in ActivityGraphs::Partition partition,
 in ActivityGraphs::Partition new_partition)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ActivityGraph activity_graph,
 in ActivityGraphs::Partition partition)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AActivityGraphPartition

 struct ATypeObjectFlowStateLink
 {
 Foundation::Core::Classifier type;
 ObjectFlowState object_flow_state;
 };
 typedef sequence<ATypeObjectFlowStateLink> ATypeObjectFlowStateLinkSet;

 interface ATypeObjectFlowState : Reflective::RefAssociation
 {
 ATypeObjectFlowStateLinkSet all_a_type_object_flow_state_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::Classifier type,
 in ObjectFlowState object_flow_state)
 raises (Reflective::MofError);
 Foundation::Core::Classifier type (in ObjectFlowState object_flow_state)
 raises (Reflective::MofError);
5-164 UML V1.3 June 1999

5.4 IDL Modules
 ObjectFlowStateSet object_flow_state (in Foundation::Core::Classifier type)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::Classifier type,
 in ObjectFlowState object_flow_state)
 raises (Reflective::MofError);
 void modify_type (
 in Foundation::Core::Classifier type,
 in ObjectFlowState object_flow_state,
 in Foundation::Core::Classifier new_type)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_object_flow_state (
 in Foundation::Core::Classifier type,
 in ObjectFlowState object_flow_state,
 in ObjectFlowState new_object_flow_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::Classifier type,
 in ObjectFlowState object_flow_state)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface ATypeObjectFlowState

 struct AClassifierInStateInStateLink
 {
 ClassifierInState classifier_in_state;
 StateMachines::State in_state;
 };
 typedef sequence<AClassifierInStateInStateLink> AClassifierInStateInStateLinkSet;

 interface AClassifierInStateInState : Reflective::RefAssociation
 {
 AClassifierInStateInStateLinkSet all_a_classifier_in_state_in_state_links()
 raises (Reflective::MofError);
 boolean exists (
 in ClassifierInState classifier_in_state,
 in StateMachines::State in_state)
 raises (Reflective::MofError);
 ClassifierInStateSet classifier_in_state (in StateMachines::State in_state)
 raises (Reflective::MofError);
 StateMachines::StateSet in_state (in ClassifierInState classifier_in_state)
 raises (Reflective::MofError);
 void add (
 in ClassifierInState classifier_in_state,
 in StateMachines::State in_state)
 raises (Reflective::MofError);
 void modify_classifier_in_state (
 in ClassifierInState classifier_in_state,
 in StateMachines::State in_state,
 in ClassifierInState new_classifier_in_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_in_state (
UML V1.3 June 1999 5-165

5 UML CORBAfacility InterfaceDefinition
 in ClassifierInState classifier_in_state,
 in StateMachines::State in_state,
 in StateMachines::State new_in_state)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ClassifierInState classifier_in_state,
 in StateMachines::State in_state)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AClassifierInStateInState

 interface ActivityGraphsPackage : Reflective::RefPackage
 {
 readonly attribute ActivityGraphClass activity_graph_ref;
 readonly attribute PartitionClass partition_ref;
 readonly attribute SubactivityStateClass subactivity_state_ref;
 readonly attribute CallStateClass call_state_ref;
 readonly attribute ObjectFlowStateClass object_flow_state_ref;
 readonly attribute ClassifierInStateClass classifier_in_state_ref;
 readonly attribute ActionStateClass action_state_ref;
 readonly attribute AParameterState a_parameter_state_ref;
 readonly attribute ATypeClassifierInState a_type_classifier_in_state_ref;
 readonly attribute AContentsPartition a_contents_partition_ref;
 readonly attribute AActivityGraphPartition a_activity_graph_partition_ref;
 readonly attribute ATypeObjectFlowState a_type_object_flow_state_ref;
 readonly attribute AClassifierInStateInState a_classifier_in_state_in_state_ref;
 };
 }; // end of module ActivityGraphs

 interface BehavioralElementsPackageFactory
 {
 BehavioralElementsPackage create_behavioral_elements_package ()
 raises (Reflective::MofError);
 };

 interface BehavioralElementsPackage : Reflective::RefPackage
 {
 readonly attribute CommonBehavior::CommonBehaviorPackage common_behavior_ref;
 readonly attribute UseCases::UseCasesPackage use_cases_ref;
 readonly attribute StateMachines::StateMachinesPackage state_machines_ref;
 readonly attribute Collaborations::CollaborationsPackage collaborations_ref;
 readonly attribute ActivityGraphs::ActivityGraphsPackage activity_graphs_ref;
 };
};
5-166 UML V1.3 June 1999

5.4 IDL Modules
5.4.4 ModelManagement

#pragma prefix "org.omg.Uml"
#include "Reflective.idl"
#include "Foundation.idl"

module ModelManagement
{
 interface ModelClass;
 interface Model;
 typedef sequence<Model> ModelSet;
 interface PackageClass;
 interface Package;
 typedef sequence<Package> PackageSet;
 interface SubsystemClass;
 interface Subsystem;
 typedef sequence<Subsystem> SubsystemSet;
 interface ElementImportClass;
 interface ElementImport;
 typedef sequence<ElementImport> ElementImportSet;
 interface ModelManagementPackage;

 interface PackageClass : Foundation::Core::NamespaceClass,
Foundation::Core::GeneralizableElementClass

 {
 readonly attribute PackageSet all_of_type_package;
 readonly attribute PackageSet all_of_class_package;
 Package create_package (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Package : PackageClass, Foundation::Core::Namespace,
Foundation::Core::GeneralizableElement

 {
 ElementImportSet element_import ()
 raises (Reflective::MofError);
 void set_element_import (in ElementImportSet new_value)
 raises (Reflective::MofError);
 void add_element_import (in ElementImport new_element)
 raises (Reflective::MofError);
 void modify_element_import (
 in ElementImport old_element,
 in ElementImport new_element)
 raises (Reflective::NotFound, Reflective::MofError);
UML V1.3 June 1999 5-167

5 UML CORBAfacility InterfaceDefinition
 void remove_element_import (in ElementImport old_element)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface Package

 interface ModelClass : PackageClass
 {
 readonly attribute ModelSet all_of_type_model;
 readonly attribute ModelSet all_of_class_model;
 Model create_model (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract)
 raises (Reflective::MofError);
 };

 interface Model : ModelClass, Package
 {
 }; // end of interface Model

 interface SubsystemClass : Foundation::Core::ClassifierClass, PackageClass
 {
 readonly attribute SubsystemSet all_of_type_subsystem;
 readonly attribute SubsystemSet all_of_class_subsystem;
 Subsystem create_subsystem (
 in Foundation::DataTypes::Name name,
 in Foundation::DataTypes::VisibilityKind visibility,
 in boolean is_specification,
 in boolean is_root,
 in boolean is_leaf,
 in boolean is_abstract,
 in boolean is_instantiable)
 raises (Reflective::MofError);
 };

 interface Subsystem : SubsystemClass, Foundation::Core::Classifier, Package
 {
 boolean is_instantiable ()
 raises (Reflective::MofError);
 void set_is_instantiable (in boolean new_value)
 raises (Reflective::MofError);
 }; // end of interface Subsystem

 interface ElementImportClass : Reflective::RefObject
 {
 readonly attribute ElementImportSet all_of_type_element_import;
 readonly attribute ElementImportSet all_of_class_element_import;
 ElementImport create_element_import (
 in Foundation::DataTypes::VisibilityKind visibility,
5-168 UML V1.3 June 1999

5.4 IDL Modules
 in Foundation::DataTypes::Name alias)
 raises (Reflective::MofError);
 };

 interface ElementImport : ElementImportClass
 {
 Foundation::DataTypes::VisibilityKind visibility ()
 raises (Reflective::MofError);
 void set_visibility (in Foundation::DataTypes::VisibilityKind new_value)
 raises (Reflective::MofError);
 Foundation::DataTypes::Name alias ()
 raises (Reflective::MofError);
 void set_alias (in Foundation::DataTypes::Name new_value)
 raises (Reflective::MofError);
 Foundation::Core::ModelElement model_element ()
 raises (Reflective::MofError);
 void set_model_element (in Foundation::Core::ModelElement new_value)
 raises (Reflective::MofError);
 ModelManagement::Package package ()
 raises (Reflective::MofError);
 void set_package (in ModelManagement::Package new_value)
 raises (Reflective::MofError);
 }; // end of interface ElementImport

 struct AModelElementElementImportLink
 {
 Foundation::Core::ModelElement model_element;
 ElementImport element_import;
 };
 typedef sequence<AModelElementElementImportLink>

AModelElementElementImportLinkSet;

 interface AModelElementElementImport : Reflective::RefAssociation
 {
 AModelElementElementImportLinkSet all_a_model_element_element_import_links()
 raises (Reflective::MofError);
 boolean exists (
 in Foundation::Core::ModelElement model_element,
 in ElementImport element_import)
 raises (Reflective::MofError);
 Foundation::Core::ModelElement model_element (in ElementImport element_import)
 raises (Reflective::MofError);
 ElementImportSet element_import (in Foundation::Core::ModelElement model_element)
 raises (Reflective::MofError);
 void add (
 in Foundation::Core::ModelElement model_element,
 in ElementImport element_import)
 raises (Reflective::MofError);
 void modify_model_element (
 in Foundation::Core::ModelElement model_element,
 in ElementImport element_import,
UML V1.3 June 1999 5-169

5 UML CORBAfacility InterfaceDefinition
 in Foundation::Core::ModelElement new_model_element)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_element_import (
 in Foundation::Core::ModelElement model_element,
 in ElementImport element_import,
 in ElementImport new_element_import)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in Foundation::Core::ModelElement model_element,
 in ElementImport element_import)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface AModelElementElementImport

 struct APackageElementImportLink
 {
 ModelManagement::Package package;
 ElementImport element_import;
 };
 typedef sequence<APackageElementImportLink> APackageElementImportLinkSet;

 interface APackageElementImport : Reflective::RefAssociation
 {
 APackageElementImportLinkSet all_a_package_element_import_links()
 raises (Reflective::MofError);
 boolean exists (
 in ModelManagement::Package package,
 in ElementImport element_import)
 raises (Reflective::MofError);
 ModelManagement::Package package (in ElementImport element_import)
 raises (Reflective::MofError);
 ElementImportSet element_import (in ModelManagement::Package package)
 raises (Reflective::MofError);
 void add (
 in ModelManagement::Package package,
 in ElementImport element_import)
 raises (Reflective::MofError);
 void modify_package (
 in ModelManagement::Package package,
 in ElementImport element_import,
 in ModelManagement::Package new_package)
 raises (Reflective::NotFound, Reflective::MofError);
 void modify_element_import (
 in ModelManagement::Package package,
 in ElementImport element_import,
 in ElementImport new_element_import)
 raises (Reflective::NotFound, Reflective::MofError);
 void remove (
 in ModelManagement::Package package,
 in ElementImport element_import)
 raises (Reflective::NotFound, Reflective::MofError);
 }; // end of interface APackageElementImport
5-170 UML V1.3 June 1999

5.4 IDL Modules
 interface ModelManagementPackageFactory
 {
 ModelManagementPackage create_model_management_package ()
 raises (Reflective::MofError);
 };

 interface ModelManagementPackage : Reflective::RefPackage
 {
 readonly attribute ModelClass model_ref;
 readonly attribute PackageClass package_ref;
 readonly attribute SubsystemClass subsystem_ref;
 readonly attribute ElementImportClass element_import_ref;
 readonly attribute AModelElementElementImport a_model_element_element_import_ref;
 readonly attribute APackageElementImport a_package_element_import_ref;
 };
};
UML V1.3 June 1999 5-171

5 UML CORBAfacility InterfaceDefinition
5-172 UML V1.3 June 1999

 UML XMI DTD Specification 6

This chapter specifies the XMI DTD for UML 1.3 and the physical metamodel from
which it was generated.

Contents
6.1 Overview 6-3
6.2 Physical Metamodel 6-3
6.3 UML XMI DTD 6-23
UML V1.3 June 1999 6-1

6 UML XMI DTD Specification
6-2 UML V1.3 June 1999

6.1 Overview

e

, as

ng

ns to
ct

e
then

ata

tween
nd
6 UML XMI DTD Specification

6.1 Overview

The OMG XMI standard specifies a structure for interchanging models that uses XML. Th
XMI DTD generated for UML is a physical mechanism for interchanging UML models
conforming to the UML metamodel.

Section 6.2 contains the physical metamodel for UML from which the DTD was generated
well as a list of the changes required to produce the metamodel. Section 6.3 contains a
normative DTD that represents the UML 1.3 metamodel.generated from the XMI 1.0
specification.

One of the primary goals of providing this DTD is to advance the state of the industry by
enabling OO modeling tool interoperability, now available through XMI. When interchangi
UML models via streams or files, this normative XMI DTD should be used.

6.2 Physical Metamodel

The physical metamodel is the representation of the abstract syntax with minor modificatio
support generation of an XMI DTD. The following changes were made to the UML abstra
syntax:

Names

• Changed spaces in package names to '_'.

• Added names for association ends that did not have them. Convention: the name of th
adjoining class with the first letter in lower case. If this resulted in a name duplication,
a numbered suffix was added.

Additions

• Added enumeration literals as attributes of the enumeration classes for enumeration d
types.

• Added 'sorted' enumeration literal to OrderingKind.

• Added inheritance link from Message to ModelElement.

Association Classes

• Made ElementOwnership AssociationClass attributes by moving the visibility and
isSpecification attributes to the ModelElement class.

• Removed the attribute "visiblity" from classes AssociationEnd and Feature.

• Made the AssociationClass ElementResidence a class by removing the association be
Component and ModelElement and adding associations between ElementResidence a
Component and between ElementResidence and ModelElement.
UML V1.3 June 1999 6-3

6 UML XMI DTD Specification

n

tween
tween
ement.

 (

ent

s"

r

.

• Made the AssociationClass ElementImport a class by removing the association betwee
ModelElement and Package and adding associations between ModelElement and
ElementImport and between ElementImport and Package.

• Made the AssociationClass TemplateParameter a class by removing the association be
ModelElement and ModelElement for template parameters and added associations be
ModelElement and TemplateParameter and between TemplateParameter and ModelEl

MOF stereotypes

• Added CORBA typecodes to the DataTypes in the MOF tab of the model.

• Added a dataType Geometry as tk_string

• Changed "LocationReference", "Mapping", "Name" as tk_string

• Moved The Link between ModelElement & TaggedValue from "Core" to package
"Extension_Mechanisms"

• Removed the duplicate Aggregation between Binding & ModelElement from package
"Core"

• Relocated the following Associations to package "Activity_Graphs", A_parameter_state
between class "Parameter" and "ObjectFlowState"), A_type_classifierInState (between
classes "Classifier" and "ClassifierInState"), A_contents_partition (between ModelElem
and Partition), A_activityGraph_partition (between ActivityGraph and Partition),
A_type_objectFlowState (between Classifier and ObjectFlowState),
A_classifierInState_inState (between ClassifierInState and State)

• Removed Association names "association", "guard", "h","Instantiation" and "Parameter

• Changed the name of the role for the Assocaiation between classes "Component" and
"ElementResidence", A_implementationLocation_elementResidence to
A_implementationLocation_residentElement .

• Changed the Cardinality for role "constrainedElement" from 1..n to 0..n (in
A_constrainedElement_constraint) and for role "constrainedElement2" from 1 to 0..1 fo
A_constrainedElement2_stereotypeConstraint

• Removed "ordered" in Role "structuralFeature" of association A_structuralFeature_type
6-4 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-1 Backbone

Element

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Attribute

initialValue : Expression

Method

body : ProcedureExpression

Operation

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

*1

+method

*

+specification

1

Namespace

Constraint

body : BooleanExpression

ModelElement

name : Name
visibility : VisibilityKind
isSpecification : Boolean

0..1

*

+namespace

0..1

+ownedElement
*

*

0..*

+constraint

*

+constr ain edElement

0..* {ordered

BehavioralFeature

isQuery : Boolean

Feature

ownerScope : ScopeKind

S truc turalFeature

multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind

Parameter

defaultValue : Expression
kind : ParameterDirectionKind

0..1

*

+behavioralFeature

0..1

+parameter*

{ordered

C lass if ier

*

0..1

+ fe ature*

{ or dered

+owner

0..1

*

1

structuralFeature

*

+ type1

*

1

parameter*

+ type1
UML V1.3 June 1999 6-5

6 UML XMI DTD Specification
Figure 6-2 Relationships

{ordered}

AssociationClass

Class

isActive : Boolean

Relationship

Flow

ModelElement

name : Name
visibility : VisibilityKind
isSpecification : Boolean

*

*

+s our ce Flow

*

+source

*

*

*

+ targetFlow

*

+targe t *

Association

Attribute

initialValue : Expression

AssociationEnd

isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind

2..* 1

+connection

2..*

+association

1

* 0..1

+qualifier

*
{ordered

+associationEnd

0..1

GeneralizableElement

i sRoot : B oole an
isL eaf : Boole an
isAbst ra ct : B oole an

Classifier
1 *

+ type

1

associationEnd

*

**

+participant

*

+specification

*

Generalization

discriminator : Name
* 1

+generalization

*

+child

1
1*

+parent

1

+specialization

*

0..1

*

+powertype 0..1

+powertypeRange
*

6-6 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-3 Classifiers

Classifier

Class

isActive : Boolean

DataTyp e

Inter face Node

ModelElement

nam e : Nam e
vis ibility : Vis ibilityKind
isSpecification : Boolean

Com ponent

*

*+deploymentLocation

* +res ident

*

Eleme ntResid ence

visi bility : VisibilityKin d

1

*

+res ide nt1

+elementResidence*

1..1

*

+implem entationLocation
1..1

+reside ntEle me nt*
UML V1.3 June 1999 6-7

6 UML XMI DTD Specification
Figure 6-4 Auxilliary Elements

E lement

PresentationElement

Binding Comment

Mod elElement

name : Name
visibi l i ty : Visibi li tyKind
isSpecification : Boolean

**

+presentation

*

+subject

*

0..1

1..*

+binding0..1

+argument1..*

{ordered}

*

*

+comment*

+annotatedElement*

T emplateParameter

0..1

*

+defaul t

0..1

+templateParameter3*

0..1

*

+modelElement

0..1

+templateParame ter

*{ordered}

1..1

*

+modelElement2 1..1

+templateParameter2 *
6-8 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-5 Dependencies

Usage

P erm issionAbstraction

mapping : MappingExpression

Binding

ModelElement

name : Name
visibi l i ty : Visibi li tyKind
isSpecification : Boolean

Dependency1..* *

+suppl ier

1..*

+suppl ierDependency

*
1..* *

+cl ient

1..*

+cl ientDependency

*

Relationship
UML V1.3 June 1999 6-9

6 UML XMI DTD Specification
Figure 6-6 Data Types

AggregationKind

none : type
aggregate : type
composite : type

<<enumeration>>

Boolean

true : type
false : type

<<enumeration>>

ChangeableKind

changeable : type
frozen : type
addOnly : type

<<enumeration>>

Expression

language : Name
body : String

Name
<<primitive>>

Integer
<<primitive>>

ParameterDirectionKind

in : ty pe
inout : t ype
out : type
return : type

<<enumeration>>

MessageDirectionKind

act ivation : type
return : type

<<enumeration>>
S copeKind

cla ssi fier : type
instance : type

<<enum eration>>

String
<<primitive>>

T ime
<<primi tive>>

Visibi l ityKind

publ ic : type
private : type
protected : type

<<enumeration>>

PseudostateKind

initial : type
deepHistory : type
shal lowHistory : type
join : type
fork : type
branch : type
junction : type
final : type

<<enum eration>>
Cal lConcurrencyKind

sequential : type
guarded : type
concurrent : type

<<enumeration>>

Multiplici tyRange

lower : Integer
upper : Unl im itedInteger

Multiplici ty

1..*

1

+range1..*

+multip l ici ty1

Mapping
<<primi tive>>

Unl imitedInte ger
<<primi tive>>

Loc ationReferenc e
<<primi tive>>

OrderingKind

unordered : type
ordered : type
sorted : type

<<enum eration>>

Geometry
<<primitive>>
6-10 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-7 Expressions

BooleanExpress ion

Express ion

language : Nam e
body : String

ObjectSetExpression TimeExpress ion

ActionExpression

IterationExpress ion

TypeExpress ion

ArgListsExpress ion

MappingExpress ion ProcedureExpress ion
UML V1.3 June 1999 6-11

6 UML XMI DTD Specification
Figure 6-8 Extension Mechanisms

Gen eralizab leEleme nt
(f rom Core)

TaggedValue

tag : Na me
value : Strin g

ModelElement
(f rom Core)

0..1
*

+mod elEle me nt

0..1

taggedValue

*

Stereotype

icon : Geom etry
ba seClass : Name

*

0..1

+requiredTag *

+stereotype

0..1

0..1

*

s tereotype

0..1

+extendedElem ent

*

Cons traint
(f rom Core)

0..*

*

+constrainedElement

0..* {ordered}

+co nstra int

*

0..1

*

cons trainedElement20..1

+stereotypeConstraint *

{xor }
6-12 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-9 Instances

LinkObject

DataValue Object

ModelElement
(from Core)

NodeInstance

Action

recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean
script : ActionExpression

Attribute

(from Core)

Association

(from Core)

ComponentInstance

* 0..1

+resident

*

+nodeInstance

0..1

Stimulus

1

*

+dispatch1

+stimulus *

Classifier

(from Core)

AttributeLink

*1

attributeLink

*

+attribut

1

AssociationE nd

(from Core)
2..*1

+connection

2..*

+association

1

Link

1

*

+associatio1

link*

* 0..1+stimulus*

+communication

0..1

Instance

*

0..1

+resident*

+componentInstance0..1

*

*

+stimulus1 *

+argument *

{ordered}

*

1

+stimulus3 *

+sender 11

*

+receiver 1

+stimulus2 *

1..* *

+classifier

1..*

instance

*

1

0..*

+ instance 1

+slot 0..* *

1

+attributeLink*

+value1

LinkEnd

1

*

+associationEnd 1

linkEnd *

1 2 .. *

+ link

1

+connectio

2 .. *{ordered}

1

*

+ instance

1

+ link

*

AttributeLink

0..1

0..*

+ linkEnd

0..1

+qualifiedValue 0..*
UML V1.3 June 1999 6-13

6 UML XMI DTD Specification
Figure 6-10 Actions

DestroyAction

UninterpretedAction

ModelElement
(from Core)

CreateActionClassifier
(from Core) 0..*1

+createAction

0..*

+instantiatio

1

Retur nAction TerminateAction

AssignmentAction

CallAction

Operat ion
(from Core)

*

1

+callAction*

+operation1

SendAction

Signal

*

1

+sendAction*

+signal1

Argument

value : Expression

ActionSequence
Action

recurrence : IterationExpression
target : ObjectSetExpression
isAsynchronous : Boolean
script : ActionExpression

*

0..1

+actual*

{ordered}

+action0..1

0..1 0 .. *

+actionSequence

0..1

+action

0 .. *

{ordered}
6-14 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-11 Signals

Exception

Reception
specification : String
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

BehavioralFeature
(from Core)

Signal

1

0..*

+signal

1

+reception

0..*

**

+context

*

raisedSignal

*

Classifier
(from Core)
UML V1.3 June 1999 6-15

6 UML XMI DTD Specification
Figure 6-12 Use Cases

UseCaseInsta nce

Actor

Classif ier
(from Core)

Instance

(from Common_Behavior)
1..* *

+classif ier

1..*

+instance

*

ModelElement
(from Core)

Include

UseCase

*

1

+includ*

+addition 1

*

1

+include2 *

+bas1

ExtensionPoin t

location : LocationRef erence*1

+extension

*

+useCase

1

Extend

condition : BooleanExpression

1

*

+bas1

+extend2*

1

*

+extensio 1

+extend *

1..*

*

+extension
1..*

{ordered

+extend

*

Relationship
(from Core)
6-16 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-13 State Machines

Pseudostate

kind : PseudostateKind

SimpleState

SynchState
bound : Unli mitedInteger

StubState

referenc eState : Name

FinalStateCompositeState

isConcurrent : Boolean

Guard
expression : BooleanExpression

StateVertex
0..*

0..1

+subvertex

0..*

+container

0..1

Event

Acti on
(from Common_Behavior)

ModelElement
(from Core)

Transi ti on

1

0..1

+transition1

+guard0..1

0..1

*

+trigger0..1

+transition

*
1 *

+source

1

+outgoing

*

1 *

+target

1

+incoming

*

0..1

0..1

+effect

0..1

transition0..1

State

0..* 0..*
+state

0..*

+deferrableEvent

0..*

*

0..1

+internalTransition*

+state

0..1
0 ..1 0..1

state1

0 ..1

+entry

0..10..1 0..1

state2

0..1

+exit

0..1
0..1 0..1

state3

0..1

+doActivity

0..1

Submac hineState

StateMachine

*

0..1

behavior
*

+context 0..1

*

0..1

+transitions
*

+stateMachine

0..1

1

0..1

+top1

+stateMachine
0..1

*

1

+subMachineState

*

+submachine

1

UML V1.3 June 1999 6-17

6 UML XMI DTD Specification
Figure 6-14 Events

T imeEvent

when : T imeE xpression

ChangeEvent

changeExpressi on : BooleanExpression

Operation

(from Core)

Cal lEvent

1

*

+operation 1

occurrence *

Si gnalEvent

Signal

(from Common_Behavio r)

*

1

occurrence *

+signal
1

Parameter

(from Core)

Event

0..* 0..1

+parameter

0..*

{ordered
event

0..1

ModelElement
(from Core)
6-18 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-15 Collaborations

{xor}

GeneralizableElement
(from Core)

Namespac

(from Core)

Action

(from Common_Behavior)

A ssocia ti onEnd

(from Core)

Attribute

(from Core)

Association

(from Core)

2..*

1

+connection2..*

+association

1

Feature

(from Core)

Message

*
0..1

+message4

*

+activato

0..1

*
*

+message3

*

+predecesso

*

1*

+action

1

mes

*

AssociationEndRole

collaborationMultiplicity : Multiplicity

0..1

*

+base

0..1 associationEndRole

*

*

*

association EndR ole*
+availableQualifier *

Interaction

1

1..*

+ interaction1

+message1..*
AssociationRole

multiplicity : Multiplicity

0.. 1 *

+base

0.. 1

associationRole

*
*0..1

+message

*

+communication

0..1

1

2..*

+associationRole
1

+/connection2..*

Classifier
(from Core)

Operation

(from Core)

ClassifierRole

multiplicity : Multiplicity

** classifierRole*

+availableFeature

*

1

*

+sender 1

+message2 **

1

+message1 *

+receiver 1

* 1

+associationEndRole

* + /typ 1

*

1..*

classifierRole

*

+base1..*

Collaboration

1

*

+contex1

+ inter act ion*

1

*

+collaboration
1

+ /owned*

* 0..1collabor at io n*

+repres ented
Classifier

0..1

1

1. .*

+collaboration1

+/owned1. .*

0..1
*

+representedOperation

0..1

collaboration

*

ModelElement
(from Core)

*

*

classifierRole

*

+avail able*

*

*

collaboration *

+constrainingElement
*

UML V1.3 June 1999 6-19

6 UML XMI DTD Specification
Figure 6-16 Activity Graphs

ActionState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

SimpleState

(from State_Machines)

SubactivityState

isDynamic : Boolean
dynamicArguments : ArgListsExpres si on
dynamicMultiplicity : Multiplicity

SubmachineState

(from State_Machines)

CompositeState

isConcurent : Boolean

CallState

ActivityGraph Partition

1 0..*

+activityGraph

1

+partit ion

0..*

ModelElement

(from Core)

*

*

+contents*

+partition*

StateMachine

(from State_Machines) 0..1*

+context

0..1

+behavior

*

State

(from State_Machines)

0..1

1

+stateMachine
0..1

+top 1

ClassifierInState

0..*

1..*

+classifierInState

0..*

+inState

1..*

Parameter

(f rom Cor e)

Clas si fier
(from Core)

1

*

+type
1

+c lassi fierInState

*

ObjectFlowState

isSynch : Boolean

*

*

+parameter

*

+state *

1
*

+type

1
+objectFlowState*
6-20 UML V1.3 June 1999

6.2 Physical Metamodel
Figure 6-17 Model Management

Generalizab leElem ent
(from Core)

Subsys te m
is Ins tantiable : Boolean

Model

Classifier
(from Cor e)

Nam espace
(f rom Core)

Mode lE le ment
(from Core)

*

0..1

+ownedElem ent

*

+namespace

0..1

Package

Elem entImport

vis ibility : Vis ibilityKind
alias : Name

1

*

+modelElem ent

1

+elementIm port*

1

*

+package 1

+elementIm port*
UML V1.3 June 1999 6-21

6 UML XMI DTD Specification
6-22 UML V1.3 June 1999

6.3 UML XMI DTD
6UML XMI DTD Specification

6.3 UML XMI DTD

<?xml version="1.0" encoding="UTF-8" ?>
<!-- XMI Automatic DTD Generation -->
<!-- Date: Fri May 28 14:48:41 PDT 1999 -->
<!-- Metamodel: UML1.3 -->

<!-- ___ -->
<!-- -->
<!-- XMI is the top-level XML element for XMI transfer text -->
<!-- ___ -->

<!ELEMENT XMI (XMI.header, XMI.content?, XMI.difference*,
 XMI.extensions*) >
<!ATTLIST XMI
 xmi.version CDATA #FIXED "1.0"
 timestamp CDATA #IMPLIED
 verified (true | false) #IMPLIED
>

<!-- ___ -->
<!-- -->
<!-- XMI.header contains documentation and identifies the model, -->
<!-- metamodel, and metametamodel -->
<!-- ___ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,
 XMI.metametamodel*) >

<!-- ___ -->
<!-- -->
<!-- documentation for transfer data -->
<!-- ___ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |
 XMI.longDescription | XMI.shortDescription |
 XMI.exporter | XMI.exporterVersion |
 XMI.notice)* >

<!ELEMENT XMI.owner ANY >

<!ELEMENT XMI.contact ANY >

<!ELEMENT XMI.longDescription ANY >

<!ELEMENT XMI.shortDescription ANY >

<!ELEMENT XMI.exporter ANY >

<!ELEMENT XMI.exporterVersion ANY >

<!ELEMENT XMI.exporterID ANY >

<!ELEMENT XMI.notice ANY >

<!-- ___ -->
<!-- -->
<!-- XMI.element.att defines the attributes that each XML element -->
<!-- that corresponds to a metamodel class must have to conform to -->
<!-- the XMI specification. -->
<!-- ___ -->
UML V1.3 June 1999 6-23

6 UML XMI DTD Specification
<!ENTITY % XMI.element.att
 'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid
 CDATA #IMPLIED ' >

<!-- ___ -->
<!-- -->
<!-- XMI.link.att defines the attributes that each XML element that -->
<!-- corresponds to a metamodel class must have to enable it to -->
<!-- function as a simple XLink as well as refer to model -->
<!-- constructs within the same XMI file. -->
<!-- ___ -->

<!ENTITY % XMI.link.att
 'xml:link CDATA #IMPLIED inline (true | false) #IMPLIED
 actuate (show | user) #IMPLIED href CDATA #IMPLIED role
 CDATA #IMPLIED title CDATA #IMPLIED show (embed | replace
 | new) #IMPLIED behavior CDATA #IMPLIED xmi.idref IDREF
 #IMPLIED xmi.uuidref CDATA #IMPLIED' >

<!-- ___ -->
<!-- -->
<!-- XMI.model identifies the model(s) being transferred -->
<!-- ___ -->

<!ELEMENT XMI.model ANY >
<!ATTLIST XMI.model
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED
>

<!-- ___ -->
<!-- -->
<!-- XMI.metamodel identifies the metamodel(s) for the transferred -->
<!-- data -->
<!-- ___ -->

<!ELEMENT XMI.metamodel ANY >
<!ATTLIST XMI.metamodel
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED
>

<!-- ___ -->
<!-- -->
<!-- XMI.metametamodel identifies the metametamodel(s) for the -->
<!-- transferred data -->
<!-- ___ -->

<!ELEMENT XMI.metametamodel ANY >
<!ATTLIST XMI.metametamodel
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #IMPLIED
>

<!-- ___ -->
<!-- -->
<!-- XMI.content is the actual data being transferred -->
<!-- ___ -->

<!ELEMENT XMI.content ANY >

<!-- ___ -->
<!-- -->
<!-- XMI.extensions contains data to transfer that does not conform -->
<!-- to the metamodel(s) in the header -->
6-24 UML V1.3 June 1999

6.3 UML XMI DTD
<!-- ___ -->

<!ELEMENT XMI.extensions ANY >
<!ATTLIST XMI.extensions
 xmi.extender CDATA #REQUIRED
>

<!-- ___ -->
<!-- -->
<!-- extension contains information related to a specific model -->
<!-- construct that is not defined in the metamodel(s) in the header -->
<!-- ___ -->

<!ELEMENT XMI.extension ANY >
<!ATTLIST XMI.extension
 %XMI.element.att;
 %XMI.link.att;
 xmi.extender CDATA #REQUIRED
 xmi.extenderID CDATA #REQUIRED
>

<!-- ___ -->
<!-- -->
<!-- XMI.difference holds XML elements representing differences to a -->
<!-- base model -->
<!-- ___ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |
 XMI.replace)* >
<!ATTLIST XMI.difference
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- XMI.delete represents a deletion from a base model -->
<!-- ___ -->

<!ELEMENT XMI.delete EMPTY >
<!ATTLIST XMI.delete
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- XMI.add represents an addition to a base model -->
<!-- ___ -->

<!ELEMENT XMI.add ANY >
<!ATTLIST XMI.add
 %XMI.element.att;
 %XMI.link.att;
 xmi.position CDATA "-1"
>

<!-- ___ -->
<!-- -->
<!-- XMI.replace represents the replacement of a model construct -->
<!-- with another model construct in a base model -->
<!-- ___ -->

<!ELEMENT XMI.replace ANY >
<!ATTLIST XMI.replace
 %XMI.element.att;
 %XMI.link.att;
 xmi.position CDATA "-1"
UML V1.3 June 1999 6-25

6 UML XMI DTD Specification
>

<!-- ___ -->
<!-- -->
<!-- XMI.reference may be used to refer to data types not defined in -->
<!-- the metamodel -->
<!-- ___ -->

<!ELEMENT XMI.reference ANY >
<!ATTLIST XMI.reference
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- This section contains the declaration of XML elements -->
<!-- representing data types -->
<!-- ___ -->

<!ELEMENT XMI.TypeDefinitions ANY >

<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >
<!ATTLIST XMI.enum
 xmi.value CDATA #REQUIRED
>

<!ELEMENT XMI.any ANY >
<!ATTLIST XMI.any
 %XMI.link.att;
 xmi.type CDATA #IMPLIED
 xmi.name CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |
 XMI.CorbaTcSequence | XMI.CorbaTcArray |
 XMI.CorbaTcEnum | XMI.CorbaTcUnion |
 XMI.CorbaTcExcept | XMI.CorbaTcString |
 XMI.CorbaTcWstring | XMI.CorbaTcShort |
 XMI.CorbaTcLong | XMI.CorbaTcUshort |
 XMI.CorbaTcUlong | XMI.CorbaTcFloat |
 XMI.CorbaTcDouble | XMI.CorbaTcBoolean |
 XMI.CorbaTcChar | XMI.CorbaTcWchar |
 XMI.CorbaTcOctet | XMI.CorbaTcAny |
 XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |
 XMI.CorbaTcNull | XMI.CorbaTcVoid |
 XMI.CorbaTcLongLong |
 XMI.CorbaTcLongDouble) >
<!ATTLIST XMI.CorbaTypeCode
 %XMI.element.att;
>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcAlias
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcStruct
 xmi.tcName CDATA #REQUIRED
6-26 UML V1.3 June 1999

6.3 UML XMI DTD
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcField
 xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |
 XMI.CorbaRecursiveType) >
<!ATTLIST XMI.CorbaTcSequence
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaRecursiveType EMPTY >
<!ATTLIST XMI.CorbaRecursiveType
 xmi.offset CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcArray
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcObjRef EMPTY >
<!ATTLIST XMI.CorbaTcObjRef
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >
<!ATTLIST XMI.CorbaTcEnum
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >
<!ATTLIST XMI.CorbaTcEnumLabel
 xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >
<!ATTLIST XMI.CorbaTcUnionMbr
 xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*) >
<!ATTLIST XMI.CorbaTcUnion
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcExcept
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcString EMPTY >
<!ATTLIST XMI.CorbaTcString
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcWstring EMPTY >
<!ATTLIST XMI.CorbaTcWstring
 xmi.tcLength CDATA #REQUIRED
>

UML V1.3 June 1999 6-27

6 UML XMI DTD Specification
<!ELEMENT XMI.CorbaTcFixed EMPTY >
<!ATTLIST XMI.CorbaTcFixed
 xmi.tcDigits CDATA #REQUIRED
 xmi.tcScale CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >

<!ELEMENT XMI.CorbaTcWchar EMPTY >

<!ELEMENT XMI.CorbaTcOctet EMPTY >

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

<!-- ___ -->
<!-- -->
<!-- METAMODEL: UML1.3 -->
<!-- ___ -->

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Foundation -->
<!-- ___ -->

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Core -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Association.connection (Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole)*
 >

<!ELEMENT Foundation.Core.Classifier.feature (Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
6-28 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Attribute)*
 >

<!ELEMENT Foundation.Core.Namespace.ownedElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
UML V1.3 June 1999 6-29

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Foundation.Core.BehavioralFeature.parameter
 (Foundation.Core.Parameter)* >

<!ELEMENT Foundation.Core.AssociationEnd.qualifier
 (Foundation.Core.Attribute)* >

<!ELEMENT Foundation.Core.ModelElement.templateParameter
 (Foundation.Core.TemplateParameter)* >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Classifier -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Classifier.participant (Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole)*
 >

<!ELEMENT Foundation.Core.Classifier.powertypeRange
 (Foundation.Core.Generalization)* >

<!ELEMENT Foundation.Core.Classifier.instance (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)*
 >

<!ELEMENT Foundation.Core.Classifier.createAction
 (Behavioral_Elements.Common_Behavior.CreateAction)* >

<!ELEMENT Foundation.Core.Classifier.classifierRole
 (Behavioral_Elements.Collaborations.ClassifierRole)* >

<!ELEMENT Foundation.Core.Classifier.collaboration
6-30 UML V1.3 June 1999

6.3 UML XMI DTD
 (Behavioral_Elements.Collaborations.Collaboration)* >

<!ELEMENT Foundation.Core.Classifier.classifierInState
 (Behavioral_Elements.Activity_Graphs.ClassifierInState)* >

<!ELEMENT Foundation.Core.Classifier.objectFlowState
 (Behavioral_Elements.Activity_Graphs.ObjectFlowState)* >

<!ELEMENT Foundation.Core.Classifier (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Foundation.Core.Classifier
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Class -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Class.isActive EMPTY >
<!ATTLIST Foundation.Core.Class.isActive
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.Class (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
UML V1.3 June 1999 6-31

6 UML XMI DTD Specification
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 Foundation.Core.Class.isActive?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)? >
<!ATTLIST Foundation.Core.Class
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: DataType -->
<!-- ___ -->

<!ELEMENT Foundation.Core.DataType (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
6-32 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Foundation.Core.DataType
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: StructuralFeature -->
<!-- ___ -->

<!ELEMENT Foundation.Core.StructuralFeature.multiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Foundation.Core.StructuralFeature.changeability EMPTY >
<!ATTLIST Foundation.Core.StructuralFeature.changeability
 xmi.value (changeable | frozen | addOnly) #REQUIRED
>

<!ELEMENT Foundation.Core.StructuralFeature.targetScope EMPTY >
<!ATTLIST Foundation.Core.StructuralFeature.targetScope
 xmi.value (classifier | instance) #REQUIRED
>

<!ELEMENT Foundation.Core.StructuralFeature.type (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Foundation.Core.StructuralFeature (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Feature.ownerScope?,
 Foundation.Core.StructuralFeature.multiplicity?,
 Foundation.Core.StructuralFeature.changeability?,
 Foundation.Core.StructuralFeature.targetScope?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
UML V1.3 June 1999 6-33

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.StructuralFeature.type?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.StructuralFeature
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Namespace -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Namespace (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*)?
 >
<!ATTLIST Foundation.Core.Namespace
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: AssociationEnd -->
6-34 UML V1.3 June 1999

6.3 UML XMI DTD
<!-- ___ -->

<!ELEMENT Foundation.Core.AssociationEnd.isNavigable EMPTY >
<!ATTLIST Foundation.Core.AssociationEnd.isNavigable
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.AssociationEnd.ordering EMPTY >
<!ATTLIST Foundation.Core.AssociationEnd.ordering
 xmi.value (unordered | ordered | sorted) #REQUIRED
>

<!ELEMENT Foundation.Core.AssociationEnd.aggregation EMPTY >
<!ATTLIST Foundation.Core.AssociationEnd.aggregation
 xmi.value (none | aggregate | composite) #REQUIRED
>

<!ELEMENT Foundation.Core.AssociationEnd.targetScope EMPTY >
<!ATTLIST Foundation.Core.AssociationEnd.targetScope
 xmi.value (classifier | instance) #REQUIRED
>

<!ELEMENT Foundation.Core.AssociationEnd.multiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Foundation.Core.AssociationEnd.changeability EMPTY >
<!ATTLIST Foundation.Core.AssociationEnd.changeability
 xmi.value (changeable | frozen | addOnly) #REQUIRED
>

<!ELEMENT Foundation.Core.AssociationEnd.association (Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole)?
 >

<!ELEMENT Foundation.Core.AssociationEnd.type (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Foundation.Core.AssociationEnd.specification (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)*
 >
UML V1.3 June 1999 6-35

6 UML XMI DTD Specification
<!ELEMENT Foundation.Core.AssociationEnd.linkEnd
 (Behavioral_Elements.Common_Behavior.LinkEnd)* >

<!ELEMENT Foundation.Core.AssociationEnd.associationEndRole
 (Behavioral_Elements.Collaborations.AssociationEndRole)* >

<!ELEMENT Foundation.Core.AssociationEnd (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.AssociationEnd.isNavigable?,
 Foundation.Core.AssociationEnd.ordering?,
 Foundation.Core.AssociationEnd.aggregation?,
 Foundation.Core.AssociationEnd.targetScope?,
 Foundation.Core.AssociationEnd.multiplicity?,
 Foundation.Core.AssociationEnd.changeability?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.AssociationEnd.association?,
 Foundation.Core.AssociationEnd.type?,
 Foundation.Core.AssociationEnd.specification*,
 Foundation.Core.AssociationEnd.linkEnd*,
 Foundation.Core.AssociationEnd.associationEndRole*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.AssociationEnd.qualifier*)?
 >
<!ATTLIST Foundation.Core.AssociationEnd
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Interface -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Interface (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
6-36 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Foundation.Core.Interface
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Constraint -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Constraint.body
 (Foundation.Data_Types.BooleanExpression) >

<!ELEMENT Foundation.Core.Constraint.constrainedElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
UML V1.3 June 1999 6-37

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Foundation.Core.Constraint.constrainedElement2
6-38 UML V1.3 June 1999

6.3 UML XMI DTD
 (Foundation.Extension_Mechanisms.Stereotype)? >

<!ELEMENT Foundation.Core.Constraint (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Constraint.body?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Constraint.constrainedElement*,
 Foundation.Core.Constraint.constrainedElement2?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Constraint
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Association -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Association.link (Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkObject)*
 >

<!ELEMENT Foundation.Core.Association.associationRole
 (Behavioral_Elements.Collaborations.AssociationRole)* >

<!ELEMENT Foundation.Core.Association (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
UML V1.3 June 1999 6-39

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Association.link*,
 Foundation.Core.Association.associationRole*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Association.connection*)?
 >
<!ATTLIST Foundation.Core.Association
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Element -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Element (XMI.extension*)? >
<!ATTLIST Foundation.Core.Element
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: GeneralizableElement -->
<!-- ___ -->

<!ELEMENT Foundation.Core.GeneralizableElement.isRoot EMPTY >
<!ATTLIST Foundation.Core.GeneralizableElement.isRoot
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.GeneralizableElement.isLeaf EMPTY >
<!ATTLIST Foundation.Core.GeneralizableElement.isLeaf
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.GeneralizableElement.isAbstract EMPTY >
<!ATTLIST Foundation.Core.GeneralizableElement.isAbstract
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.GeneralizableElement.generalization
 (Foundation.Core.Generalization)* >

<!ELEMENT Foundation.Core.GeneralizableElement.specialization
 (Foundation.Core.Generalization)* >

<!ELEMENT Foundation.Core.GeneralizableElement (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
6-40 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.GeneralizableElement
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Attribute -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Attribute.initialValue (Foundation.Data_Types.Expression |
 Foundation.Data_Types.BooleanExpression |
 Foundation.Data_Types.ActionExpression |
 Foundation.Data_Types.IterationExpression |
 Foundation.Data_Types.TypeExpression |
 Foundation.Data_Types.ArgListsExpression |
 Foundation.Data_Types.MappingExpression |
 Foundation.Data_Types.ProcedureExpression |
 Foundation.Data_Types.TimeExpression |
 Foundation.Data_Types.ObjectSetExpression)
 >

<!ELEMENT Foundation.Core.Attribute.associationEnd (Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole)?
 >

<!ELEMENT Foundation.Core.Attribute.attributeLink
 (Behavioral_Elements.Common_Behavior.AttributeLink)* >

<!ELEMENT Foundation.Core.Attribute.associationEndRole
 (Behavioral_Elements.Collaborations.AssociationEndRole)* >

<!ELEMENT Foundation.Core.Attribute (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Feature.ownerScope?,
 Foundation.Core.StructuralFeature.multiplicity?,
 Foundation.Core.StructuralFeature.changeability?,
 Foundation.Core.StructuralFeature.targetScope?,
 Foundation.Core.Attribute.initialValue?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
UML V1.3 June 1999 6-41

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.StructuralFeature.type?,
 Foundation.Core.Attribute.associationEnd?,
 Foundation.Core.Attribute.attributeLink*,
 Foundation.Core.Attribute.associationEndRole*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Attribute
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Operation -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Operation.concurrency EMPTY >
<!ATTLIST Foundation.Core.Operation.concurrency
 xmi.value (sequential | guarded | concurrent) #REQUIRED
>

<!ELEMENT Foundation.Core.Operation.isRoot EMPTY >
<!ATTLIST Foundation.Core.Operation.isRoot
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.Operation.isLeaf EMPTY >
<!ATTLIST Foundation.Core.Operation.isLeaf
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.Operation.isAbstract EMPTY >
<!ATTLIST Foundation.Core.Operation.isAbstract
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.Operation.specification (#PCDATA |
 XMI.reference)* >

<!ELEMENT Foundation.Core.Operation.method (Foundation.Core.Method)* >

<!ELEMENT Foundation.Core.Operation.callAction
 (Behavioral_Elements.Common_Behavior.CallAction)* >

<!ELEMENT Foundation.Core.Operation.occurrence
 (Behavioral_Elements.State_Machines.CallEvent)* >

<!ELEMENT Foundation.Core.Operation.collaboration
 (Behavioral_Elements.Collaborations.Collaboration)* >

<!ELEMENT Foundation.Core.Operation (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
6-42 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Feature.ownerScope?,
 Foundation.Core.BehavioralFeature.isQuery?,
 Foundation.Core.Operation.concurrency?,
 Foundation.Core.Operation.isRoot?,
 Foundation.Core.Operation.isLeaf?,
 Foundation.Core.Operation.isAbstract?,
 Foundation.Core.Operation.specification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.BehavioralFeature.raisedSignal*,
 Foundation.Core.Operation.method*,
 Foundation.Core.Operation.callAction*,
 Foundation.Core.Operation.occurrence*,
 Foundation.Core.Operation.collaboration*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.BehavioralFeature.parameter*)?
 >
<!ATTLIST Foundation.Core.Operation
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Parameter -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Parameter.defaultValue (Foundation.Data_Types.Expression |
 Foundation.Data_Types.BooleanExpression |
 Foundation.Data_Types.ActionExpression |
 Foundation.Data_Types.IterationExpression |
 Foundation.Data_Types.TypeExpression |
 Foundation.Data_Types.ArgListsExpression |
 Foundation.Data_Types.MappingExpression |
 Foundation.Data_Types.ProcedureExpression |
 Foundation.Data_Types.TimeExpression |
 Foundation.Data_Types.ObjectSetExpression)
 >

<!ELEMENT Foundation.Core.Parameter.kind EMPTY >
<!ATTLIST Foundation.Core.Parameter.kind
 xmi.value (in | inout | out | return) #REQUIRED
>

<!ELEMENT Foundation.Core.Parameter.behavioralFeature (Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
UML V1.3 June 1999 6-43

6 UML XMI DTD Specification
 Foundation.Core.Method)?
 >

<!ELEMENT Foundation.Core.Parameter.type (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)? >

<!ELEMENT Foundation.Core.Parameter.event (Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent)?
 >

<!ELEMENT Foundation.Core.Parameter.state
 (Behavioral_Elements.Activity_Graphs.ObjectFlowState)* >

<!ELEMENT Foundation.Core.Parameter (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Parameter.defaultValue?,
 Foundation.Core.Parameter.kind?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Parameter.behavioralFeature?,
 Foundation.Core.Parameter.type?,
 Foundation.Core.Parameter.event?,
 Foundation.Core.Parameter.state*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Parameter
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Method -->
<!-- ___ -->
6-44 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Foundation.Core.Method.body
 (Foundation.Data_Types.ProcedureExpression) >

<!ELEMENT Foundation.Core.Method.specification
 (Foundation.Core.Operation)? >

<!ELEMENT Foundation.Core.Method (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Feature.ownerScope?,
 Foundation.Core.BehavioralFeature.isQuery?,
 Foundation.Core.Method.body?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.BehavioralFeature.raisedSignal*,
 Foundation.Core.Method.specification?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.BehavioralFeature.parameter*)?
 >
<!ATTLIST Foundation.Core.Method
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Generalization -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Generalization.discriminator (#PCDATA |
 XMI.reference)* >

<!ELEMENT Foundation.Core.Generalization.child (Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
UML V1.3 June 1999 6-45

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.Association |
 Behavioral_Elements.Collaborations.AssociationRole)?
 >

<!ELEMENT Foundation.Core.Generalization.parent (Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.Association |
 Behavioral_Elements.Collaborations.AssociationRole)?
 >

<!ELEMENT Foundation.Core.Generalization.powertype (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Foundation.Core.Generalization (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Generalization.discriminator?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
6-46 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Generalization.child?,
 Foundation.Core.Generalization.parent?,
 Foundation.Core.Generalization.powertype?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Generalization
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: AssociationClass -->
<!-- ___ -->

<!ELEMENT Foundation.Core.AssociationClass (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 Foundation.Core.Class.isActive?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Association.link*,
 Foundation.Core.Association.associationRole*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Association.connection*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Foundation.Core.AssociationClass
 %XMI.element.att;
 %XMI.link.att;
UML V1.3 June 1999 6-47

6 UML XMI DTD Specification
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Feature -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Feature.ownerScope EMPTY >
<!ATTLIST Foundation.Core.Feature.ownerScope
 xmi.value (classifier | instance) #REQUIRED
>

<!ELEMENT Foundation.Core.Feature.owner (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)? >

<!ELEMENT Foundation.Core.Feature.classifierRole
 (Behavioral_Elements.Collaborations.ClassifierRole)* >

<!ELEMENT Foundation.Core.Feature (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Feature.ownerScope?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Feature
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BehavioralFeature -->
<!-- ___ -->
6-48 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Foundation.Core.BehavioralFeature.isQuery EMPTY >
<!ATTLIST Foundation.Core.BehavioralFeature.isQuery
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.BehavioralFeature.raisedSignal (Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception)*
 >

<!ELEMENT Foundation.Core.BehavioralFeature (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Feature.ownerScope?,
 Foundation.Core.BehavioralFeature.isQuery?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.BehavioralFeature.raisedSignal*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.BehavioralFeature.parameter*)?
 >
<!ATTLIST Foundation.Core.BehavioralFeature
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ModelElement -->
<!-- ___ -->

<!ELEMENT Foundation.Core.ModelElement.name (#PCDATA | XMI.reference)* >

<!ELEMENT Foundation.Core.ModelElement.visibility EMPTY >
<!ATTLIST Foundation.Core.ModelElement.visibility
 xmi.value (public | private | protected) #REQUIRED
>

<!ELEMENT Foundation.Core.ModelElement.isSpecification EMPTY >
<!ATTLIST Foundation.Core.ModelElement.isSpecification
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Foundation.Core.ModelElement.namespace (Foundation.Core.Namespace |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
UML V1.3 June 1999 6-49

6 UML XMI DTD Specification
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState)?
 >

<!ELEMENT Foundation.Core.ModelElement.clientDependency (Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission)*
 >

<!ELEMENT Foundation.Core.ModelElement.constraint
 (Foundation.Core.Constraint)* >

<!ELEMENT Foundation.Core.ModelElement.supplierDependency (Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission)*
 >

<!ELEMENT Foundation.Core.ModelElement.presentation
 (Foundation.Core.PresentationElement)* >

<!ELEMENT Foundation.Core.ModelElement.targetFlow
 (Foundation.Core.Flow)* >

<!ELEMENT Foundation.Core.ModelElement.sourceFlow
 (Foundation.Core.Flow)* >

<!ELEMENT Foundation.Core.ModelElement.templateParameter3
 (Foundation.Core.TemplateParameter)* >

<!ELEMENT Foundation.Core.ModelElement.binding
 (Foundation.Core.Binding)? >

<!ELEMENT Foundation.Core.ModelElement.comment
 (Foundation.Core.Comment)* >

<!ELEMENT Foundation.Core.ModelElement.elementResidence
 (Foundation.Core.ElementResidence)* >

<!ELEMENT Foundation.Core.ModelElement.templateParameter2
 (Foundation.Core.TemplateParameter)* >

<!ELEMENT Foundation.Core.ModelElement.stereotype
 (Foundation.Extension_Mechanisms.Stereotype)? >

<!ELEMENT Foundation.Core.ModelElement.behavior (Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph)*
 >

<!ELEMENT Foundation.Core.ModelElement.classifierRole
 (Behavioral_Elements.Collaborations.ClassifierRole)* >
6-50 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Foundation.Core.ModelElement.collaboration
 (Behavioral_Elements.Collaborations.Collaboration)* >

<!ELEMENT Foundation.Core.ModelElement.partition
 (Behavioral_Elements.Activity_Graphs.Partition)* >

<!ELEMENT Foundation.Core.ModelElement.elementImport
 (Model_Management.ElementImport)* >

<!ELEMENT Foundation.Core.ModelElement (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.ModelElement
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Dependency -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Dependency.client (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
UML V1.3 June 1999 6-51

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
6-52 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Foundation.Core.Dependency.supplier (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
UML V1.3 June 1999 6-53

6 UML XMI DTD Specification
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Foundation.Core.Dependency (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Dependency.client*,
 Foundation.Core.Dependency.supplier*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Dependency
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Abstraction -->
<!-- ___ -->
6-54 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Foundation.Core.Abstraction.mapping
 (Foundation.Data_Types.MappingExpression) >

<!ELEMENT Foundation.Core.Abstraction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Abstraction.mapping?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Dependency.client*,
 Foundation.Core.Dependency.supplier*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Abstraction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: PresentationElement -->
<!-- ___ -->

<!ELEMENT Foundation.Core.PresentationElement.subject (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
UML V1.3 June 1999 6-55

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
6-56 UML V1.3 June 1999

6.3 UML XMI DTD
 >

<!ELEMENT Foundation.Core.PresentationElement (XMI.extension*,
 Foundation.Core.PresentationElement.subject*)?
 >
<!ATTLIST Foundation.Core.PresentationElement
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Usage -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Usage (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Dependency.client*,
 Foundation.Core.Dependency.supplier*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Usage
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Binding -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Binding.argument (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
UML V1.3 June 1999 6-57

6 UML XMI DTD Specification
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
6-58 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)* >

<!ELEMENT Foundation.Core.Binding (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Dependency.client*,
 Foundation.Core.Dependency.supplier*,
 Foundation.Core.Binding.argument*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Binding
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Component -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Component.deploymentLocation
 (Foundation.Core.Node)* >

<!ELEMENT Foundation.Core.Component.residentElement
 (Foundation.Core.ElementResidence)* >

<!ELEMENT Foundation.Core.Component (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
UML V1.3 June 1999 6-59

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.Component.deploymentLocation*,
 Foundation.Core.Component.residentElement*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Foundation.Core.Component
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Node -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Node.resident (Foundation.Core.Component)* >

<!ELEMENT Foundation.Core.Node (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
6-60 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.Node.resident*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)? >
<!ATTLIST Foundation.Core.Node
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Permission -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Permission (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Dependency.client*,
 Foundation.Core.Dependency.supplier*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Permission
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Comment -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Comment.annotatedElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
UML V1.3 June 1999 6-61

6 UML XMI DTD Specification
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
6-62 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Foundation.Core.Comment (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Comment.annotatedElement*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Comment
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Flow -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Flow.target (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
UML V1.3 June 1999 6-63

6 UML XMI DTD Specification
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
6-64 UML V1.3 June 1999

6.3 UML XMI DTD
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)* >

<!ELEMENT Foundation.Core.Flow.source (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
UML V1.3 June 1999 6-65

6 UML XMI DTD Specification
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)* >

<!ELEMENT Foundation.Core.Flow (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Flow.target*,
6-66 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Flow.source*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Flow
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Relationship -->
<!-- ___ -->

<!ELEMENT Foundation.Core.Relationship (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Foundation.Core.Relationship
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ElementResidence -->
<!-- ___ -->

<!ELEMENT Foundation.Core.ElementResidence.visibility EMPTY >
<!ATTLIST Foundation.Core.ElementResidence.visibility
 xmi.value (public | private | protected) #REQUIRED
>

<!ELEMENT Foundation.Core.ElementResidence.resident (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
UML V1.3 June 1999 6-67

6 UML XMI DTD Specification
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
6-68 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Foundation.Core.ElementResidence.implementationLocation
 (Foundation.Core.Component)? >

<!ELEMENT Foundation.Core.ElementResidence (Foundation.Core.ElementResidence.visibility?,
 XMI.extension*,
 Foundation.Core.ElementResidence.resident?,
 Foundation.Core.ElementResidence.implementationLocation?)?
 >
<!ATTLIST Foundation.Core.ElementResidence
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: TemplateParameter -->
<!-- ___ -->

<!ELEMENT Foundation.Core.TemplateParameter.defaultElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
UML V1.3 June 1999 6-69

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Foundation.Core.TemplateParameter.modelElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
6-70 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
UML V1.3 June 1999 6-71

6 UML XMI DTD Specification
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Foundation.Core.TemplateParameter.modelElement2 (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
6-72 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Foundation.Core.TemplateParameter (XMI.extension*,
 Foundation.Core.TemplateParameter.defaultElement?,
 Foundation.Core.TemplateParameter.modelElement?,
 Foundation.Core.TemplateParameter.modelElement2?)?
 >
<!ATTLIST Foundation.Core.TemplateParameter
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Foundation.Core ((Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Namespace |
 Foundation.Core.AssociationEnd |
 Foundation.Core.Interface |
 Foundation.Core.Constraint |
 Foundation.Core.Association |
 Foundation.Core.Element |
 Foundation.Core.GeneralizableElement |
UML V1.3 June 1999 6-73

6 UML XMI DTD Specification
 Foundation.Core.Attribute |
 Foundation.Core.Operation |
 Foundation.Core.Parameter |
 Foundation.Core.Method |
 Foundation.Core.Generalization |
 Foundation.Core.AssociationClass |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Foundation.Core.ModelElement |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.PresentationElement |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Foundation.Core.Permission |
 Foundation.Core.Comment |
 Foundation.Core.Flow |
 Foundation.Core.Relationship |
 Foundation.Core.ElementResidence |
 Foundation.Core.TemplateParameter)*) >
<!ATTLIST Foundation.Core
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Data_Types -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.Multiplicity.range
 (Foundation.Data_Types.MultiplicityRange)* >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Multiplicity -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.Multiplicity (XMI.extension*,
 Foundation.Data_Types.Multiplicity.range*)?
 >
<!ATTLIST Foundation.Data_Types.Multiplicity
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ObjectSetExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.ObjectSetExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.ObjectSetExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: TimeExpression -->
<!-- ___ -->
6-74 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Foundation.Data_Types.TimeExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.TimeExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Expression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.Expression.language (#PCDATA |
 XMI.reference)* >

<!ELEMENT Foundation.Data_Types.Expression.body (#PCDATA |
 XMI.reference)* >

<!ELEMENT Foundation.Data_Types.Expression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.Expression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: BooleanExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.BooleanExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.BooleanExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ActionExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.ActionExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.ActionExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: MultiplicityRange -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.MultiplicityRange.lower (#PCDATA |
 XMI.reference)* >

<!ELEMENT Foundation.Data_Types.MultiplicityRange.upper (#PCDATA |
UML V1.3 June 1999 6-75

6 UML XMI DTD Specification
 XMI.reference)* >

<!ELEMENT Foundation.Data_Types.MultiplicityRange.multiplicity
 (Foundation.Data_Types.Multiplicity)? >

<!ELEMENT Foundation.Data_Types.MultiplicityRange (Foundation.Data_Types.MultiplicityRange.lower?,
 Foundation.Data_Types.MultiplicityRange.upper?,
 XMI.extension*,
 Foundation.Data_Types.MultiplicityRange.multiplicity?)?
 >
<!ATTLIST Foundation.Data_Types.MultiplicityRange
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: IterationExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.IterationExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.IterationExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: TypeExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.TypeExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.TypeExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ArgListsExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.ArgListsExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.ArgListsExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: MappingExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.MappingExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.MappingExpression
 %XMI.element.att;
6-76 UML V1.3 June 1999

6.3 UML XMI DTD
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ProcedureExpression -->
<!-- ___ -->

<!ELEMENT Foundation.Data_Types.ProcedureExpression (Foundation.Data_Types.Expression.language?,
 Foundation.Data_Types.Expression.body?,
 XMI.extension*)? >
<!ATTLIST Foundation.Data_Types.ProcedureExpression
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Foundation.Data_Types ((Foundation.Data_Types.Multiplicity |
 Foundation.Data_Types.ObjectSetExpression |
 Foundation.Data_Types.TimeExpression |
 Foundation.Data_Types.Expression |
 Foundation.Data_Types.BooleanExpression |
 Foundation.Data_Types.ActionExpression |
 Foundation.Data_Types.MultiplicityRange |
 Foundation.Data_Types.IterationExpression |
 Foundation.Data_Types.TypeExpression |
 Foundation.Data_Types.ArgListsExpression |
 Foundation.Data_Types.MappingExpression |
 Foundation.Data_Types.ProcedureExpression)*)
 >
<!ATTLIST Foundation.Data_Types
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Extension_Mechanisms -->
<!-- ___ -->

<!ELEMENT Foundation.Extension_Mechanisms.Stereotype.requiredTag
 (Foundation.Extension_Mechanisms.TaggedValue)* >

<!ELEMENT Foundation.Extension_Mechanisms.Stereotype.stereotypeConstraint
 (Foundation.Core.Constraint)* >

<!ELEMENT Foundation.Core.ModelElement.taggedValue
 (Foundation.Extension_Mechanisms.TaggedValue)* >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Stereotype -->
<!-- ___ -->

<!ELEMENT Foundation.Extension_Mechanisms.Stereotype.icon (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Foundation.Extension_Mechanisms.Stereotype.baseClass (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Foundation.Extension_Mechanisms.Stereotype.extendedElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
UML V1.3 June 1999 6-77

6 UML XMI DTD Specification
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
6-78 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Foundation.Extension_Mechanisms.Stereotype (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 Foundation.Extension_Mechanisms.Stereotype.icon?,
 Foundation.Extension_Mechanisms.Stereotype.baseClass?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Extension_Mechanisms.Stereotype.extendedElement*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Extension_Mechanisms.Stereotype.requiredTag*,
 Foundation.Extension_Mechanisms.Stereotype.stereotypeConstraint*)?
 >
<!ATTLIST Foundation.Extension_Mechanisms.Stereotype
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: TaggedValue -->
<!-- ___ -->
UML V1.3 June 1999 6-79

6 UML XMI DTD Specification
<!ELEMENT Foundation.Extension_Mechanisms.TaggedValue.tag (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Foundation.Extension_Mechanisms.TaggedValue.value (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Foundation.Extension_Mechanisms.TaggedValue.stereotype
 (Foundation.Extension_Mechanisms.Stereotype)? >

<!ELEMENT Foundation.Extension_Mechanisms.TaggedValue.modelElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
6-80 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Foundation.Extension_Mechanisms.TaggedValue (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Extension_Mechanisms.TaggedValue.tag?,
 Foundation.Extension_Mechanisms.TaggedValue.value?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Extension_Mechanisms.TaggedValue.stereotype?,
 Foundation.Extension_Mechanisms.TaggedValue.modelElement?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
UML V1.3 June 1999 6-81

6 UML XMI DTD Specification
<!ATTLIST Foundation.Extension_Mechanisms.TaggedValue
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Foundation.Extension_Mechanisms ((Foundation.Extension_Mechanisms.Stereotype |
 Foundation.Extension_Mechanisms.TaggedValue)*)
 >
<!ATTLIST Foundation.Extension_Mechanisms
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Foundation ((Foundation.Core | Foundation.Data_Types |
 Foundation.Extension_Mechanisms)*) >
<!ATTLIST Foundation
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Behavioral_Elements -->
<!-- ___ -->

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Common_Behavior -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.actualArgument
 (Behavioral_Elements.Common_Behavior.Argument)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.slot
 (Behavioral_Elements.Common_Behavior.AttributeLink)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Link.connection
 (Behavioral_Elements.Common_Behavior.LinkEnd)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.ActionSequence.action (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)*
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.LinkEnd.qualifiedValue
 (Behavioral_Elements.Common_Behavior.AttributeLink)* >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Instance -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.classifier (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
6-82 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)*
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.attributeLink
 (Behavioral_Elements.Common_Behavior.AttributeLink)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.linkEnd
 (Behavioral_Elements.Common_Behavior.LinkEnd)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.stimulus1
 (Behavioral_Elements.Common_Behavior.Stimulus)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.stimulus3
 (Behavioral_Elements.Common_Behavior.Stimulus)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.componentInstance
 (Behavioral_Elements.Common_Behavior.ComponentInstanc e)? >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance.stimulus2
 (Behavioral_Elements.Common_Behavior.Stimulus)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Instance (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Instance
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Signal -->
UML V1.3 June 1999 6-83

6 UML XMI DTD Specification
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Signal.reception
 (Behavioral_Elements.Common_Behavior.Reception)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Signal.context (Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method)*
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Signal.sendAction
 (Behavioral_Elements.Common_Behavior.SendAction)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Signal.occurrence
 (Behavioral_Elements.State_Machines.SignalEvent)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Signal (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Behavioral_Elements.Common_Behavior.Signal.reception*,
 Behavioral_Elements.Common_Behavior.Signal.context*,
 Behavioral_Elements.Common_Behavior.Signal.sendAction*,
 Behavioral_Elements.Common_Behavior.Signal.occurrence*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Signal
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
6-84 UML V1.3 June 1999

6.3 UML XMI DTD
<!-- -->
<!-- METAMODEL CLASS: CreateAction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.CreateAction.instantiation (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.CreateAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Behavioral_Elements.Common_Behavior.CreateAction.instantiation?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.CreateAction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: DestroyAction -->
<!-- ___ -->
UML V1.3 June 1999 6-85

6 UML XMI DTD Specification
<!ELEMENT Behavioral_Elements.Common_Behavior.DestroyAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.DestroyAction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: UninterpretedAction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.UninterpretedAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
6-86 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.UninterpretedAction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Action -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.recurrence
 (Foundation.Data_Types.IterationExpression) >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.target
 (Foundation.Data_Types.ObjectSetExpression) >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.isAsynchronous
 EMPTY >
<!ATTLIST Behavioral_Elements.Common_Behavior.Action.isAsynchronous
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.script
 (Foundation.Data_Types.ActionExpression) >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.actionSequence
 (Behavioral_Elements.Common_Behavior.ActionSequence)? >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.stimulus
 (Behavioral_Elements.Common_Behavior.Stimulus)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.state1 (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.state2 (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
UML V1.3 June 1999 6-87

6 UML XMI DTD Specification
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.transition
 (Behavioral_Elements.State_Machines.Transition)? >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.state3 (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action.message
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Action (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Action
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: AttributeLink -->
<!-- ___ -->
6-88 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Behavioral_Elements.Common_Behavior.AttributeLink.attribute
 (Foundation.Core.Attribute)? >

<!ELEMENT Behavioral_Elements.Common_Behavior.AttributeLink.value (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.AttributeLink.instance (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.AttributeLink.linkEnd
 (Behavioral_Elements.Common_Behavior.LinkEnd)? >

<!ELEMENT Behavioral_Elements.Common_Behavior.AttributeLink (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.AttributeLink.attribute?,
 Behavioral_Elements.Common_Behavior.AttributeLink.value?,
 Behavioral_Elements.Common_Behavior.AttributeLink.instance?,
 Behavioral_Elements.Common_Behavior.AttributeLink.linkEnd?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.AttributeLink
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: LinkObject -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.LinkObject (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
UML V1.3 June 1999 6-89

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Behavioral_Elements.Common_Behavior.Link.association?,
 Behavioral_Elements.Common_Behavior.Link.stimulus*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*,
 Behavioral_Elements.Common_Behavior.Link.connection*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.LinkObject
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Object -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Object (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
6-90 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Object
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: DataValue -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.DataValue (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.DataValue
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CallAction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.CallAction.operation
 (Foundation.Core.Operation)? >
UML V1.3 June 1999 6-91

6 UML XMI DTD Specification
<!ELEMENT Behavioral_Elements.Common_Behavior.CallAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Behavioral_Elements.Common_Behavior.CallAction.operation?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.CallAction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: SendAction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.SendAction.signal (Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.SendAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
6-92 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Behavioral_Elements.Common_Behavior.SendAction.signal?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.SendAction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ActionSequence -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.ActionSequence (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Foundation.Core.ModelElement.templateParameter*,
UML V1.3 June 1999 6-93

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*,
 Behavioral_Elements.Common_Behavior.ActionSequence.action*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.ActionSequence
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Argument -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Argument.value (Foundation.Data_Types.Expression |
 Foundation.Data_Types.BooleanExpression |
 Foundation.Data_Types.ActionExpression |
 Foundation.Data_Types.IterationExpression |
 Foundation.Data_Types.TypeExpression |
 Foundation.Data_Types.ArgListsExpression |
 Foundation.Data_Types.MappingExpression |
 Foundation.Data_Types.ProcedureExpression |
 Foundation.Data_Types.TimeExpression |
 Foundation.Data_Types.ObjectSetExpression)
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Argument.action (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Argument (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Argument.value?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Argument.action?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Argument
 %XMI.element.att;
 %XMI.link.att;
6-94 UML V1.3 June 1999

6.3 UML XMI DTD
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Reception -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Reception.specification (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Reception.isRoot EMPTY >
<!ATTLIST Behavioral_Elements.Common_Behavior.Reception.isRoot
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Common_Behavior.Reception.isLeaf EMPTY >
<!ATTLIST Behavioral_Elements.Common_Behavior.Reception.isLeaf
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Common_Behavior.Reception.isAbstract
 EMPTY >
<!ATTLIST Behavioral_Elements.Common_Behavior.Reception.isAbstract
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Common_Behavior.Reception.signal (Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Reception (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.Feature.ownerScope?,
 Foundation.Core.BehavioralFeature.isQuery?,
 Behavioral_Elements.Common_Behavior.Reception.specification?,
 Behavioral_Elements.Common_Behavior.Reception.isRoot?,
 Behavioral_Elements.Common_Behavior.Reception.isLeaf?,
 Behavioral_Elements.Common_Behavior.Reception.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.Feature.owner?,
 Foundation.Core.Feature.classifierRole*,
 Foundation.Core.BehavioralFeature.raisedSignal*,
 Behavioral_Elements.Common_Behavior.Reception.signal?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.BehavioralFeature.parameter*)?
 >
UML V1.3 June 1999 6-95

6 UML XMI DTD Specification
<!ATTLIST Behavioral_Elements.Common_Behavior.Reception
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Link -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Link.association (Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Link.stimulus
 (Behavioral_Elements.Common_Behavior.Stimulus)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.Link (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Link.association?,
 Behavioral_Elements.Common_Behavior.Link.stimulus*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Link.connection*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Link
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: LinkEnd -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.LinkEnd.instance (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.LinkEnd.link (Behavioral_Elements.Common_Behavior.Link |
6-96 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Common_Behavior.LinkObject)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.LinkEnd.associationEnd (Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.LinkEnd (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.LinkEnd.instance?,
 Behavioral_Elements.Common_Behavior.LinkEnd.link?,
 Behavioral_Elements.Common_Behavior.LinkEnd.associationEnd?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.LinkEnd.qualifiedValue*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.LinkEnd
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ReturnAction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.ReturnAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
UML V1.3 June 1999 6-97

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.ReturnAction
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: TerminateAction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.TerminateAction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Common_Behavior.Action.recurrence?,
 Behavioral_Elements.Common_Behavior.Action.target?,
 Behavioral_Elements.Common_Behavior.Action.isAsynchronous?,
 Behavioral_Elements.Common_Behavior.Action.script?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Action.actionSequence?,
 Behavioral_Elements.Common_Behavior.Action.stimulus*,
 Behavioral_Elements.Common_Behavior.Action.state1?,
 Behavioral_Elements.Common_Behavior.Action.state2?,
 Behavioral_Elements.Common_Behavior.Action.transition?,
 Behavioral_Elements.Common_Behavior.Action.state3?,
 Behavioral_Elements.Common_Behavior.Action.message*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Action.actualArgument*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.TerminateAction
 %XMI.element.att;
 %XMI.link.att;
>

6-98 UML V1.3 June 1999

6.3 UML XMI DTD
<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Stimulus -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Stimulus.argument (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)*
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Stimulus.sender (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Stimulus.receiver (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Stimulus.communicationLink (Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkObject)?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Stimulus.dispatchAction (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction) ?
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.Stimulus (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
UML V1.3 June 1999 6-99

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Stimulus.argument*,
 Behavioral_Elements.Common_Behavior.Stimulus.sender?,
 Behavioral_Elements.Common_Behavior.Stimulus.receiver?,
 Behavioral_Elements.Common_Behavior.Stimulus.communicationLink?,
 Behavioral_Elements.Common_Behavior.Stimulus.dispatchAction?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Stimulus
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Exception -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.Exception (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Behavioral_Elements.Common_Behavior.Signal.reception*,
 Behavioral_Elements.Common_Behavior.Signal.context*,
 Behavioral_Elements.Common_Behavior.Signal.sendAction*,
 Behavioral_Elements.Common_Behavior.Signal.occurrence*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.Exception
 %XMI.element.att;
6-100 UML V1.3 June 1999

6.3 UML XMI DTD
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ComponentInstance -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.ComponentInstance.nodeInstance
 (Behavioral_Elements.Common_Behavior.NodeInstance)? >

<!ELEMENT Behavioral_Elements.Common_Behavior.ComponentInstance.resident (Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance)*
 >

<!ELEMENT Behavioral_Elements.Common_Behavior.ComponentInstance (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance ?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Behavioral_Elements.Common_Behavior.ComponentInstance.nodeInst ance?,
 Behavioral_Elements.Common_Behavior.ComponentInstance.resident *,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.ComponentInstance
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: NodeInstance -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Common_Behavior.NodeInstance.resident
UML V1.3 June 1999 6-101

6 UML XMI DTD Specification
 (Behavioral_Elements.Common_Behavior.ComponentInstance)* >

<!ELEMENT Behavioral_Elements.Common_Behavior.NodeInstance (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Behavioral_Elements.Common_Behavior.NodeInstance.resident*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*)?
 >
<!ATTLIST Behavioral_Elements.Common_Behavior.NodeInstance
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Behavioral_Elements.Common_Behavior ((Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Reception |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance)*)
 >
<!ATTLIST Behavioral_Elements.Common_Behavior
 %XMI.element.att;
 %XMI.link.att;
6-102 UML V1.3 June 1999

6.3 UML XMI DTD
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Use_Cases -->
<!-- ___ -->

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: UseCase -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Use_Cases.UseCase.extend2
 (Behavioral_Elements.Use_Cases.Extend)* >

<!ELEMENT Behavioral_Elements.Use_Cases.UseCase.extend
 (Behavioral_Elements.Use_Cases.Extend)* >

<!ELEMENT Behavioral_Elements.Use_Cases.UseCase.include
 (Behavioral_Elements.Use_Cases.Include)* >

<!ELEMENT Behavioral_Elements.Use_Cases.UseCase.include2
 (Behavioral_Elements.Use_Cases.Include)* >

<!ELEMENT Behavioral_Elements.Use_Cases.UseCase.extensionPoint
 (Behavioral_Elements.Use_Cases.ExtensionPoint)* >

<!ELEMENT Behavioral_Elements.Use_Cases.UseCase (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Behavioral_Elements.Use_Cases.UseCase.extend2*,
 Behavioral_Elements.Use_Cases.UseCase.extend*,
 Behavioral_Elements.Use_Cases.UseCase.include*,
 Behavioral_Elements.Use_Cases.UseCase.include2*,
UML V1.3 June 1999 6-103

6 UML XMI DTD Specification
 Behavioral_Elements.Use_Cases.UseCase.extensionPoint*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Behavioral_Elements.Use_Cases.UseCase
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Actor -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Use_Cases.Actor (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Behavioral_Elements.Use_Cases.Actor
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: UseCaseInstance -->
<!-- ___ -->
6-104 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Behavioral_Elements.Use_Cases.UseCaseInstance (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Common_Behavior.Instance.classifier*,
 Behavioral_Elements.Common_Behavior.Instance.attributeLink*,
 Behavioral_Elements.Common_Behavior.Instance.linkEnd*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus1*,
 Behavioral_Elements.Common_Behavior.Instance.stimulus3*,
 Behavioral_Elements.Common_Behavior.Instance.componentInstance?,
 Behavioral_Elements.Common_Behavior.Instance.stimulus2*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Common_Behavior.Instance.slot*)?
 >
<!ATTLIST Behavioral_Elements.Use_Cases.UseCaseInstance
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Extend -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Use_Cases.Extend.condition
 (Foundation.Data_Types.BooleanExpression) >

<!ELEMENT Behavioral_Elements.Use_Cases.Extend.base
 (Behavioral_Elements.Use_Cases.UseCase)? >

<!ELEMENT Behavioral_Elements.Use_Cases.Extend.extension
 (Behavioral_Elements.Use_Cases.UseCase)? >

<!ELEMENT Behavioral_Elements.Use_Cases.Extend.extensionPoint
 (Behavioral_Elements.Use_Cases.ExtensionPoint)* >

<!ELEMENT Behavioral_Elements.Use_Cases.Extend (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Use_Cases.Extend.condition?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
UML V1.3 June 1999 6-105

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Use_Cases.Extend.base?,
 Behavioral_Elements.Use_Cases.Extend.extension?,
 Behavioral_Elements.Use_Cases.Extend.extensionPoint*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Use_Cases.Extend
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Include -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Use_Cases.Include.addition
 (Behavioral_Elements.Use_Cases.UseCase)? >

<!ELEMENT Behavioral_Elements.Use_Cases.Include.base
 (Behavioral_Elements.Use_Cases.UseCase)? >

<!ELEMENT Behavioral_Elements.Use_Cases.Include (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Use_Cases.Include.addition?,
 Behavioral_Elements.Use_Cases.Include.base?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Use_Cases.Include
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
6-106 UML V1.3 June 1999

6.3 UML XMI DTD
<!-- METAMODEL CLASS: ExtensionPoint -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Use_Cases.ExtensionPoint.location (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Behavioral_Elements.Use_Cases.ExtensionPoint.useCase
 (Behavioral_Elements.Use_Cases.UseCase)? >

<!ELEMENT Behavioral_Elements.Use_Cases.ExtensionPoint.extend
 (Behavioral_Elements.Use_Cases.Extend)* >

<!ELEMENT Behavioral_Elements.Use_Cases.ExtensionPoint (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Use_Cases.ExtensionPoint.location?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Use_Cases.ExtensionPoint.useCase?,
 Behavioral_Elements.Use_Cases.ExtensionPoint.extend*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Use_Cases.ExtensionPoint
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Behavioral_Elements.Use_Cases ((Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Behavioral_Elements.Use_Cases.ExtensionPoint)*)
 >
<!ATTLIST Behavioral_Elements.Use_Cases
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: State_Machines -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.State.entry (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
UML V1.3 June 1999 6-107

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.State.exit (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.Event.parameter
 (Foundation.Core.Parameter)* >

<!ELEMENT Behavioral_Elements.State_Machines.Transition.guard
 (Behavioral_Elements.State_Machines.Guard)? >

<!ELEMENT Behavioral_Elements.State_Machines.StateMachine.top (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.CompositeState.subvertex (Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)*
 >

<!ELEMENT Behavioral_Elements.State_Machines.Transition.effect (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.State.internalTransition
 (Behavioral_Elements.State_Machines.Transition)* >

<!ELEMENT Behavioral_Elements.State_Machines.StateMachine.transitions
 (Behavioral_Elements.State_Machines.Transition)* >
6-108 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Behavioral_Elements.State_Machines.State.doActivity (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)?
 >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: StateMachine -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.StateMachine.context (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
UML V1.3 June 1999 6-109

6 UML XMI DTD Specification
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.StateMachine.subMachineState
(Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState)*
 >

<!ELEMENT Behavioral_Elements.State_Machines.StateMachine (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
6-110 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateMachine.context?,
 Behavioral_Elements.State_Machines.StateMachine.subMachineState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.StateMachine.top?,
 Behavioral_Elements.State_Machines.StateMachine.transitions*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.StateMachine
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Event -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.Event.state (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)*
 >

<!ELEMENT Behavioral_Elements.State_Machines.Event.transition
 (Behavioral_Elements.State_Machines.Transition)* >

<!ELEMENT Behavioral_Elements.State_Machines.Event (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Event.state*,
 Behavioral_Elements.State_Machines.Event.transition*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.Event.parameter*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.Event
 %XMI.element.att;
 %XMI.link.att;
>

UML V1.3 June 1999 6-111

6 UML XMI DTD Specification
<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: State -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.State.stateMachine (Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.State.deferrableEvent (Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent)*
 >

<!ELEMENT Behavioral_Elements.State_Machines.State.classifierInState
 (Behavioral_Elements.Activity_Graphs.ClassifierInState)* >

<!ELEMENT Behavioral_Elements.State_Machines.State (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.State
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: TimeEvent -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.TimeEvent.when
 (Foundation.Data_Types.TimeExpression) >
6-112 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Behavioral_Elements.State_Machines.TimeEvent (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.TimeEvent.when?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Event.state*,
 Behavioral_Elements.State_Machines.Event.transition*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.Event.parameter*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.TimeEvent
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CallEvent -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.CallEvent.operation
 (Foundation.Core.Operation)? >

<!ELEMENT Behavioral_Elements.State_Machines.CallEvent (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Event.state*,
 Behavioral_Elements.State_Machines.Event.transition*,
UML V1.3 June 1999 6-113

6 UML XMI DTD Specification
 Behavioral_Elements.State_Machines.CallEvent.operation?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.Event.parameter*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.CallEvent
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: SignalEvent -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.SignalEvent.signal (Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.SignalEvent (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Event.state*,
 Behavioral_Elements.State_Machines.Event.transition*,
 Behavioral_Elements.State_Machines.SignalEvent.signal?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.Event.parameter*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.SignalEvent
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Transition -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.Transition.state (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
6-114 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.Transition.trigger (Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.Transition.stateMachine (Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.Transition.source (Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.Transition.target (Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.Transition (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Transition.state?,
 Behavioral_Elements.State_Machines.Transition.trigger?,
UML V1.3 June 1999 6-115

6 UML XMI DTD Specification
 Behavioral_Elements.State_Machines.Transition.stateMachine?,
 Behavioral_Elements.State_Machines.Transition.source?,
 Behavioral_Elements.State_Machines.Transition.target?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.Transition.guard?,
 Behavioral_Elements.State_Machines.Transition.effect?)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.Transition
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: StateVertex -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.StateVertex.container (Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.StateVertex.outgoing
 (Behavioral_Elements.State_Machines.Transition)* >

<!ELEMENT Behavioral_Elements.State_Machines.StateVertex.incoming
 (Behavioral_Elements.State_Machines.Transition)* >

<!ELEMENT Behavioral_Elements.State_Machines.StateVertex (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.StateVertex
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CompositeState -->
<!-- ___ -->
6-116 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Behavioral_Elements.State_Machines.CompositeState.isConcurrent
 EMPTY >
<!ATTLIST Behavioral_Elements.State_Machines.CompositeState.isConcurrent
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.State_Machines.CompositeState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.CompositeState.isConcurrent?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?,
 Behavioral_Elements.State_Machines.CompositeState.subvertex*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.CompositeState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ChangeEvent -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.ChangeEvent.changeExpression
 (Foundation.Data_Types.BooleanExpression) >

<!ELEMENT Behavioral_Elements.State_Machines.ChangeEvent (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.ChangeEvent.changeExpression?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
UML V1.3 June 1999 6-117

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Event.state*,
 Behavioral_Elements.State_Machines.Event.transition*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.Event.parameter*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.ChangeEvent
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Guard -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.Guard.expression
 (Foundation.Data_Types.BooleanExpression) >

<!ELEMENT Behavioral_Elements.State_Machines.Guard.transition
 (Behavioral_Elements.State_Machines.Transition)? >

<!ELEMENT Behavioral_Elements.State_Machines.Guard (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.Guard.expression?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.Guard.transition?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.Guard
 %XMI.element.att;
 %XMI.link.att;
>

6-118 UML V1.3 June 1999

6.3 UML XMI DTD
<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Pseudostate -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.Pseudostate.kind EMPTY >
<!ATTLIST Behavioral_Elements.State_Machines.Pseudostate.kind
 xmi.value (initial | deepHistory | shallowHistory | join | fork | branch | junction | final) #REQUIRED
>

<!ELEMENT Behavioral_Elements.State_Machines.Pseudostate (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.Pseudostate.kind?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.Pseudostate
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: SimpleState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.SimpleState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
UML V1.3 June 1999 6-119

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.SimpleState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: SubmachineState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.SubmachineState.submachine (Behavioral_Elements.State_Machines.StateMachine
|
 Behavioral_Elements.Activity_Graphs.ActivityGraph)?
 >

<!ELEMENT Behavioral_Elements.State_Machines.SubmachineState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.CompositeState.isConcurrent?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Behavioral_Elements.State_Machines.SubmachineState.submachine?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
6-120 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?,
 Behavioral_Elements.State_Machines.CompositeState.subvertex*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.SubmachineState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: SynchState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.SynchState.bound (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Behavioral_Elements.State_Machines.SynchState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.SynchState.bound?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.SynchState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: StubState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.StubState.referenceState (#PCDATA |
 XMI.reference)*
 >

<!ELEMENT Behavioral_Elements.State_Machines.StubState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.StubState.referenceState?,
 XMI.extension*,
UML V1.3 June 1999 6-121

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.StubState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: FinalState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.State_Machines.FinalState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
6-122 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.State_Machines.State.doActivity?)?
 >
<!ATTLIST Behavioral_Elements.State_Machines.FinalState
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Behavioral_Elements.State_Machines ((Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.FinalState)*)
 >
<!ATTLIST Behavioral_Elements.State_Machines
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Collaborations -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.Interaction.message
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.Collaboration.interaction
 (Behavioral_Elements.Collaborations.Interaction)* >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Collaboration -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.Collaboration.representedClassifier (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.Classifier Role |
 Behavioral_Elements.Activity_Graphs.Classifie rInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Behavioral_Elements.Collaborations.Collaboration.representedOperation
 (Foundation.Core.Operation)? >

<!ELEMENT Behavioral_Elements.Collaborations.Collaboration.constrainingElement (Foundation.Core.ModelElement |
UML V1.3 June 1999 6-123

6 UML XMI DTD Specification
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationR ole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentIn stance |
 Behavioral_Elements.Common_Behavior.NodeInstanc e |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSeque nce |
 Behavioral_Elements.Common_Behavior.ReturnActio n |
 Behavioral_Elements.Common_Behavior.TerminateAc tion |
 Behavioral_Elements.Common_Behavior.DestroyActi on |
 Behavioral_Elements.Common_Behavior.CreateActio n |
 Behavioral_Elements.Common_Behavior.Uninterpret edAction |
 Behavioral_Elements.Common_Behavior.AttributeLi nk |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGra ph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeSta te |
 Behavioral_Elements.State_Machines.SubmachineSt ate |
 Behavioral_Elements.Activity_Graphs.Subactivity State |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowS tate |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
6-124 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboratio n |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRo le |
 Behavioral_Elements.Activity_Graphs.ClassifierI nState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationE ndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Behavioral_Elements.Collaborations.Collaboration (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Behavioral_Elements.Collaborations.Collaboration.representedClassif ier?,
 Behavioral_Elements.Collaborations.Collaboration.representedOperati on?,
 Behavioral_Elements.Collaborations.Collaboration.constrainingElemen t*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Behavioral_Elements.Collaborations.Collaboration.interaction*)?
 >
<!ATTLIST Behavioral_Elements.Collaborations.Collaboration
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
UML V1.3 June 1999 6-125

6 UML XMI DTD Specification
<!-- METAMODEL CLASS: ClassifierRole -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.multiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.base (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)*
 >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.associationEndRole
 (Behavioral_Elements.Collaborations.Association EndRole)* >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.collaboration
 (Behavioral_Elements.Collaborations.Collaboration)? >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.availableFeature (Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute)*
 >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.message2
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.message1
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole.availableContents (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRo le |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentIns tance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
6-126 UML V1.3 June 1999

6.3 UML XMI DTD
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequen ce |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAct ion |
 Behavioral_Elements.Common_Behavior.DestroyActio n |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.Uninterprete dAction |
 Behavioral_Elements.Common_Behavior.AttributeLin k |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGrap h |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeStat e |
 Behavioral_Elements.State_Machines.SubmachineSta te |
 Behavioral_Elements.Activity_Graphs.SubactivityS tate |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowSt ate |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRol e |
 Behavioral_Elements.Activity_Graphs.ClassifierIn State |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEn dRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
UML V1.3 June 1999 6-127

6 UML XMI DTD Specification
 Foundation.Core.Constraint)*
 >

<!ELEMENT Behavioral_Elements.Collaborations.ClassifierRole (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 Behavioral_Elements.Collaborations.ClassifierRole.multiplicity?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Behavioral_Elements.Collaborations.ClassifierRole.base*,
 Behavioral_Elements.Collaborations.ClassifierRole.associationEndRo le*,
 Behavioral_Elements.Collaborations.ClassifierRole.collaboration?,
 Behavioral_Elements.Collaborations.ClassifierRole.availableFeature *,
 Behavioral_Elements.Collaborations.ClassifierRole.message2*,
 Behavioral_Elements.Collaborations.ClassifierRole.message1*,
 Behavioral_Elements.Collaborations.ClassifierRole.availableContent s*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Behavioral_Elements.Collaborations.ClassifierRole
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: AssociationRole -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.AssociationRole.multiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationRole.base (Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole)?
6-128 UML V1.3 June 1999

6.3 UML XMI DTD
 >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationRole.collaboration
 (Behavioral_Elements.Collaborations.Collaboration)? >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationRole.message
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationRole (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 Behavioral_Elements.Collaborations.AssociationRole.multiplicity?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Association.link*,
 Foundation.Core.Association.associationRole*,
 Behavioral_Elements.Collaborations.AssociationRole.base?,
 Behavioral_Elements.Collaborations.AssociationRole.collaboration? ,
 Behavioral_Elements.Collaborations.AssociationRole.message*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Association.connection*)?
 >
<!ATTLIST Behavioral_Elements.Collaborations.AssociationRole
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: AssociationEndRole -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.AssociationEndRole.collaborationMultiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationEndRole.associationRole
 (Behavioral_Elements.Collaborations.Associatio nRole)? >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationEndRole.base (Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole)?
 >

<!ELEMENT Behavioral_Elements.Collaborations.AssociationEndRole.availableQualifier
 (Foundation.Core.Attribute)* >
UML V1.3 June 1999 6-129

6 UML XMI DTD Specification
<!ELEMENT Behavioral_Elements.Collaborations.AssociationEndRole (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.AssociationEnd.isNavigable?,
 Foundation.Core.AssociationEnd.ordering?,
 Foundation.Core.AssociationEnd.aggregation?,
 Foundation.Core.AssociationEnd.targetScope?,
 Foundation.Core.AssociationEnd.multiplicity?,
 Foundation.Core.AssociationEnd.changeability?,

Behavioral_Elements.Collaborations.AssociationEndRole.collaborationMultiplicity?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.AssociationEnd.association?,
 Foundation.Core.AssociationEnd.type?,
 Foundation.Core.AssociationEnd.specification*,
 Foundation.Core.AssociationEnd.linkEnd*,
 Foundation.Core.AssociationEnd.associationEndRole*,
 Behavioral_Elements.Collaborations.AssociationEndRole.associat ionRole?,
 Behavioral_Elements.Collaborations.AssociationEndRole.base?,

Behavioral_Elements.Collaborations.AssociationEndRole.availableQualifier*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.AssociationEnd.qualifier*)?
 >
<!ATTLIST Behavioral_Elements.Collaborations.AssociationEndRole
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Message -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.Message.interaction
 (Behavioral_Elements.Collaborations.Interaction)? >

<!ELEMENT Behavioral_Elements.Collaborations.Message.activator
 (Behavioral_Elements.Collaborations.Message)? >

<!ELEMENT Behavioral_Elements.Collaborations.Message.message4
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.Message.sender
 (Behavioral_Elements.Collaborations.ClassifierRole)? >

<!ELEMENT Behavioral_Elements.Collaborations.Message.receiver
6-130 UML V1.3 June 1999

6.3 UML XMI DTD
 (Behavioral_Elements.Collaborations.ClassifierRole)? >

<!ELEMENT Behavioral_Elements.Collaborations.Message.message3
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.Message.predecessor
 (Behavioral_Elements.Collaborations.Message)* >

<!ELEMENT Behavioral_Elements.Collaborations.Message.communicationConnection
 (Behavioral_Elements.Collaborations.AssociationRo le)? >

<!ELEMENT Behavioral_Elements.Collaborations.Message.action (Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction)?
 >

<!ELEMENT Behavioral_Elements.Collaborations.Message (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Collaborations.Message.interaction?,
 Behavioral_Elements.Collaborations.Message.activator?,
 Behavioral_Elements.Collaborations.Message.message4*,
 Behavioral_Elements.Collaborations.Message.sender?,
 Behavioral_Elements.Collaborations.Message.receiver?,
 Behavioral_Elements.Collaborations.Message.message3*,
 Behavioral_Elements.Collaborations.Message.predecessor*,
 Behavioral_Elements.Collaborations.Message.communicationConnection?,
 Behavioral_Elements.Collaborations.Message.action?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Collaborations.Message
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Interaction -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Collaborations.Interaction.context
UML V1.3 June 1999 6-131

6 UML XMI DTD Specification
 (Behavioral_Elements.Collaborations.Collaboration)? >

<!ELEMENT Behavioral_Elements.Collaborations.Interaction (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Collaborations.Interaction.context?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.Collaborations.Interaction.message*)?
 >
<!ATTLIST Behavioral_Elements.Collaborations.Interaction
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Behavioral_Elements.Collaborations ((Behavioral_Elements.Collaborations.Collaboration |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Collaborations.AssociationRole |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction)*)
 >
<!ATTLIST Behavioral_Elements.Collaborations
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Activity_Graphs -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.ActivityGraph.partition
 (Behavioral_Elements.Activity_Graphs.Partition)* >

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ActivityGraph -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.ActivityGraph (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
6-132 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateMachine.context?,
 Behavioral_Elements.State_Machines.StateMachine.subMachineState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.StateMachine.top?,
 Behavioral_Elements.State_Machines.StateMachine.transitions*,
 Behavioral_Elements.Activity_Graphs.ActivityGraph.partition*)?
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.ActivityGraph
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Partition -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.Partition.contents (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
UML V1.3 June 1999 6-133

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)*
 >

<!ELEMENT Behavioral_Elements.Activity_Graphs.Partition.activityGraph
 (Behavioral_Elements.Activity_Graphs.ActivityGraph)? >

<!ELEMENT Behavioral_Elements.Activity_Graphs.Partition (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 XMI.extension*,
6-134 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.Activity_Graphs.Partition.contents*,
 Behavioral_Elements.Activity_Graphs.Partition.activityGraph?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*)?
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.Partition
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: SubactivityState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.SubactivityState.isDynamic
 EMPTY >
<!ATTLIST Behavioral_Elements.Activity_Graphs.SubactivityState.isDynamic
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Activity_Graphs.SubactivityState.dynamicArguments
 (Foundation.Data_Types.ArgListsExpression) >

<!ELEMENT Behavioral_Elements.Activity_Graphs.SubactivityState.dynamicMultiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Behavioral_Elements.Activity_Graphs.SubactivityState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.State_Machines.CompositeState.isConcurrent? ,
 Behavioral_Elements.Activity_Graphs.SubactivityState.isDynamic? ,
 Behavioral_Elements.Activity_Graphs.SubactivityState.dynamicArg uments?,

Behavioral_Elements.Activity_Graphs.SubactivityState.dynamicMultiplicity?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
UML V1.3 June 1999 6-135

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Behavioral_Elements.State_Machines.SubmachineState.submachine?,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?,
 Behavioral_Elements.State_Machines.CompositeState.subvertex*)?
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.SubactivityState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: CallState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.CallState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Activity_Graphs.ActionState.isDynamic?,
 Behavioral_Elements.Activity_Graphs.ActionState.dynamicArguments?,
 Behavioral_Elements.Activity_Graphs.ActionState.dynamicMultiplicity?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?)?
6-136 UML V1.3 June 1999

6.3 UML XMI DTD
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.CallState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ObjectFlowState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.ObjectFlowState.isSynch
 EMPTY >
<!ATTLIST Behavioral_Elements.Activity_Graphs.ObjectFlowState.isSynch
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Activity_Graphs.ObjectFlowState.parameter
 (Foundation.Core.Parameter)* >

<!ELEMENT Behavioral_Elements.Activity_Graphs.ObjectFlowState.type (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Behavioral_Elements.Activity_Graphs.ObjectFlowState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Activity_Graphs.ObjectFlowState.isSynch?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Behavioral_Elements.Activity_Graphs.ObjectFlowState.parameter*,
 Behavioral_Elements.Activity_Graphs.ObjectFlowState.type?,
UML V1.3 June 1999 6-137

6 UML XMI DTD Specification
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?)?
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.ObjectFlowState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ClassifierInState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.ClassifierInState.type (Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.AssociationClass |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Model_Management.Subsystem)?
 >

<!ELEMENT Behavioral_Elements.Activity_Graphs.ClassifierInState.inState (Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState)*
 >

<!ELEMENT Behavioral_Elements.Activity_Graphs.ClassifierInState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
6-138 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Behavioral_Elements.Activity_Graphs.ClassifierInState.type?,
 Behavioral_Elements.Activity_Graphs.ClassifierInState.inState* ,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.ClassifierInState
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ActionState -->
<!-- ___ -->

<!ELEMENT Behavioral_Elements.Activity_Graphs.ActionState.isDynamic
 EMPTY >
<!ATTLIST Behavioral_Elements.Activity_Graphs.ActionState.isDynamic
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Behavioral_Elements.Activity_Graphs.ActionState.dynamicArguments
 (Foundation.Data_Types.ArgListsExpression) >

<!ELEMENT Behavioral_Elements.Activity_Graphs.ActionState.dynamicMultiplicity
 (Foundation.Data_Types.Multiplicity) >

<!ELEMENT Behavioral_Elements.Activity_Graphs.ActionState (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Behavioral_Elements.Activity_Graphs.ActionState.isDynamic?,
 Behavioral_Elements.Activity_Graphs.ActionState.dynamicArguments?,
 Behavioral_Elements.Activity_Graphs.ActionState.dynamicMultiplicity? ,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Behavioral_Elements.State_Machines.StateVertex.container?,
UML V1.3 June 1999 6-139

6 UML XMI DTD Specification
 Behavioral_Elements.State_Machines.StateVertex.outgoing*,
 Behavioral_Elements.State_Machines.StateVertex.incoming*,
 Behavioral_Elements.State_Machines.State.stateMachine?,
 Behavioral_Elements.State_Machines.State.deferrableEvent*,
 Behavioral_Elements.State_Machines.State.classifierInState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Behavioral_Elements.State_Machines.State.entry?,
 Behavioral_Elements.State_Machines.State.exit?,
 Behavioral_Elements.State_Machines.State.internalTransition*,
 Behavioral_Elements.State_Machines.State.doActivity?)?
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs.ActionState
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Behavioral_Elements.Activity_Graphs ((Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.Activity_Graphs.Partition |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Behavioral_Elements.Activity_Graphs.ActionState)*)
 >
<!ATTLIST Behavioral_Elements.Activity_Graphs
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Behavioral_Elements ((Behavioral_Elements.Common_Behavior |
 Behavioral_Elements.Use_Cases |
 Behavioral_Elements.State_Machines |
 Behavioral_Elements.Collaborations |
 Behavioral_Elements.Activity_Graphs)*) >
<!ATTLIST Behavioral_Elements
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL PACKAGE: Model_Management -->
<!-- ___ -->

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Model -->
<!-- ___ -->

<!ELEMENT Model_Management.Model (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
6-140 UML V1.3 June 1999

6.3 UML XMI DTD
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Model_Management.Package.elementImport*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*)?
 >
<!ATTLIST Model_Management.Model
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: Package -->
<!-- ___ -->

<!ELEMENT Model_Management.Package.elementImport
 (Model_Management.ElementImport)* >

<!ELEMENT Model_Management.Package (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Model_Management.Package.elementImport*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*)?
 >
<!ATTLIST Model_Management.Package
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
UML V1.3 June 1999 6-141

6 UML XMI DTD Specification
<!-- -->
<!-- METAMODEL CLASS: Subsystem -->
<!-- ___ -->

<!ELEMENT Model_Management.Subsystem.isInstantiable EMPTY >
<!ATTLIST Model_Management.Subsystem.isInstantiable
 xmi.value (true | false) #REQUIRED
>

<!ELEMENT Model_Management.Subsystem (Foundation.Core.ModelElement.name?,
 Foundation.Core.ModelElement.visibility?,
 Foundation.Core.ModelElement.isSpecification?,
 Foundation.Core.GeneralizableElement.isRoot?,
 Foundation.Core.GeneralizableElement.isLeaf?,
 Foundation.Core.GeneralizableElement.isAbstract?,
 Model_Management.Subsystem.isInstantiable?,
 XMI.extension*,
 Foundation.Core.ModelElement.namespace?,
 Foundation.Core.ModelElement.clientDependency*,
 Foundation.Core.ModelElement.constraint*,
 Foundation.Core.ModelElement.supplierDependency*,
 Foundation.Core.ModelElement.presentation*,
 Foundation.Core.ModelElement.targetFlow*,
 Foundation.Core.ModelElement.sourceFlow*,
 Foundation.Core.ModelElement.templateParameter3*,
 Foundation.Core.ModelElement.binding?,
 Foundation.Core.ModelElement.comment*,
 Foundation.Core.ModelElement.elementResidence*,
 Foundation.Core.ModelElement.templateParameter2*,
 Foundation.Core.ModelElement.stereotype?,
 Foundation.Core.ModelElement.behavior*,
 Foundation.Core.ModelElement.classifierRole*,
 Foundation.Core.ModelElement.collaboration*,
 Foundation.Core.ModelElement.partition*,
 Foundation.Core.ModelElement.elementImport*,
 Foundation.Core.GeneralizableElement.generalization*,
 Foundation.Core.GeneralizableElement.specialization*,
 Model_Management.Package.elementImport*,
 Foundation.Core.Classifier.participant*,
 Foundation.Core.Classifier.powertypeRange*,
 Foundation.Core.Classifier.instance*,
 Foundation.Core.Classifier.createAction*,
 Foundation.Core.Classifier.classifierRole*,
 Foundation.Core.Classifier.collaboration*,
 Foundation.Core.Classifier.classifierInState*,
 Foundation.Core.Classifier.objectFlowState*,
 Foundation.Core.ModelElement.templateParameter*,
 Foundation.Core.ModelElement.taggedValue*,
 Foundation.Core.Namespace.ownedElement*,
 Foundation.Core.Classifier.feature*)?
 >
<!ATTLIST Model_Management.Subsystem
 %XMI.element.att;
 %XMI.link.att;
>

<!-- ___ -->
<!-- -->
<!-- METAMODEL CLASS: ElementImport -->
<!-- ___ -->

<!ELEMENT Model_Management.ElementImport.visibility EMPTY >
<!ATTLIST Model_Management.ElementImport.visibility
 xmi.value (public | private | protected) #REQUIRED
>

6-142 UML V1.3 June 1999

6.3 UML XMI DTD
<!ELEMENT Model_Management.ElementImport.alias (#PCDATA |
 XMI.reference)* >

<!ELEMENT Model_Management.ElementImport.modelElement (Foundation.Core.ModelElement |
 Foundation.Core.Comment |
 Foundation.Core.Relationship |
 Behavioral_Elements.Use_Cases.Extend |
 Behavioral_Elements.Use_Cases.Include |
 Foundation.Core.Generalization |
 Foundation.Core.Flow |
 Foundation.Core.Association |
 Foundation.Core.AssociationClass |
 Behavioral_Elements.Collaborations.AssociationRole |
 Foundation.Core.Dependency |
 Foundation.Core.Abstraction |
 Foundation.Core.Usage |
 Foundation.Core.Binding |
 Foundation.Core.Permission |
 Foundation.Extension_Mechanisms.TaggedValue |
 Behavioral_Elements.Common_Behavior.Instance |
 Behavioral_Elements.Common_Behavior.Object |
 Behavioral_Elements.Common_Behavior.LinkObject |
 Behavioral_Elements.Common_Behavior.DataValue |
 Behavioral_Elements.Common_Behavior.ComponentInstance |
 Behavioral_Elements.Common_Behavior.NodeInstance |
 Behavioral_Elements.Use_Cases.UseCaseInstance |
 Behavioral_Elements.Common_Behavior.Action |
 Behavioral_Elements.Common_Behavior.CallAction |
 Behavioral_Elements.Common_Behavior.SendAction |
 Behavioral_Elements.Common_Behavior.ActionSequence |
 Behavioral_Elements.Common_Behavior.ReturnAction |
 Behavioral_Elements.Common_Behavior.TerminateAction |
 Behavioral_Elements.Common_Behavior.DestroyAction |
 Behavioral_Elements.Common_Behavior.CreateAction |
 Behavioral_Elements.Common_Behavior.UninterpretedAction |
 Behavioral_Elements.Common_Behavior.AttributeLink |
 Behavioral_Elements.Common_Behavior.Argument |
 Behavioral_Elements.Common_Behavior.Link |
 Behavioral_Elements.Common_Behavior.LinkEnd |
 Behavioral_Elements.Common_Behavior.Stimulus |
 Behavioral_Elements.Use_Cases.ExtensionPoint |
 Behavioral_Elements.State_Machines.StateMachine |
 Behavioral_Elements.Activity_Graphs.ActivityGraph |
 Behavioral_Elements.State_Machines.Event |
 Behavioral_Elements.State_Machines.TimeEvent |
 Behavioral_Elements.State_Machines.CallEvent |
 Behavioral_Elements.State_Machines.SignalEvent |
 Behavioral_Elements.State_Machines.ChangeEvent |
 Behavioral_Elements.State_Machines.Transition |
 Behavioral_Elements.State_Machines.StateVertex |
 Behavioral_Elements.State_Machines.Pseudostate |
 Behavioral_Elements.State_Machines.SynchState |
 Behavioral_Elements.State_Machines.StubState |
 Behavioral_Elements.State_Machines.State |
 Behavioral_Elements.State_Machines.CompositeState |
 Behavioral_Elements.State_Machines.SubmachineState |
 Behavioral_Elements.Activity_Graphs.SubactivityState |
 Behavioral_Elements.State_Machines.SimpleState |
 Behavioral_Elements.Activity_Graphs.ObjectFlowState |
 Behavioral_Elements.Activity_Graphs.ActionState |
 Behavioral_Elements.Activity_Graphs.CallState |
 Behavioral_Elements.State_Machines.FinalState |
 Behavioral_Elements.State_Machines.Guard |
 Behavioral_Elements.Collaborations.Message |
 Behavioral_Elements.Collaborations.Interaction |
 Behavioral_Elements.Activity_Graphs.Partition |
 Foundation.Core.Feature |
 Foundation.Core.BehavioralFeature |
UML V1.3 June 1999 6-143

6 UML XMI DTD Specification
 Behavioral_Elements.Common_Behavior.Reception |
 Foundation.Core.Operation |
 Foundation.Core.Method |
 Foundation.Core.StructuralFeature |
 Foundation.Core.Attribute |
 Foundation.Core.GeneralizableElement |
 Foundation.Extension_Mechanisms.Stereotype |
 Behavioral_Elements.Collaborations.Collaboration |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model |
 Foundation.Core.Classifier |
 Foundation.Core.Class |
 Foundation.Core.DataType |
 Foundation.Core.Interface |
 Foundation.Core.Component |
 Foundation.Core.Node |
 Behavioral_Elements.Common_Behavior.Signal |
 Behavioral_Elements.Common_Behavior.Exception |
 Behavioral_Elements.Use_Cases.UseCase |
 Behavioral_Elements.Use_Cases.Actor |
 Behavioral_Elements.Collaborations.ClassifierRole |
 Behavioral_Elements.Activity_Graphs.ClassifierInState |
 Foundation.Core.AssociationEnd |
 Behavioral_Elements.Collaborations.AssociationEndRole |
 Foundation.Core.Namespace |
 Foundation.Core.Parameter |
 Foundation.Core.Constraint)?
 >

<!ELEMENT Model_Management.ElementImport.package (Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.Model)?
 >

<!ELEMENT Model_Management.ElementImport (Model_Management.ElementImport.visibility?,
 Model_Management.ElementImport.alias?,
 XMI.extension*,
 Model_Management.ElementImport.modelElement?,
 Model_Management.ElementImport.package?)?
 >
<!ATTLIST Model_Management.ElementImport
 %XMI.element.att;
 %XMI.link.att;
>

<!ELEMENT Model_Management ((Model_Management.Model |
 Model_Management.Package |
 Model_Management.Subsystem |
 Model_Management.ElementImport)*) >
<!ATTLIST Model_Management
 %XMI.element.att;
 %XMI.link.att;
>

6-144 UML V1.3 June 1999

Object Constraint Language Specification 7
mal
nd
ed to
This chapter introduces and defines the Object Constraint Language (OCL), a for
language used to express constraints. Users of the Unified Modeling Language a
other languages can use OCL to specify constraints and other expressions attach
their models.

Contents

7.1 Overview 7-3
7.2 Introduction 7-4
7.3 Connection with the UML Metamodel 7-5
7.4 Basic Values and Types 7-7
7.5 Objects and Properties 7-11
7.6 Collection Operations 7-21
7.7 The Standard OCL Package 7-26
7.8 Predefined OCL Types 7-27
7.9 Grammar 7-47
UML V1.3 June 1999 7-1

7 Object Constraint Language Specification
7-2 UML V1.3 June 1999

7.1 Overview

uage
r the
have
stem.
to

tics
 an
is
 the
for

e
itional
l

tage of

d and

ithout
ange
 of the

flow
L.
 be

 OCL
u

ed
7Object Constraint Language Specification

7.1 Overview

This chapter introduces and defines the Object Constraint Language (OCL), a formal lang
used to express constraints. These typically specify invariant conditions that must hold fo
system being modeled. Note that when the OCL expressions are evaluated, they do not
side effects; i.e., their evaluation cannot alter the state of the corresponding executing sy
In addition, to specifying invariants of the UML metamodel, UML modelers can use OCL
specify application-specific constraints in their models.

OCL is used in the UML Semantics chapter to specify the well-formedness rules of the
metaclasses comprising the UML metamodel. A well-formedness rule in the static seman
chapters in the UML Semantics section normally contains an OCL expression, specifying
invariant for the associated metaclass. The grammar for OCL is specified at the end of th
chapter. A parser generated from this grammar has correctly parsed all the constraints in
UML Semantics section, a process which improved the correctness of the specifications
OCL and UML.

7.1.1 Why OCL?

A UML diagram, such as a class diagram, is typically not refined enough to provide all th
relevant aspects of a specification. There is, among other things, a need to describe add
constraints about the objects in the model. Such constraints are often described in natura
language. Practice has shown that this will always result in ambiguities. In order to write
unambiguous constraints, so-called formal languages have been developed. The disadvan
traditional formal languages is that they are usable to persons with a string mathematical
background, but difficult for the average business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to rea
write. It has been developed as a business modeling language within the IBM Insurance
division, and has its roots in the Syntropy method.

OCL is a pure expression language; therefore, an OCL expression is guaranteed to be w
side effect. When an OCL expression is evaluated, it simply returns a value. It cannot ch
anything in the model. This means that the state of the system will never change because
evaluation of an OCL expression, even though an OCL expression can be used to specify a state
change (e.g., in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program logic or
control in OCL. You cannot invoke processes or activate non-query operations within OC
Because OCL is a modeling language in the first place, not everything in it is promised to
directly executable.

OCL is a typed language, so that each OCL expression has a type. To be well formed, an
expression must conform to the type conformance rules of the language. For example, yo
cannot compare an Integer with a String. Each Classifier defined within a UML model
represents a distinct OCL type. In addition, OCL includes a set of supplementary predefin
types (these are described in the section on Predefined OCL Types on page 27).
UML V1.3 June 1999 7-3

7 Object Constraint Language Specification

ressed

ects in

ts on
nal’

the

face
ent.
As a specification language, all implementation issues are out of scope and cannot be exp
in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of obj
a model cannot change during evaluation.

7.1.2 Where to Use OCL

OCL can be used for a number of different purposes:

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• As a navigation language

• To specify constraints on operations

Within the UML Semantics chapter, OCL is used in the well-formedness rules as invarian
the metaclasses in the abstract syntax. In several places, it is also used to define ‘additio
operations which are used in the well-formedness rules.

7.2 Introduction

7.2.1 Legend

Text written in the courier typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre and post
denote the stereotypes, respectively «invariant», «precondition», and «postcondition», of
constraint. The actual OCL expression comes after the colon.

context TypeName inv :

'this is an OCL expression with stereotype <<invariant>> in the

context of TypeName' = 'another string'

In the examples. the keywords of OCL are written in boldface in this document. The bold
has no formal meaning, but is used to make the expressions more readable in this docum
OCL expressions are written using ASCII characters only.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

7.2.2 Example Class Diagram

The diagram below is used in the examples in this document.
7-4 UML V1.3 June 1999

7.3 Connection with the UML Metamodel

L
the

lled

Figure 7-1 Class Diagram Example

7.3 Connection with the UML Metamodel

7.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an OC
expression, the reserved word self is used to refer to the contextual instance. For instance, if
context is Company, then self refers to an instance of Company.

7.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-ca
context declaration at the beginning of an OCL expression. The context declaration of the
constraints in the following sections is shown.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : enum {male, female}

income(Date) : Integer

accountNumber:Integer

Bank

0..1

customer

Company

name : String
numberOfEmployees : Integer

stockPrice() : Real

manager 0..*

managedCompanies

employee employer

wife

husband 0..1

0..1

0..*0..*

Job

title : String
startDate : Date
salary : Integer

Marriage

place : String
date : Date
UML V1.3 June 1999 7-5

7 Object Constraint Language Specification

o
 the

a
 all
are of

t

s

e
elf:

 is
aint

on or
n

abels
If the constraint is shown in a diagram, with the proper stereotype and the dashed lines t
connect it to its contextual element, there is no need for an explicit context declaration in
test of the constraint. The context declaration is optional.

7.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an
«invariant». When the invariant is associated with a Classifier, the latter is referred to as
“type” in this chapter. An OCL expression is an invariant of the type and must be true for
instances of that type at any time. (Note that all OCL expressions that express invariants
the type Boolean.)

For example, if in the context of the Company type in Figure 7-1, the following expression
would specify an invariant that the number of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we star
the expression.) This invariant holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an invariant, i
written with the context keyword, followed by the name of the type as follows. The label inv:
declares the constraint to be an «invariant» constraint.

context Company inv :

self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the abov
examples.As an alternative for self, a different name can be defined playing the part of s

context c : Company inv :

c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing the
constraint to be referenced by name. In the following example the name of the constraint
enoughEmployees. In the UML metamodel, this name is an attribute of the metaclass Constr
that is inherited from ModelElement.

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

7.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to
«precondition» and «postcondition» stereotypes of Constraint associated with an Operati
Method. The contextual instance self then is an instance of the type which owns the operatio
or method as a feature. The context declaration in OCL uses the context keyword, followed by
the type and operation declaration. The stereotype of constraint is shown by putting the l
‘pre:’ and ‘post:’ before the actual Preconditions and Postconditions
7-6 UML V1.3 June 1999

7.4 Basic Values and Types

 was
es

m,

ame

ssion

hese
OCL.

 in the
context Typename::operationName(param1 : Type1, ...): ReturnType

pre : param1 > ...

post : result = ...

The name self can be used in the expression referring to the object on which the operation
called. The reserved word result denotes the result of the operation, if there is one. The nam
of the parameters (param1) can also be used in the OCL expression. In the example diagra
we can write:

context Person::income(d : Date) : Integer

post : result = 5000

Optionally, the name of the precondiation or postcondition may be written after the pre or post
keyword, allowing the constraint to be referenced by name. In the following example the n
of the precondition is parameterOk and the name of the postcondition is resultOk. In the UML
metamodel, these names are attributes of the metaclass Constraint that is inherited from
ModelElement.

context Typename::operationName(param1 : Type1, ...): ReturnType

pre parameterOk: param1 > ...

post resultOk: result = ...

7.3.5 General Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass Expre
or one of its subtypes. In that case, the semantics section describes the meaning of the
expression.

7.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all time. T
predefined value types are independent of any object model and part of the definition of

The most basic value in OCL is a value of one of the basic types. Some basic types used
examples in this document, with corresponding examples of their values, are shown in
Table 7-1.

Table 7-1 Basic types

type values

Boolean true, false

Integer 1, -5, 2, 34, 26524, ...

Real 1.5, 3.14, ...

String 'To be or not to be...'
UML V1.3 June 1999 7-7

7 Object Constraint Language Specification

les of

pter.
ed in

s from

using:

s, the
bol

e
OCL defines a number of operations on the predefined types. Table 7-2 gives some examp
the operations on the predefined types. See “Predefined OCL Types” on page 7-27 for a
complete list of all operations.

Table 7-2 Operations on predefined types

The complete list of operations provided for each type is described at the end of this cha
Collection, Set, Bag and Sequence are basic types as well. Their specifics will be describ
the upcoming sections.

7.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of classifiers
(types/classes, ...), their features and associations, and their generalizations. All classifier
the UML model are types in the OCL expressions that are attached to the model.

7.4.2 Enumeration Types

As shown in the example diagram, new enumeration types can be defined in a model by

enum{ value1, value2, value3 }

The values of the enumeration can be used within expressions.

As there might be a name conflict with attribute names being equal to enumeration value
usage of an enumeration value is expressed syntactically with an additionalpound (#) sym
prefixing the name of the value:

#value1

The type of an enumeration attribute is Enumeration, with restrictions on the values for th
attribute.

7.4.3 Let Expression

Sometimes a sub-expression is used more than once in a constraint. The let expression allows
one to define a variable which can be used in the constraint.

context Person inv :

let income : Integer = self.job.salary->sum in

if isUnemployed then

income < 100

else

type operations

Integer *, +, -, /, abs

Real *, +, -, /, floor

Boolean and, or, xor, not, implies, if-then-else

String toUpper, concat
7-8 UML V1.3 June 1999

7.4 Basic Values and Types

is
mple,

n in

e

he

f
income >= 100

endif

7.4.4 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy. Th
hierarchy determines conformance of the different types to each other. You cannot, for exa
compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL expressio
which the types don’t conform is an invalid expression. It contains a type conformance error. A
type type1 conforms to a type type2 when an instance of type1 can be substituted at each plac
where an instance of type2 is expected. The type conformance rules for types in the class
diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3,
then type1 conforms to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above. T
type conformance rules for the value types are listed in Table 7-3.

Table 7-3 Type conformance rules

The conformance relation between the collection types only holds if they are collections o
element types that conform to each other. See “Collection Type Hierarchy and Type
Conformance Rules” on page 7-20 for the complete conformance rules for collections.

Table 7-4 provides examples of valid and invalid expressions.

Table 7-4 Valid expressions

Type Conforms to/Is a subtype of

Set(T) Collection(T)

Sequence(T) Collection(T)

Bag(T) Collection(T)

Integer Real

OCL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type Integer does not conform to type String

23 * false no type Integer does not conform to Boolean

12 + 13.5 yes
UML V1.3 June 1999 7-9

7 Object Constraint Language Specification

btype
nt

ped

ssion
7.4.5 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on a su
of the current known type of the object. Because the property is not defined on the curre
known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-ty
using the operation oclAsType(OclType). This operation results in the same object, but the
known type is the argument OclType. When there is an object object of type Type1 and Type2
is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtype; therefore, in the example, Type2 must be
a subtype of Type1.

If the actual type of the object is not a subtype of the type to which it is re-typed, the expre
is undefined (see “Undefined Values” on page 7-11).

7.4.6 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:

• @pre

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

7.4.7 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+’, ‘-’, ‘*’. ‘/’, ‘<‘, ‘>’, ‘<>’ ‘<=’
‘>=’ are used as infix operators. If a type defines one of those operators with the correct
signature, they will be used as infix operators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the ‘+’ operation on a with b as the parameter to the operation.
7-10 UML V1.3 June 1999

7.5 Objects and Properties

ators

of the
will be

les are

ting as
ut
tion or
r the

e

ot
The infix operators defined for a type must have exactly one parameter. For the infix oper
‘<‘, ‘>’, ‘<=’, ‘>=’, ‘<>’, ‘and’, ‘or’, and ‘xor’ the return type must be Boolean.

7.4.8 Comment

Comments in OCL are written following two successive dashes (minus signs). Everything
immediately following the two dashes up to and including the end of line is part of the
comment. For example:

-- this is a comment

7.4.9 Undefined Values

Whenever an OCL expression is being evaluated, there is a possibility that one or more
queries in the expression are undefined. If this is the case, then the complete expression
undefined.

There are two exceptions to this for the Boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above ru
valid whether or not the value of the other sub-expression is known.

7.5 Objects and Properties

OCL expressions can refer to Classifiers, e.g. types, classes, interfaces, associations (ac
types) and datatypes. Also all attributes, association-ends, methods, and operations witho
side-effects that are defined on these types, etc. can be used. In a class model, an opera
method is defined to be side-effect-free if the isQuery attribute of the operations is true. Fo
purpose of this document, we will refer to attributes, association-ends, and side-effect-fre
methods and operations as being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

7.5.1 Properties

The value of a property on an object that is defined in a class diagram is specified by a d
followed by the name of the property.

context AType inv :

self.property

If self is a reference to an object, then self.property is the value of the property property on self.
UML V1.3 June 1999 7-11

7 Object Constraint Language Specification

te

ations
always

 income
erson

at is
red to

empty

fer to
posite

lue
t of a
7.5.2 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv :

self.age > 0

The value of the subexpression self.age is the value of the age attribute on the particular
instance of Person identified by self. The type of this subexpression is the type of the attribu
age, which is the basic type Integer.

Using attributes, and operations defined on the basic value types, we can express calcul
etc. over the class model. For example, a business rule might be “the age of a Person is
greater than zero.” This can be stated as shown in the invariant above.

7.5.3 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an
expressed as a function of the date. This operation would be accessed as follows, for a P
aPerson and a date aDate:

aPerson.income(aDate)

The operation itself could be defined by a postcondition constraint. This is a constraint th
stereotyped as «postcondition». The object that is returned by the operation can be refer
by result. It takes the following form:

context Person::income (d: Date) : Integer

post : result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the
definition may be recursive) as long as the recursion is not infinite. The type of result is the
return type of the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parentheses with an
argument list are mandatory:

context Company inv :

self.stockPrice() > 0

7.5.4 Properties: Association Ends and Navigation

Starting from a specific object, we can navigate an association on the class diagram to re
other objects and their properties. To do so, we navigate the association by using the op
association-end:

object.rolename

The value of this expression is the set of objects on the other side of the rolename association.
If the multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the va
of this expression is an object. In the example class diagram, when we start in the contex
Company (i.e., self is an instance of Company), we can write:

context Company
7-12 UML V1.3 June 1999

7.5 Objects and Properties

ne.

, the

rge
y

t the
s in an
ive

ing the
. This

inv : self.manager.isUnemployed = false

inv : self.employee->notEmpty

In the first invariant self.manager is a Person, because the multiplicity of the association is o
In the second invariant self.employee will evaluate in a Set of Persons. By default, navigation
will result in a Set. When the association on the Class Diagram is adorned with {ordered}
navigation results in a Sequence.

Collections, like Sets, Bags, and Sequences are predefined types in OCL. They have a la
number of predefined operations on them. A property of the collection itself is accessed b
using an arrow ‘->’ followed by the name of the property. The following example is in the
context of a person:

context Person inv :

self.employer->size < 3

This applies the size property on the Set self.employer, which results in the number of
employers of the Person self.

context Person inv :

self.employer->isEmpty

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of
employers is empty and false otherwise.

Missing Rolenames

When a rolename is missing at one of the ends of an association, the name of the type a
association end, starting with a lowercase character, is used as the rolename. If this result
ambiguity, the rolename is mandatory. This is the case with unnamed rolenames in reflex
associations. If the rolename is ambiguous, then it cannot be used in OCL.

Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type Person.
Such a single object can be used as a Set as well. It then behaves as if it is a Set contain
single object. The usage as a set is done through the arrow followed by a property of Set
is shown in the following example:

context Company inv :

self.manager->size = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access thesize
property on Set. This expression evaluates to true

context Company inv :

self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo
property on the Set. This expression is incorrect, because foo is not a defined property of Set.

context Company inv :

self.manager.age> 40
UML V1.3 June 1999 7-13

7 Object Constraint Language Specification

e

 write:

hat an
esult,
 each

m:

 a dot

ies
 in the
ting
es”

f the

model
The sub-expression self.manager is used as a Person, because the dot is used to access thage
property of Person.

In the case of an optional (0..1 multiplicity) association, this is especially useful to check
whether there is an object or not when navigating the association. In the example we can

context Person inv :

self.wife->notEmpty implies self.wife.sex = #female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule is t
OCL expression always evaluates to a specific object of a specific type. After obtaining a r
one can always apply another property to the result to get a new result value. Therefore,
OCL expression can be read and evaluated left-to-right.

Following are some invariants that use combined properties on the example class diagra

[1] Married people are of age >= 18

context Person inv :

self.wife->notEmpty implies self.wife.age >= 18 and

self.husband->notEmpty implies self.husband.age >= 18

[2] a company has at most 50 employees

context Company inv :

self.employee->size <= 50

7.5.5 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL uses
and the name of the association class starting with a lowercase character:

context Person inv :

self.job

The sub-expression self.job evaluates to a Set of all the jobs a person has with the compan
that are his/her employer. In the case of an association class, there is no explicit rolename
class diagram. The name job used in this navigation is the name of the association class star
with a lowercase character, similar to the way described in the section “Missing Rolenam
above.

In case of a recursive association, that is an association of a class with itself, the name o
association class alone is not enough. We need to distinguish the direction in which the
association is navigated as well as the name of the association class. Take the following
as an example.
7-14 UML V1.3 June 1999

7.5 Objects and Properties

s the
two
hich

. In the

d in

alified
be

ds.
Figure 7-2 Navigating recursive association classes

When navigating to an association class such as employeeRanking there are two possibilities
depending on the direction. For instance, in the above example, we may navigate toward
employees end, or the bosses end. By using the name of the association class alone, these
options cannot be distinguished. To make the distinction, the rolename of the direction in w
we want to navigate is added to the association class name, enclosed in square brackets
expression

context Person inv :

self.employeeRanking[bosses]->sum > 0

the self.employeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the
collection of bosses. And in the expression

context Person inv :

self.employeeRanking[employees]->sum > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings belonging to
the collection of employees. The unqualified use of the association class name is not allowe
such a recursive situation. Thus, the following example is invalid:

context Person inv :

self.employeeRanking->sum > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the qu
version is allowed as well. Therefore, the examples at the start of this section could also
written as:

context Person inv :

self.job[employer]

7.5.6 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the
association. This is done using the dot-notation and the role-names at the association-en

context Job

inv : self.employer.numberOfEmployees >= 1

inv : self.employee.age > 21

EmployeeRanking

Person
age

bosses

employees * score

*

UML V1.3 June 1999 7-15

7 Object Constraint Language Specification

eliver
ult of
).

er end
ation.
t the
tion.

rder
ifier

s:

cessed
 a
Navigation from an association class to one of the objects on the association will always d
exactly one object. This is a result of the definition of AssociationClass. Therefore, the res
this navigation is exactly one object, although it can be used as a Set using the arrow (->

7.5.7 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the oth
of the association. To navigate them, we can add the values for the qualifiers to the navig
This is done using square brackets, following the role-name. It is permissible to leave ou
qualifier values, in which case the result will be all objects at the other end of the associa

context Bank inv :

self.customer

This results in a Set(Person) containing all customers of the Bank.

context Bank inv :

self.customer[8764423]

This results in one Person, having accountnumber 8764423.

If there is more than one qualifier attribute, the values are separated by commas, in the o
which is specified in the UML class model. It is not permissible to partially specify the qual
attribute values.

7.5.8 Using Pathnames for Packages

Within UML, different types are organized in packages. OCL provides a way of explicitly
referring to types in other packages by using a package-pathname prefix. The syntax is a
package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within package

Packagename1::Packagename2::Typename

7.5.9 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be ac
using the oclAsType() operation. Whenever we have a class B as a subtype of class A, and
property p1 of both A and B, we can write:

context B inv :

self.oclAsType(A).p1 -- accesses the p1 property defined in A

self.p1 -- accesses the p1 property defined in B

Figure 7-3 shows an example where such a construct is needed.
7-16 UML V1.3 June 1999

7.5 Objects and Properties

t, or
ble

are:
Figure 7-3 Accessing Overridden Properties Example

In this model fragment there is an ambiguity with the OCL expression on Dependency:

context Dependency inv :

self.source <> self

This can either mean normal association navigation, which is inherited from ModelElemen
it might also mean navigation through the dotted line as an association class. Both possi
navigations use the same role-name, so this is always ambiguous. Using oclAsType() we can
distinguish between them with:

context Dependency

inv : self.oclAsType(Dependency).source

inv : self.oclAsType(ModelElement).source

7.5.10 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These

oclIsTypeOf(t : OclType) : Boolean

oclIsKindOf(t : OclType) : Boolean

oclInState(s : OclState) : Boolean

oclIsNew : Boolean

oclAsType(t : OclType) : instance of OclType

The operation is oclTypeOf results in true if the type of self and t are the same. For example:

context Person

inv : self.oclIsTypeOf(Person) -- is true

inv : self.oclIsTypeOf(Company) -- is false

The above property deals with the direct type of an object. The oclIsKindOf property
determines whether t is either the direct type or one of the supertypes of an object.

....

Depen dency

target

source
*

*

M od elE lemen t

N ote
value: Uninterprete d
UML V1.3 June 1999 7-17

7 Object Constraint Language Specification

can be
 ::, as

ring

s are

h type.

e
e sure

all
The operation oclInState results in true if the object is in the state s. Values for s are the names
of the states in the statemachine(s) attached to the Classifier of object. For nested states the
statenames can be combined using the ::.

In the example statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If
the classifier of object has the above associated statemachine valid OCL expressions are:

object.oclInState(On)

object.oclInState(Off)

object.oclInstate(Off::Standby)

object.oclInState(Off:NoPower)

If there are multiple statemachines attached to the object’s classifier, then the statename
prefixed with the name of the statemachine containing the state and the double semicolon
with nested states.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is created du
performing the operation. i.e., it didn’t exist at precondition time.

7.5.11 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The type
either predefined in OCL or defined in the class model. In OCL, it is also possible to use
features defined on the types/classes themselves. These are, for example, the class-scoped
features defined in the class model. Furthermore, several features are predefined on eac

A predefined feature on each type is allInstances, which results in the Set of all instances of th
type in existence at the specific time when the expression is evaluated. If we want to mak
that all instances of Person have unique names, we can write:

context Person inv :

Person.allInstances->forAll(p1, p2 |

 p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person). It is the set of
persons that exist at the snapshot in time that the expression is evaluated.

On Off

Standby NoPower
7-18 UML V1.3 June 1999

7.5 Objects and Properties

The
ese
he

ntext
erall
to its

 play

t

atical
ates
h the

ces, and

f the

ral to
cation,
NB: The use of allInstances has some problems and its use is discouraged in most cases.
first problem is best explained by looking at the types like Integer, Real and String. For th
types the meaning of allInstances is undefined. What does it mean for an Integer to exist? T
evaluation of the expression Integer.allInstances results in an infinite set and is therefore
undefined within OCL. The second problem with allInstances is that the existence of objects
must be considered within some overall context, like a system or a model. This overall co
must be defined, which is not done within OCL. A recommended style is to model the ov
contextual system explicitly as an object within the system and navigate from that object
containing instances without using allInstances.

7.5.12 Collections

Single navigation results in a Set, combined navigations in a Bag, and navigation over
associations adorned with {ordered} results in a Sequence. Therefore, the collection types
an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of
predefined operations to enable the OCL expression author (the modeler) to manipulate
collections. Consistent with the definition of OCL as an expression language, collection
operations never change collections; isQuery is always true. They may result in a collection, bu
rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL
distinguishes three different collection types: Set, Sequence, and Bag. A Set is the mathem
set. It does not contain duplicate elements. A Bag is like a set, which may contain duplic
(i.e., the same element may be in a bag twice or more). A Sequence is like a Bag in whic
elements are ordered. Both Bags and Sets have no order defined on them. Sets, Sequen
Bags can be specified by a literal in OCL. Curly brackets surround the elements of the
collection, elements in the collection are written within, separated by commas. The type o
collection is written before the curly brackets:

Set { 1 , 2 , 5 , 88 }

Set { 'apple' , 'orange', 'strawberry' }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }

Sequence { 'ape', 'nut' }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate lite
create them. The elements inside the curly brackets can be replaced by an interval specifi
which consists of two expressions of type Integer, Int-expr1 and Int-expr2, separated by ‘..’.
This denotes all the Integers between the values of Int-expr1 and Int-expr2, including the values
of Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to
UML V1.3 June 1999 7-19

7 Object Constraint Language Specification

ag is:

ing

ng

 are
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this chapter.

Collections can be specified by a literal, as described above. The only other way to get a
collection is by navigation. To be more precise, the only way to get a Set, Sequence, or B

1. a literal, this will result in a Set, Sequence, or Bag:

 Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Bag {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 Company

 self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

7.5.13 Collections of Collections

Within OCL, all Collections of Collections are flattened automatically; therefore, the follow
two expressions have the same value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1, 2, 3, 4, 5, 6 }

7.5.14 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in “Type Conformance” on page 7-9, the followi
rules hold for all types, including the collection types:

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

 Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3,
then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conforms to Set(Transport)

Set(Bicycle) conforms to Collection(Bicycle)

Set(Bicycle) conforms to Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They
both subtypes of Collection(Bicycle) at the same level in the hierarchy.
7-20 UML V1.3 June 1999

7.6 Collection Operations

 post-
er to

To
 name

r:

essed

king
tion
ted

eant
e
7.5.15 Previous Values in Postconditions

As stated in “Pre- and Postconditions” on page 7-6, OCL can be used to specify pre- and
conditions on Operations and Methods in UML. In a postcondition, the expression can ref
two sets of values for each property of an object:

• the value of a property at the start of the operation or method

• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the operation.
refer to the value of a property at the start of the operation, one has to postfix the property
with the keyword ‘@pre’:

context Person::birthdayHappens()

post : age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the
operation. The property age@pre refers to the value of the property age of the Person that
executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
parameters.

context Company::hireEmployee(p : Person)

post : employees = employees@pre->including(p) and
stockprice() = stockprice@pre() + 10

The above operation can also be specified by a postcondition and a precondition togethe

context Company::hireEmployee(p : Person)

pre : not employee->includes(p)

post : employees->includes(p) and

 stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are acc
of this object are the new values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x

 -- and then the new value of c of x.

a.b@pre.c@pre -- takes the old value of property b of a, say x

 -- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a Postcondition. As
for a current property of an object that has been destroyed during execution of the opera
results in Undefined. Also, referring to the previous value of an object that has been crea
during execution of the operation results in Undefined.

7.6 Collection Operations

OCL defines many operations on the collection types. These operations are specifically m
to enable a flexible and powerful way of projecting new collections from existing ones. Th
different constructs are described in the following sections.
UML V1.3 June 1999 7-21

7 Object Constraint Language Specification

e are
y a

 using

 of the
:

ed
ifies

is the

an
more

. The
7.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations delivers a collection, while w
interested only in a special subset of the collection. OCL has special constructs to specif
selection from a specific collection. These are the select and reject operations. The select
specifies a subset of a collection. A select is an operation on a collection and is specified
the arrow-syntax:

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements
collection we want to select. There are three different forms, of which the simplest one is

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the boolean-
expression evaluates to true. To find the result of this expression, for each element in collection
the expression boolean-expression is evaluated. If this evaluates to true, the element is includ
in the result collection, otherwise not. As an example, the following OCL expression spec
that the collection of all the employees older than 50 years is not empty:

context Company inv :

self.employee->select(age > 50)->notEmpty

The self.employee is of type Set(Person). The select takes each person from self.employee and
evaluates age > 50 for this person. If this results in true, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument
element of the collection on which the select is invoked. Thus the age property is taken in the
context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you c
only refer to properties of them. To enable to refer to the persons themselves, there is a
general syntax for the select expression:

collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the collection
and the boolean-expression-with-v is evaluated for each v. The v is a reference to the object
from the collection and can be used to refer to the objects themselves from the collection. The
two examples below are identical:

context Company inv :

self.employee->select(age > 50)->notEmpty

context Company inv :

self.employee->select(p | p.age > 50)->notEmpty

The result of the complete select is the collection of persons p for which the p.age > 50
evaluates to True. This amounts to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be given
select now is written as:

collection->select(v : Type | boolean-expression-with-v)
7-22 UML V1.3 June 1999

7.6 Collection Operations

f all
tax is

ated as
cal:

n

.
The meaning of this is that the objects in collection must be of type Type. The next example is
identical to the previous examples:

context Company inv :

self.employee.select(p : Person | p.age > 50)->notEmpty

The compete select syntax now looks like one of:

collection->select(v : Type | boolean-expression-with-v)

collection->select(v | boolean-expression-with-v)

collection->select(boolean-expression)

The reject operation is identical to the select operation, but with reject we get the subset o
the elements of the collection for which the expression evaluates to False. The reject syn
identical to the select syntax:

collection->reject(v : Type | boolean-expression-with-v)

collection->reject(v | boolean-expression-with-v)

collection->reject(boolean-expression)

As an example, specify that the collection of all the employees who are not married is empty:

context Company inv :

self.employee->reject(isMarried)->isEmpty

The reject operation is available in OCL for convenience, because each reject can be rest
a select with the negated expression. Therefore, the following two expressions are identi

collection->reject(v : Type | boolean-expression-with-v)

collection->select(v : Type | not (boolean-expression-with-v))

7.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a sub-
collection of the original collection. When we want to specify a collection which is derived
from some other collection, but which contains different objects from the original collectio
(i.e., it is not a sub-collection), we can use a collect operation. The collect operation uses the
same syntax as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)

collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a company
This can be written in the context of a Company object as one of:

self.employee->collect(birthDate)

self.employee->collect(person | person.birthDate)

self.employee->collect(person : Person | person.birthDate)
UML V1.3 June 1999 7-23

7 Object Constraint Language Specification

 than

s

wing

or the

be

ing

OCL

t of a

ck.’
An important issue here is that the resulting collection is not a Set, but a Bag. When more
one employee has the same value for birthDate, this value will be an element of the resulting
Bag more than once. The Bag resulting from the collect operation always has the same size a
the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The follo
expression results in the Set of different birthDates from all employees of a Company:

self.employee->collect(birthDate)->asSet

Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand notation f
collect that makes the OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will automatically
interpreted as a collect over the members of the collection with the specified property.

For any propertyname that is defined as a property on the objects in a collection, the follow
two expressions are identical:

collection.propertyname

collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname(par1, par2, ...)

collection->collect(propertyname(par1, par2, ...)

7.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation in
allows specifying a Boolean expression, which must hold for all objects in a collection:

collection->forAll(v : Type | boolean-expression-with-v)

collection->forAll(v | boolean-expression-with-v)

collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v
is true for all elements of collection. If the boolean-expression-with-v is false for one or more v
in collection, then the complete expression evaluates to false. For example, in the contex
company:

context Company

inv : self.employee->forAll(forename = 'Jack')

inv : self.employee->forAll(p | p.forename = 'Jack')

inv : self.employee->forAll(p : Person | p.forename = 'Jack')

These invariants evaluate to true if the forename feature of each employee is equal to ‘Ja
7-24 UML V1.3 June 1999

7.6 Collection Operations

th
an

ich a
ch

f a

qual to
The forAll operation has an extended variant in which more then one iterator is used. Bo
iterators will iterate over the complete collection. Effectively this is a forAll on the Cartesi
product of the collection with itself.

context Company inv :

self.employee->forAll(e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

context Company inv :

self.employee->forAll(e1, e2 : Person |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is
semantically equivalent to:

context Company inv :

self.employee->forAll(e1 | self.employee->forAll (e2 |

 e1 <> e2 implies e1.forename <> e2.forename)))

7.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for wh
constraint holds. The exists operation in OCL allows you to specify a Boolean expression whi
must hold for at least one object in a collection:

collection->exists(v : Type | boolean-expression-with-v)

collection->exists(v | boolean-expression-with-v)

collection->exists(boolean-expression)

This exists operation results in a Boolean. The result is true if the boolean-expression-with-v is
true for at least one element of collection. If the boolean-expression-with-v is false for all v in
collection, then the complete expression evaluates to false. For example, in the context o
company:

context Company inv :

self.employee->exists(forename = 'Jack')

context Company inv :

self.employee->exists(p | p.forename = 'Jack')

context Company inv :

self.employee->exists(p : Person | p.forename = 'Jack')

These expressions evaluate to true if the forename feature of at least one employee is e
‘Jack.’

7.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations reject,
select, forAll, exists, collect, can all be described in terms of iterate.

An accumulation builds one value by iterating over a collection.

collection->iterate(elem : Type; acc : Type = <expression> |
UML V1.3 June 1999 7-25

7 Object Constraint Language Specification

quence.

ed
te

andard

stead

types
nsion
expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the
accumulator. The accumulator gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-elem-
and-acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its
value is assigned to acc. In this way, the value of acc is built up during the iteration of the
collection. The collect operation described in terms of iterate will look like:

collection->collect(x : T | x.property)

-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)

{

 acc = value;

 for(Enumeration e = collection.elements() ; e.hasMoreElements();
){

 elem = e.nextElement();

 acc = <expression-with-elem-and-acc>

 }

}

Although the Java pseudo code uses a ‘next element’, the iterate operation is defined for each
collection type and the order of the iteration through the elements in the collection is not
defined for Set and Bag. For a Sequence the order is the order of the elements in the se

7.7 The Standard OCL Package

Each UML model that uses OCL constraints contains a predefined standard package call
“UML_OCL”. This package is used by default in all other packages in the model to evalua
OCL expressions. This package contains all predefined OCL types and their features.

To extend the predefined OCL types, a modeler should define a separate package. The st
OCL package can be imported, and each OCL type can be extended with new features.

To specify that a package used the predefined OCL types from a user defined package in
of the standard package, the using package must define a Dependency with stereotype
<<OCL_Types>> to the package which defines the extended OCL types.

A constraint on the user defined OCL package is that as a minimum all predefined OCL
with all of their features must be defined. The user defined package must be a proper exte
to the standard OCL package.
7-26 UML V1.3 June 1999

7.8 Predefined OCL Types

fined
in the
ating
ult.

h

cess
7.8 Predefined OCL Types

This section contains all standard types defined within OCL, including all the properties de
on those types. Its signature and a description of its semantics define each property. With
description, the reserved word ‘result’ is used to refer to the value that results from evalu
the property. In several places, post conditions are used to describe properties of the res
When there is more than one postcondition, all postconditions must be true.

7.8.1 Basic Types

The basic types used are Integer, Real, String, and Boolean. They are supplemented wit
OclExpression, OclType, and OclAny.

OclType

All types defined in a UML model, or pre-defined within OCL, have a type. This type is an
instance of the OCL type called OclType. Access to this type allows the modeler limited ac
to the meta-level of the model. This can be useful for advanced modelers.

Properties of OclType, where the instance of OclType is called type.

type.name : String

The name of type.

type.attributes : Set(String)

The set of names of the attributes of type, as they are defined in the model.

type.associationEnds : Set(String)

The set of names of the navigable associationEnds of type, as they are defined in the
model.

type.operations : Set(String)

The set of names of the operations of type, as they are defined in the model.

type.supertypes : Set(OclType)

The set of all direct supertypes of type.
post: type.allSupertypes->includesAll(result)
UML V1.3 June 1999 7-27

7 Object Constraint Language Specification

e
lAny.

icts
he
ts,

OclAny

Within the OCL context, the type OclAny is the supertype of all types in the model and th
basic predefined OCL type. The predefined OCL Collection types are not subtypes of Oc
Properties of OclAny are available on each object in all OCL expressions.

All classes in a UML model inherit all properties defined on OclAny. To avoid name confl
between properties in the model and the properties inherited from OclAny, all names on t
properties of OclAny start with ‘ocl.’ Although theoretically there may still be name conflic
they can be avoided. One can also use the oclAsType() operation to explicitly refer to the
OclAny properties.

Properties of OclAny, where the instance of OclAny is called object.

type.allSupertypes : Set(OclType)

The transitive closure of the set of all supertypes of type.

type.allInstances : Set(type)

The set of all instances of type and all its subtypes in existence at the snapshot at the
time that the expression is evaluated.

object = (object2 : OclAny) : Boolean

True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean

True if object is a different object from object2.
post: result = not (object = object2)

object.oclIsKindOf(type : OclType) : Boolean

True if type is one of the types of object, or one of the supertypes (transitive) of the
types of object.

object.oclIsTypeOf(type : OclType) : Boolean

True if type is equal to one of the types of object.
7-28 UML V1.3 June 1999

7.8 Predefined OCL Types

s it

n is
s that

lator
OclState

The type OclState is used as a parameter for the operation oclInState. There are no properties
defined on OclState. One can only specify an OclState by using the name of the state, a
appears in a statemachine. These names can be fully qualified by the nested states and
statemachine that contain them.

OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the expressio
OclExpression. This type and its properties are used to define the semantics of propertie
take an expression as one of their parameters: select, collect, forAll, etc.

An OclExpression includes the optional iterator variable and type and the optional accumu
variable and type.

Properties of OclExpression, where the instance of OclExpression is called expression.

object.oclAsType(type : OclType) : type

Results in object, but of known type type.
Results in Undefined if the actual type of object is not type or one of its subtypes.
pre : object.oclIsKindOf(type)
post: result = object
post: result.oclIsKindOf(type)

object.oclInState(state : OclState) : Boolean

Results in true if object is in the state state, otherwise results in false. The argument
is a name of a state in the state machine corresponding with the class of object.

object.oclIsNew : Boolean

Can only be used in a postcondition.
Evaluates to true if the object is created during performing the operation.
I.e. it didn’t exist at precondition time.

expression.evaluationType : OclType

The type of the object that results from evaluating expression.
UML V1.3 June 1999 7-29

7 Object Constraint Language Specification

bclass
eter.
Real

The OCL type Real represents the mathematical concept of real. Note that Integer is a su
of Real, so for each parameter of type Real, you can use an integer as the actual param

Properties of Real, where the instance of Real is called r.

r = (r2 : Real) : Boolean

True if r is equal to r2.

r <> (r2 : Real) : Boolean

True if r is not equal to r2.
post: result = not (r = r2)

r + (r2 : Real) : Real

The value of the addition of r and r2.

r - (r2 : Real) : Real

The value of the subtraction of r2 from r.

r * (r2 : Real) : Real

The value of the multiplication of r and r2.

r / (r2 : Real) : Real

The value of r divided by r2.

r.abs : Real

The absolute value of r.
post: if r < 0 then result = - r else result = r endif
7-30 UML V1.3 June 1999

7.8 Predefined OCL Types
r.floor : Integer

The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.round : Integer

The integer which is closest to r. When there are two such integers, the largest one.
post: ((r - result) < r).abs < 0.5) or ((r - result).abs = 0.5 and (result > r))

r.max(r2 : Real) : Real

The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real

The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean

True if r1 is less than r2.

r > (r2 : Real) : Boolean

True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)
UML V1.3 June 1999 7-31

7 Object Constraint Language Specification
Integer

The OCL type Integer represents the mathematical concept of integer.

Properties of Integer, where the instance of Integer is called i.

r >= (r2 : Real) : Boolean

True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

i = (i2 : Integer) : Boolean

True if i is equal to i2.

i + (i2 : Integer) : Integer

The value of the addition of i and i2.

i - (i2 : Integer) : Integer

The value of the subtraction of i2 from i.

i * (i2 : Integer) : Integer

The value of the multiplication of i and i2.

i / (i2 : Integer) : Real

The value of i divided by i2.

i.abs : Integer

The absolute value of i.
post: if i < 0 then result = - i else result = i endif
7-32 UML V1.3 June 1999

7.8 Predefined OCL Types
String

The OCL type String represents ASCII strings.

Properties of String, where the instance of String is called string.

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely within i.
pre : i2 <> 0
post: if i / i2 >= 0 then result = (i / i2).floor else result = -((-i/i2).floor) endif

i.mod(i2 : Integer) : Integer

The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : Integer

The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer

The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

string = (string2 : String) : Boolean

True if string and string2 contain the same characters, in the same order.

string.size : Integer

The number of characters in string.

string.concat(string2 : String) : String

The concatenation of string and string2.
post: result.size = string.size + string2.size
post: result.substring(1, string.size) = string
post: result.substring(string.size + 1, result.size) = string2
UML V1.3 June 1999 7-33

7 Object Constraint Language Specification
Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

string.toUpper : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size = string.size

string.toLower : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String

The sub-string of string starting at character number lower, up to and including
character number upper.

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false.
post: if b then result = false else result = true endif
7-34 UML V1.3 June 1999

7.8 Predefined OCL Types

lable

by

bject

for all
ans

s are
Enumeration

The OCL type Enumeration represents the enumerations defined in an UML model.

Features of Enumeration, the instance of Enumeration is called enumeration.

7.8.2 Collection-Related Types

The following sections define the properties on collections (i.e., these properties are avai
on Set, Bag, and Sequence). As defined in this section, each collection type is actually a
template with one parameter. ‘T’ denotes the parameter. A real collection type is created
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

Collection

Collection is the abstract supertype of all collection types in OCL. Each occurrence of an o
in a collection is called an element. If an object occurs twice in a collection, there are two
elements. This section defines the properties on Collections that have identical semantics
collection subtypes. Some properties may be defined with the subtype as well, which me
that there is an additional postcondition or a more specialized return value.

The definition of several common properties is different for each subtype. These propertie
not mentioned in this section.

b implies (b2 : Boolean) : Boolean

True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2)

if b then (expression1 : OclExpression)

else (expression2 : OclExpression) endif : expression1.evaluationType

If b is true, the result is the value of evaluating expression1; otherwise, result is the
value of evaluating expression2.

enumeration = (enumeration2 : Boolean) : Boolean

Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as enumeration2.
post: result = not (enumeration = enumeration2)
UML V1.3 June 1999 7-35

7 Object Constraint Language Specification
Properties of Collection, where the instance of Collection is called collection.

collection->size : Integer

The number of elements in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : OclAny) : Boolean

True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->excludes(object : OclAny) : Boolean

True if object is not an element of collection, false otherwise.
post: result = (collection->count(object) = 0)

collection->count(object : OclAny) : Integer

The number of times that object occurs in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean

Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->excludesAll(c2 : Collection(T)) : Boolean

Does collection contain none of the elements of c2 ?
post: result = c2->forAll(elem | collection->excludes(elem))

collection->isEmpty : Boolean

Is collection the empty collection?
post: result = (collection->size = 0)
7-36 UML V1.3 June 1999

7.8 Predefined OCL Types
collection->notEmpty : Boolean

Is collection not the empty collection?
post: result = (collection->size <> 0)

collection->sum : T

The addition of all elements in collection. Elements must be of a type supporting the
+ operation. The + operation must take one parameter of type T and be both
associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. Integer and Real fulfill
this condition.

post: result = collection->iterate(elem; acc : T = 0 |
 acc + elem)

collection->exists(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for at least one element in collection.

post: result = collection->iterate(elem; acc : Boolean = false |
 acc or expr)

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for each element in collection; otherwise, result
is false.

post: result = collection->iterate(elem; acc : Boolean = true |
 acc and expr)

collection->isUnique(expr : OclExpression) : Boolean

Results in true if expr evaluates to a different value for each element in collection;
otherwise, result is false.

post: result = collection->collect(expr)->forAll(e1, e2 | e1 <> e2)
UML V1.3 June 1999 7-37

7 Object Constraint Language Specification

, the
Set

The Set is the mathematical set. It contains elements without duplicates. Features of Set
instance of Set is called set.

collection->sortedBy(expr : OclExpression) : Boolean

Results in the Sequence containing all elements of collection. The element for which
expr has the lowest value comes first, and so on. The type of the expr expression must
have the < operation defined. The < operation must be transitive i.e. if a < b and b < c
then a < c.

post:

collection->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the collection. See “Iterate Operation” on page 7-25 for a complete
description. This is the basic collection operation with which the other collection
operations can be described.

set->union(set2 : Set(T)) : Set(T)

The union of set and set2.

post: result->forAll(elem | set->includes(elem) or set2->includes(elem))
post: set->forAll(elem | result->includes(elem))
post: set2->forAll(elem | result->includes(elem))

set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.

post: result->forAll(elem |
result->count(elem) = set->count(elem) + bag->count(elem))

post: set->forAll(elem | result->includes(elem))
post: bag->forAll(elem | result->includes(elem))

set = (set2 : Set(T)) : Boolean

Evaluates to true if set and set2 contain the same elements.

post: result = (set->forAll(elem | set2->includes(elem)) and
set2->forAll(elem | set->includes(elem)))
7-38 UML V1.3 June 1999

7.8 Predefined OCL Types
set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2 (i.e, the set of all elements that are in both set and
set2).

post: result->forAll(elem | set->includes(elem) and set2->includes(elem))
post: set->forAll(elem | set2->includes(elem) = result->includes(elem))
post: set2->forAll(elem | set->includes(elem) = result->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag.
post: result = set->intersection(bag->asSet)

set – (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2.

post: result->forAll(elem | set->includes(elem) and set2->excludes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))

set->including(object : T) : Set(T)

The set containing all elements of set plus object.

post: result->forAll(elem | set->includes(elem) or (elem = object))
post: set->forAll(elem | result->includes(elem))
post: result->includes(object)

set->excluding(object : T) : Set(T)

The set containing all elements of set without object.

post: result->forAll(elem | set->includes(elem) and (elem <> object))
post: set->forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)
UML V1.3 June 1999 7-39

7 Object Constraint Language Specification
set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or set2, but not in both.

post: result->forAll(elem | set->includes(elem) xor set2->includes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))
post: set2->forAll(elem | result->includes(elem) = set->excludes(elem))

set->select(expr : OclExpression) : Set(T)

The subset of set for which expr is true.

post: result = set->iterate(elem; acc : Set(T) = Set{} |
 if expr then acc->including(elem) else acc endif)

set->reject(expr : OclExpression) : Set(T)

The subset of set for which expr is false.
post: result = set->select(not expr)

set->collect(expr : OclExpression) : Bag(expr.evaluationType)

The Bag of elements which results from applying expr to every member of set.

post: result = set->iterate(elem; acc : Bag(expr.evaluationType) = Bag{} |
 acc->including(expr))

set->count(object : T) : Integer

The number of occurrences of object in set.
post: result <= 1

set->asSequence : Sequence(T)

A Sequence that contains all the elements from set, in undefined order.

post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)
7-40 UML V1.3 June 1999

7.8 Predefined OCL Types

bag
Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of a
many times. There is no ordering defined on the elements in a bag.

Properties of Bag, where the instance of Bag is called bag.

set->asBag : Bag(T)

The Bag that contains all the elements from set.

post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

bag = (bag2 : Bag(T)) : Boolean

True if bag and bag2 contain the same elements, the same number of times.

post: result = (bag->forAll(elem | bag->count(elem) = bag2->count(elem)) and
bag2->forAll(elem | bag2->count(elem) = bag->count(elem)))

bag->union(bag2 : Bag(T)) : Bag(T)

The union of bag and bag2.

post: result->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

post: bag2->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

bag->union(set : Set(T)) : Bag(T)

The union of bag and set.

post: result->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

post: set->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))
UML V1.3 June 1999 7-41

7 Object Constraint Language Specification
bag->intersection(bag2 : Bag(T)) : Bag(T)

The intersection of bag and bag2.

post: result->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

post: bag2->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

bag->intersection(set : Set(T)) : Set(T)

The intersection of bag and set.

post: result->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

post: set->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

bag->including(object : T) : Bag(T)

The bag containing all elements of bag plus object.

post: result->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)
post: bag->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)
7-42 UML V1.3 June 1999

7.8 Predefined OCL Types
bag->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of object.

post: result->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)
post: bag->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->select(expr : OclExpression) : Bag(T)

The sub-bag of bag for which expr is true.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 if expr then acc->including(elem) else acc endif)

bag->reject(expr : OclExpression) : Bag(T)

The sub-bag of bag for which expr is false.
post: result = bag->select(not expr)

bag->collect(expr: OclExpression) : Bag(expr.evaluationType)

The Bag of elements which results from applying expr to every member of bag.

post: result = bag->iterate(elem; acc : Bag(expr.evaluationType) = Bag{} |
 acc->including(expr))

bag->count(object : T) : Integer

The number of occurrences of object in bag.
UML V1.3 June 1999 7-43

7 Object Constraint Language Specification

Sequence

A sequence is a collection where the elements are ordered. An element may be part of a
sequence more than once.

Properties of Sequence(T), where the instance of Sequence is called sequence.

bag->asSequence : Sequence(T)

A Sequence that contains all the elements from bag, in undefined order.

post: result->forAll(elem | bag->count(elem) = result->count(elem))
post: bag->forAll(elem | bag->count(elem) = result->count(elem))

bag->asSet : Set(T)

The Set containing all the elements from bag, with duplicates removed.

post: result->forAll(elem | bag->includes(elem))
post: bag->forAll(elem | result->includes(elem))

sequence->count(object : T) : Integer

The number of occurrences of object in sequence.

sequence = (sequence2 : Sequence(T)) : Boolean

True if sequence contains the same elements as sequence2 in the same order.

post: result = Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = sequence2->at(index))
 and
 sequence->size = sequence2->size

sequence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in sequence, followed by all elements in
sequence2.

post: result->size = sequence->size + sequence2->size
post: Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size}->forAll(index : Integer |
 sequence2->at(index) =
 result->at(index + sequence->size)))
7-44 UML V1.3 June 1999

7.8 Predefined OCL Types
sequence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of sequence, followed by object.

post: result->size = sequence->size + 1
post: result->at(result->size) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |
 result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)

The sequence consisting of object, followed by all elements in sequence.

post: result->size = sequence->size + 1
post: result->at(1) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index + 1))

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of sequence starting at number lower, up to and including element
number upper.

pre : 1 <= lower
pre : lower <= upper
pre : upper <= sequence->size
post: result->size = upper -lower + 1
post: Sequence{lower..upper}->forAll(index |
 result->at(index - lower + 1) =
 sequence->at(index))
endif

sequence->at(i : Integer) : T

The i-th element of sequence.
pre : i >= 1 and i <= sequence->size

sequence->first : T

The first element in sequence.
post: result = sequence->at(1)
UML V1.3 June 1999 7-45

7 Object Constraint Language Specification
sequence->last : T

The last element in sequence.
post: result = sequence->at(sequence->size)

sequence->including(object : T) : Sequence(T)

The sequence containing all elements of sequence plus object added as the last
element.
post: result = sequence.append(object)

sequence->excluding(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.

post:result->includes(object) = false
post: result->size = sequence->size - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T)
 = Sequence{}|
 if elem = object then acc else acc->append(elem) endif)

sequence->select(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is true.

post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{} |
 if expr then acc->including(elem) else acc endif)

sequence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is false.
post: result = sequence->select(not expr)

sequence->collect(expression : OclExpression) : Sequence(expression.evaluationType)

The Sequence of elements which results from applying expression to every member of
sequence.
7-46 UML V1.3 June 1999

7.9 Grammar

f this

, and

ed.
7.9 Grammar

This section describes the grammar for OCL expressions. An executable LL(1) version o
grammar is available on the OCL web site. (See http://www.software.ibm.com/ad/ocl).

The grammar description uses the EBNF syntax, where “|” means a choice, “?” optionality
“*” means zero or more times, + means one or more times. In the description of the name,
typeName, and string, the syntax for lexical tokens from the JavaCC parser generator is us
(See http://www.suntest.com/JavaCC.)

constraint := contextDeclaration

(stereotype name? “:” expression)+

contextDeclaration := “context”

 (classifierContext | operationContext)

classifierContext := (<name> “:”)? <typeName>

operationContext := <typeName> “::” <name>

“(“ formalParameterList? “)”

(“:” <typeName>)?

formalParameterList := formalParameter (“;” formalParameter)*

formalParameter := <name> “:” <typeName>

stereotype := “inv” | “pre” | “post”

expression := letExpression* logicalExpression

ifExpression := "if" expression

sequence->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the sequence. Iteration will be done from element at position 1 up until
the element at the last position following the order of the sequence.

sequence->asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates.

post: result->forAll(elem | sequence->count(elem) = result->count(elem))
post: sequence->forAll(elem | sequence->count(elem) = result->count(elem))

sequence->asSet() : Set(T)

The Set containing all the elements from sequence, with duplicated removed.

post: result->forAll(elem | sequence->includes(elem))
post: sequence->forAll(elem | result->includes(elem))
UML V1.3 June 1999 7-47

7 Object Constraint Language Specification
 "then" expression

 "else" expression

 "endif"

logicalExpression := relationalExpression

 (logicalOperator
 relationalExpression)*

relationalExpression := additiveExpression

 (relationalOperator
 additiveExpression)?

additiveExpression := multiplicativeExpression

 (addOperator
 multiplicativeExpression)*

multiplicativeExpression := unaryExpression

 (multiplyOperator unaryExpression)*

unaryExpression := (unaryOperator postfixExpression)

 | postfixExpression

postfixExpression := primaryExpression (("." | "->")
 featureCall)*

primaryExpression := literalCollection

 | literal

 | pathName timeExpression? qualifier?

 featureCallParameters?

 | "(" expression ")"

 | ifExpression

featureCallParameters := "(" (declarator)?
 (actualParameterList)? ")"

letExpression := “let” <name>

(“:” pathTypeName)?

“=” expression “in”

literal := <STRING> | <number> | "#" <name>

enumerationType := "enum" "{" "#" <name> ("," "#" <name>
)* "}"

simpleTypeSpecifier := pathTypeName

 | enumerationType

literalCollection := collectionKind "{"

expressionListOrRange? "}"

expressionListOrRange := expression

 (("," expression)+

 | (".." expression)

)?

featureCall := pathName timeExpression? qualifiers?

 featureCallParameters?
7-48 UML V1.3 June 1999

7.9 Grammar
qualifiers := "[" actualParameterList "]"

declarator := <name> ("," <name>)*

 (":" simpleTypeSpecifier)? "|"

pathTypeName := <typeName> ("::" <typeName>)*

pathName := (<typeName> | <name>)

 ("::" (<typeName> | <name>))*

timeExpression := "@" <name>

actualParameterList := expression ("," expression)*

logicalOperator := "and" | "or" | "xor" | "implies"

collectionKind := "Set" | "Bag" | "Sequence" |
 "Collection"

relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"

addOperator := "+" | "-"

multiplyOperator := "*" | "/"

unaryOperator := "-" | "not"

typeName := ([“a”-”z”] | ["A"-"Z"] | “_”)

(["a"-"z"] | ["0"-"9"] |

 ["A"-"Z"] | "_")*

name := ([“a”-”z”] | ["A"-"Z"] | “_”)

(["a"-"z"] | ["0"-"9"] |

 ["A"-"Z"] | "_")*

number := ["0"-"9"] (["0"-"9"])*

string := "'" ((~["'","\\","\n","\r"])

 | ("\\"

 (["n","t","b","r","f","\\","'","\""]

 | ["0"-"7"] (["0"-"7"])?

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

)*

 "'"
UML V1.3 June 1999 7-49

7 Object Constraint Language Specification
7-50 UML V1.3 June 1999

UML Standard Elements A
ed for
uld

This appendix contains a list of the predefined standard elements for UML. The
standard elements are stereotypes, constraints and tagged values. The names us
UML predefined standard elements are considered reserved words; modelers sho
not use overload these names with different definitions. Each standard element is
described in the chapter containing its base element.

Standard Element Name Applies to Base Element Kind Page

«access» Permission Stereotype 2-42
association Association Constraint 2-91
«association» AssociationEnd Stereotype 2-23
«become» Flow Stereotype 2-34
«call» Usage Stereotype 2-43
complete Generalization Constraint 2-36
«copy» Flow Stereotype 2-34
«create» BehavioralFeature Stereotype 2-26
«create» CallEvent Stereotype 2-132
«create» Usage Stereotype 2-44
«derive» Abstraction Stereotype 2-19
derived ModelElement Tag 2-38
«destroy» BehavioralFeature Stereotype 2-26
«destroy» CallEvent Stereotype 2-132
destroyed Association Constraint 2-90
destroyed Association Constraint 2-91
disjoint Generalization Constraint 2-36
«document» Component Stereotype 2-29
documentation Element Tag 2-31
UML V1.3 June 1999 A-1

A UML Standard Elements
«executable» Component Stereotype 2-29
«facade» Package Stereotype 2-174
«file» Component Stereotype 2-29
«framework» Package Stereotype 2-174
«friend» Permission Stereotype 2-42
global Association Constraint 2-91
«global» AssociationEnd Stereotype 2-23
«implementation» Generalization Stereotype 2-36
«implementationClass» Class Stereotype 2-27
implicit Association Stereotype 2-20
«import» Permission Stereotype 2-42
incomplete Generalization Constraint 2-36
«instantiate» Usage Stereotype 2-44
«invariant» Constraint Stereotype 2-30
«library» Component Stereotype 2-29
local Association Constraint 2-91
«local» AssociationEnd Stereotype 2-23
«metaclass» Classifier Stereotype 2-28
«metamodel» Package Stereotype 2-173
new Association Constraint 2-90
new Association Constraint 2-91
overlapping Generalization Constraint 2-36
parameter Association Constraint 2-91
«parameter» AssociationEnd Stereotype 2-23
persistence Association Tag 2-20
persistence Attribute Tag 2-25
persistence Classifier Tag 2-28
persistent Association Tag 2-90
«postcondition» Constraint Stereotype 2-30
«powertype» Classifier Stereotype 2-28
«precondition» Constraint Stereotype 2-30
«process» Classifier Stereotype 2-28
«realize» Abstraction Stereotype 2-19
«refine» Abstraction Stereotype 2-19
«requirement» Comment Stereotype 2-29
«responsibility» Comment Stereotype 2-29
self Association Constraint 2-91
«self» AssociationEnd Stereotype 2-23
semantics Classifier Tag 2-28
semantics Operation Tag 2-40
«send» Usage Stereotype 2-44
«signalflow» ObjectFlowState Stereotype 2-163
«stub» Package Stereotype 2-174
«systemModel» Package Stereotype 2-173
«table» Component Stereotype 2-29
«thread» Classifier Stereotype 2-28
«topLevel» Package Stereotype 2-174
«trace» Abstraction Stereotype 2-19
transient Association Constraint 2-90
transient Association Constraint 2-91
«type» Class Stereotype 2-27
A-2 UML V1.3 June 1999

A UML Standard Elements
«utility» Classifier Stereotype 2-28
xor Association Constraint 2-20
UML V1.3 June 1999 A-3

A UML Standard Elements
A-4 UML V1.3 June 1999

OMG Modeling Glossary B
F

s and
cific

ase
e all

 that

nced.

lled-
This glossary defines the terms that are used to describe the Unified Modeling
Language (UML) and the Meta Object Facility (MOF). In addition to UML and MO
specific terminology, it includes related terms from OMG standards and object-
oriented analysis and design methods, as well as the domain of object repositorie
meta data managers. Glossary entries are organized alphabetically and MOF spe
entries are identified as ‘[MOF]’.

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial upperc
letter is used when a word is usually capitalized in standard practice. Acronyms ar
capitalized, unless they traditionally appear in all lowercase.

When one or more words in a multi-word term is enclosed in brackets, it indicates
those words are optional when referring to the term. For example, use case [class] may
be referred to as simply use case.

The following conventions are used in this glossary:

• Contrast: <term>
Refers to a term that has an opposed or substantively different meaning.

• See: <term>
Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term>
Indicates that the term has the same meaning as another term, which is refere

• Acronym: <term>
Indicates that the term is an acronym. The reader is usually referred to the spe
out term for the definition, unless the spelled-out term is rarely used.
UML V1.3 June 1999 B-1

B OMG Modeling Glossary
Glossary Terms

abstract class A class that cannot be directly instantiated. Contrast:
concrete class.

abstraction The essential characteristics of an entity that distinguish it
from all other kinds of entities. An abstraction defines a
boundary relative to the perspective of the viewer.

action The specification of an executable statement that forms an
abstraction of a computational procedure. An action
typically results in a change in the state of the system, and
can be realized by sending a message to an object or
modifying a link or a value of an attribute.

action sequence An expression that resolves to a sequence of actions.

action state A state that represents the execution of an atomic action,
typically the invocation of an operation.

activation The execution of an action.

active class A class whose instances are active objects. See: active
object.

active object An object that owns a thread and can initiate control
activity. An instance of active class. See: active class,
thread.

activity graph A special case of a state machine that is used to model
processes involving one or more classifiers. Contrast:
statechart diagram.

actor [class] A coherent set of roles that users of use cases play when
interacting with these use cases. An actor has one role for
each use case with which it communicates.

actual parameter Synonym: argument.

aggregate [class] A class that represents the “whole” in an aggregation
(whole-part) relationship. See: aggregation.

aggregation A special form of association that specifies a whole-part
relationship between the aggregate (whole) and a
component part. See: composition.
B-2 UML V1.3 June 1999

B OMG Modeling Glossary
analysis The part of the software development process whose
primary purpose is to formulate a model of the problem
domain. Analysis focuses what to do, design focuses on
how to do it. Contrast: design.

analysis time Refers to something that occurs during an analysis phase of
the software development process. See: design time,
modeling time.

architecture The organizational structure and associated behavior of a
system. An architecture can be recursively decomposed into
parts that interact through interfaces, relationships that
connect parts, and constraints for assembling parts. Parts
that interact through interfaces include classes, components
and subsystems.

argument A binding for a parameter that resolves to a run-time
instance. Synonym: actual parameter. Contrast: parameter.

artifact A piece of information that is used or produced by a
software development process. An artifact can be a model, a
description, or software. Synonym: product.

association The semantic relationship between two or more classifiers
that specifies connections among their instances.

association class A model element that has both association and class
properties. An association class can be seen as an
association that also has class properties, or as a class that
also has association properties.

association end The endpoint of an association, which connects the
association to a classifier.

attribute A feature within a classifier that describes a range of values
that instances of the classifier may hold.

behavior The observable effects of an operation or event, including
its results.

behavioral feature A dynamic feature of a model element, such as an operation
or method.

behavioral model
aspect

A model aspect that emphasizes the behavior of the
instances in a system, including their methods,
collaborations, and state histories.
UML V1.3 June 1999 B-3

B OMG Modeling Glossary
binary association An association between two classes. A special case of an n-
ary association.

binding The creation of a model element from a template by
supplying arguments for the parameters of the template.

boolean An enumeration whose values are true and false.

boolean expression An expression that evaluates to a boolean value.

cardinality The number of elements in a set. Contrast: multiplicity.

child In a generalization relationship, the specialization of
another element, the parent. See: subclass, subtype.
Contrast: parent.

call An action state that invokes an operation on a classifier.

class A description of a set of objects that share the same
attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to specify
collections of operations it provides to its environment. See:
interface.

classifier A mechanism that describes behavioral and structural
features. Classifiers include interfaces, classes, datatypes,
and components.

classification The assignment of an object to a classifier. See dynamic
classification, multiple classification and static
classification.

class diagram A diagram that shows a collection of declarative (static)
model elements, such as classes, types, and their contents
and relationships.

client A classifier that requests a service from another classifier.
Contrast: supplier.

collaboration The specification of how an operation or classifier, such as a
use case, is realized by a set of classifiers and associations
playing specific roles used in a specific way. The
collaboration defines an interaction. See: interaction.
B-4 UML V1.3 June 1999

B OMG Modeling Glossary
collaboration diagram A diagram that shows interactions organized around the
structure of a model, using either classifiers and
associations or instances and links. Unlike a sequence
diagram, a collaboration diagram shows the relationships
among the instances. Sequence diagrams and collaboration
diagrams express similar information, but show it in
different ways. See: sequence diagram.

comment An annotation attached to an element or a collection of
elements. A note has no semantics. Contrast: constraint.

compile time Refers to something that occurs during the compilation of a
software module. See: modeling time, run time.

component A physical, replaceable part of a system that packages
implementation and provides the realization of a set of
interfaces. A component represents a physical piece of
implementation of a system, including software code
(source, binary or executable) or equivalents such as scripts
or command files.

component diagram A diagram that shows the organizations and dependencies
among components.

composite [class] A class that is related to one or more classes by a
composition relationship. See: composition.

composite aggregation Synonym: composition.

composite state A state that consists of either concurrent (orthogonal)
substates or sequential (disjoint) substates. See: substate.

composition A form of aggregation association with strong ownership
and coincident lifetime as part of the whole. Parts with non-
fixed multiplicity may be created after the composite itself,
but once created they live and die with it (i.e., they share
lifetimes). Such parts can also be explicitly removed before
the death of the composite. Composition may be recursive.
Synonym: composite aggregation.

concrete class A class that can be directly instantiated. Contrast: abstract
class.

concurrency The occurrence of two or more activities during the same
time interval. Concurrency can be achieved by interleaving
or simultaneously executing two or more threads. See:
thread.
UML V1.3 June 1999 B-5

B OMG Modeling Glossary
concurrent substate A substate that can be held simultaneously with other
substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.

constraint A semantic condition or restriction. Certain constraints are
predefined in the UML, others may be user defined.
Constraints are one of three extensibility mechanisms in
UML. See: tagged value, stereotype.

container 1. An instance that exists to contain other instances, and that
provides operations to access or iterate over its contents.
(for example, arrays, lists, sets). 2. A component that exists
to contain other components.

containment hierarchy A namespace hierarchy consisting of model elements, and
the containment relationships that exist between them. A
containment hierarchy forms a graph.

context A view of a set of related modeling elements for a particular
purpose, such as specifying an operation.

datatype A descriptor of a set of values that lack identity and whose
operations do not have side effects. Datatypes include
primitive pre-defined types and user-definable types. Pre-
defined types include numbers, string and time. User-
definable types include enumerations.

defining model [MOF] The model on which a repository is based. Any number of
repositories can have the same defining model.

delegation The ability of an object to issue a message to another object
in response to a message. Delegation can be used as an
alternative to inheritance. Contrast: inheritance.

dependency A relationship between two modeling elements, in which a
change to one modeling element (the independent element)
will affect the other modeling element (the dependent
element).

deployment diagram A diagram that shows the configuration of run-time
processing nodes and the components, processes, and
objects that live on them. Components represent run-time
manifestations of code units. See: component diagrams.
B-6 UML V1.3 June 1999

B OMG Modeling Glossary

derived element A model element that can be computed from another
element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic
information.

design The part of the software development process whose
primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions
are made to meet the required functional and quality
requirements of a system.

design time Refers to something that occurs during a design phase of the
software development process. See: modeling time.
Contrast: analysis time.

development process A set of partially ordered steps performed for a given
purpose during software development, such as constructing
models or implementing models.

diagram A graphical presentation of a collection of model elements,
most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML
supports the following diagrams: class diagram, object
diagram, use case diagram, sequence diagram, collaboration
diagram, state diagram, activity diagram, component
diagram, and deployment diagram.

disjoint substate A substate that cannot be held simultaneously with other
substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.

distribution unit A set of objects or components that are allocated to a
process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.

domain An area of knowledge or activity characterized by a set of
concepts and terminology understood by practitioners in
that area.

dynamic classification A semantic variation of generalization in which an object
may change its classifier. Contrast: static classification.

element An atomic constituent of a model.

entry action An action executed upon entering a state in a state machine
regardless of the transition taken to reach that state.
UML V1.3 June 1999 B-7

B OMG Modeling Glossary
enumeration A list of named values used as the range of a particular
attribute type. For example, RGBColor = {red, green, blue}.
Boolean is a predefined enumeration with values from the
set {false, true}.

event The specification of a significant occurrence that has a
location in time and space. In the context of state diagrams,
an event is an occurrence that can trigger a transition.

exit action An action executed upon exiting a state in a state machine
regardless of the transition taken to exit that state.

export In the context of packages, to make an element visible
outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.

expression A string that evaluates to a value of a particular type. For
example, the expression “(7 + 5 * 3)” evaluates to a value of
type number.

extend A relationship from an extension use case to a base use
case, specifying how the behavior defined for the extension
use case augments (subject to conditions specified in the
extension) the behavior defined for the base use case. The
behavior is inserted at the location defined by the extension
point in the base use case. The base use case does not
depend on performing the behavior of the extension use
case. See extension point, include.

facade A stereotyped package containing only references to model
elements owned by another package. It is used to provide a
‘public view’ of some of the contents of a package.

feature A property, like operation or attribute, which is
encapsulated within a classifier, such as an interface, a
class, or a datatype.

final state A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.

fire To execute a state transition. See: transition.

focus of control A symbol on a sequence diagram that shows the period of
time during which an object is performing an action, either
directly or through a subordinate procedure.

formal parameter Synonym: parameter.
B-8 UML V1.3 June 1999

B OMG Modeling Glossary

r
framework 1. A stereotyped package consisting mainly of patterns. See:
pattern.

2. An architectural pattern that provides an extensible
template for for applications within a specific domain.

generalizable element A model element that may participate in a generalization
relationship. See: generalization.

generalization A taxonomic relationship between a more general element
and a more specific element. The more specific element is
fully consistent with the more general element and contains
additional information. An instance of the more specific
element may be used where the more general element is
allowed. See: inheritance.

guard condition A condition that must be satisfied in order to enable an
associated transition to fire.

implementation A definition of how something is constructed or computed.
For example, a class is an implementation of a type, a
method is an implementation of an operation.

implementation
inheritance

The inheritance of the implementation of a more specific
element. Includes inheritance of the interface. Contrast:
interface inheritance.

import In the context of packages, a dependency that shows the
packages whose classes may be referenced within a given
package (including packages recursively embedded within
it). Contrast: export.

include A relationship from a base use case to an inclusion use case,
specifying how the behavior for the base use case contains
the behavior of the inclusion use case. The behavior is
included at the location which is defined in the base use
case. The base use case depends on performing the behavio
of the inclusion use case, but not on its structure (i.e.,
attributes or operations). See extend.

inheritance The mechanism by which more specific elements
incorporate structure and behavior of more general elements
related by behavior. See generalization.

instance An entity to which a set of operations can be applied and
which has a state that stores the effects of the operations.
See: object.
UML V1.3 June 1999 B-9

B OMG Modeling Glossary

interaction A specification of how stimuli are sent between instances to
perform a specific task. The interaction is defined in the
context of a collaboration. See collaboration.

interaction diagram A generic term that applies to several types of diagrams that
emphasize object interactions. These include collaboration
diagrams and sequence diagrams.

interface A named set of operations that characterize the behavior of
an element.

interface inheritance The inheritance of the interface of a more specific element.
Does not include inheritance of the implementation.
Contrast: implementation inheritance.

internal transition A transition signifying a response to an event without
changing the state of an object.

layer The organization of classifiers or packages at the same level
of abstraction. A layer represents a horizontal slice through
an architecture, whereas a partition represents a vertical
slice. Contrast: partition.

link A semantic connection among a tuple of objects. An
instance of an association. See: association.

link end An instance of an association end. See: association end.

message A specification of the conveyance of information from one
instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the
call of an operation.

metaclass A class whose instances are classes. Metaclasses are
typically used to construct metamodels.

meta-metamodel A model that defines the language for expressing a
metamodel. The relationship between a meta-metamodel
and a metamodel is analogous to the relationship between a
metamodel and a model.

metamodel A model that defines the language for expressing a model.

metaobject A generic term for all metaentities in a metamodeling
language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.
B-10 UML V1.3 June 1999

B OMG Modeling Glossary
method The implementation of an operation. It specifies the
algorithm or procedure associated with an operation.

model

[MOF]

An abstraction of a physical system, with a certain purpose..
See: physical system.

Usage note: In the context of the MOF specification, which
describes a meta-metamodel, for brevity the meta-
metamodel is frequently to as simply the model.

model aspect A dimension of modeling that emphasizes particular
qualities of the metamodel. For example, the structural
model aspect emphasizes the structural qualities of the
metamodel.

model elaboration The process of generating a repository type from a
published model. Includes the generation of interfaces and
implementations which allows repositories to be instantiated
and populated based on, and in compliance with, the model
elaborated.

model element

[MOF]

An element that is an abstraction drawn from the system
being modeled. Contrast: view element.

In the MOF specification model elements are considered to
be metaobjects.

modeling time Refers to something that occurs during a modeling phase of
the software development process. It includes analysis time
and design time. Usage note: When discussing object
systems, it is often important to distinguish between
modeling-time and run-time concerns. See: analysis time,
design time. Contrast: run time.

module A software unit of storage and manipulation. Modules
include source code modules, binary code modules, and
executable code modules. See: component.

multiple classification A semantic variation of generalization in which an object
may belong directly to more than one classifier. See: static
classification, dynamic classification.

multiple inheritance A semantic variation of generalization in which a type may
have more than one supertype. Contrast: single inheritance.
UML V1.3 June 1999 B-11

B OMG Modeling Glossary

multiplicity A specification of the range of allowable cardinalities that a
set may assume. Multiplicity specifications may be given
for roles within associations, parts within composites,
repetitions, and other purposes. Essentially a multiplicity is
a (possibly infinite) subset of the non-negative integers.
Contrast: cardinality.

multi-valued [MOF] A model element with multiplicity defined whose
Multiplicity Type:: upper attribute is set to a number greater
than one. The term multi-valued does not pertain to the
number of values held by an attribute, parameter, etc. at any
point in time. Contrast: single-valued.

n-ary association An association among three or more classes. Each instance
of the association is an n-tuple of values from the respective
classes. Contrast: binary association.

name A string used to identify a model element.

namespace A part of the model in which the names may be defined and
used. Within a namespace, each name has a unique
meaning. See: name.

node A node is classifier that represents a run-time computational
resource, which generally has at least a memory and often
processing capability. Run-time objects and components
may reside on nodes.

object An entity with a well-defined boundary and identity that
encapsulates state and behavior. State is represented by
attributes and relationships, behavior is represented by
operations, methods, and state machines. An object is an
instance of a class. See: class, instance.

object diagram A diagram that encompasses objects and their relationships
at a point in time. An object diagram may be considered a
special case of a class diagram or a collaboration diagram.
See: class diagram, collaboration diagram.

object flow state A state in an activity graph that represents the passing of an
object from the output of actions in one state to the input of
actions in another state.

object lifeline A line in a sequence diagram that represents the existence
of an object over a period of time. See: sequence diagram.
B-12 UML V1.3 June 1999

B OMG Modeling Glossary

operation A service that can be requested from an object to effect
behavior. An operation has a signature, which may restrict
the actual parameters that are possible.

package A general purpose mechanism for organizing elements into
groups. Packages may be nested within other packages.

parameter The specification of a variable that can be changed, passed,
or returned. A parameter may include a name, type, and
direction. Parameters are used for operations, messages, and
events. Synonyms: formal parameter. Contrast: argument.

parameterized element The descriptor for a class with one or more unbound
parameters. Synonym: template.

parent In a generalization relationship, the generalization of
another element, the child. See: subclass, subtype. Contrast:
child.

participate The connection of a model element to a relationship or to a
reified relationship. For example, a class participates in an
association, an actor participates in a use case.

partition 1. activity graphs: A portion of an activity graphs that
organizes the responsibilities for actions. See: swimlane.
2. architecture: A set of related classifiers or packages at the
same level of abstraction or across layers in a layered
architecture. A partition represents a vertical slice through
an architecture, whereas a layer represents a horizontal
slice. Contrast: layer.

pattern A template collaboration.

persistent object An object that exists after the process or thread that created
it has ceased to exist.

postcondition A constraint that must be true at the completion of an
operation.

precondition A constraint that must be true when an operation is invoked.

primitive type A pre-defined basic datatype without any substructure, such
as an integer or a string.
UML V1.3 June 1999 B-13

B OMG Modeling Glossary
process 1. A heavyweight unit of concurrency and execution in an
operating system. Contrast: thread, which includes
heavyweight and lightweight processes. If necessary, an
implementation distinction can be made using stereotypes.
2. A software development process—the steps and
guidelines by which to develop a system.
3. To execute an algorithm or otherwise handle something
dynamically.

projection A mapping from a set to a subset of it.

property A named value denoting a characteristic of an element. A
property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See:
tagged value.

pseudo-state A vertex in a state machine that has the form of a state, but
doesn’t behave as a state. Pseudo-states include initial and
history vertices.

physical system 1. The subject of a model.
2. A collection of connected physical units, which can
include software, hardware and people, that are organized to
accomplish a specific purpose. A physical system can be
described by one or more models, possibly from different
viewpoints. Contrast: system.

published model [MOF] A model which has been frozen, and becomes available for
instantiating repositories and for the support in defining
other models. A frozen model’s model elements cannot be
changed.

qualifier An association attribute or tuple of attributes whose values
partition the set of objects related to an object across an
association.

receive [a message] The handling of a stimulus passed from a sender instance.
See: sender, receiver.

receiver [object] The object handling a stimulus passed from a sender object.
Contrast: sender.

reception A declaration that a classifier is prepared to react to the
receipt of a signal.

reference 1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation
to other classifiers. Synonym: pointer.
B-14 UML V1.3 June 1999

B OMG Modeling Glossary
refinement A relationship that represents a fuller specification of
something that has already been specified at a certain level
of detail. For example, a design class is a refinement of an
analysis class.

relationship A semantic connection among model elements. Examples of
relationships include associations and generalizations.

repository A facility for storing object models, interfaces, and
implementations.

requirement A desired feature, property, or behavior of a system.

responsibility A contract or obligation of a classifier.

reuse The use of a pre-existing artifact.

role The named specific behavior of an entity participating in a
particular context. A role may be static (e.g., an association
end) or dynamic (e.g., a collaboration role).

run time The period of time during which a computer program
executes. Contrast: modeling time.

scenario A specific sequence of actions that illustrates behaviors. A
scenario may be used to illustrate an interaction or the
execution of a use case instance. See: interaction.

schema [MOF] In the context of the MOF, a schema is analogous to a
package which is a container of model elements. Schema
corresponds to an MOF package. Contrast: metamodel,
package.

semantic variation point A point of variation in the semantics of a metamodel. It
provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

send [a message] The passing of a stimulus from a sender instance to a
receiver instance. See: sender, receiver.

sender [object] The object passing a stimulus to a receiver object. Contrast:
receiver.
UML V1.3 June 1999 B-15

B OMG Modeling Glossary

sequence diagram A diagram that shows object interactions arranged in time
sequence. In particular, it shows the objects participating in
the interaction and the sequence of messages exchanged.
Unlike a collaboration diagram, a sequence diagram
includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic
form (describes all possible scenarios) and in an instance
form (describes one actual scenario). Sequence diagrams
and collaboration diagrams express similar information, but
show it in different ways. See: collaboration diagram.

signal The specification of an asynchronous stimulus
communicated between instances. Signals may have
parameters.

signature The name and parameters of a behavioral feature. A
signature may include an optional returned parameter.

single inheritance A semantic variation of generalization in which a type may
have only one supertype. Synonym: multiple inheritance
[OMA]. Contrast: multiple inheritance.

single valued [MOF] A model element with multiplicity defined is single valued
when its Multiplicity Type:: upper attribute is set to one.
The term single-valued does not pertain to the number of
values held by an attribute, parameter, etc., at any point in
time, since a single-valued attribute (for instance, with a
multiplicity lower bound of zero) may have no value.
Contrast: multi-valued.

specification A declarative description of what something is or does.
Contrast: implementation.

state A condition or situation during the life of an object during
which it satisfies some condition, performs some activity, or
waits for some event. Contrast: state [OMA].

statechart diagram A diagram that shows a state machine. See: state machine.

state machine A behavior that specifies the sequences of states that an
object or an interaction goes through during its life in
response to events, together with its responses and actions.

static classification A semantic variation of generalization in which an object
may not change classifier. Contrast: dynamic classification.
B-16 UML V1.3 June 1999

B OMG Modeling Glossary

stereotype A new type of modeling element that extends the semantics
of the metamodel. Stereotypes must be based on certain
existing types or classes in the metamodel. Stereotypes may
extend the semantics, but not the structure of pre-existing
types and classes. Certain stereotypes are predefined in the
UML, others may be user defined. Stereotypes are one of
three extensibility mechanisms in UML. See: constraint,
tagged value.

stimulus The passing of information from one instance to another,
such as raising a signal or invoking an operation. The
receipt of a signal is normally considered an event. See:
message.

string A sequence of text characters. The details of string
representation depend on implementation, and may include
character sets that support international characters and
graphics.

structural feature A static feature of a model element, such as an attribute.

structural model aspect A model aspect that emphasizes the structure of the objects
in a system, including their types, classes, relationships,
attributes, and operations.

subactivity state A state in an activity graph that represents the execution of
a non-atomic sequence of steps that has some duration.

subclass In a generalization relationship, the specialization of
another class; the superclass. See: generalization. Contrast:
superclass.

submachine state A state in a state machine which is equivalent to a
composite state but its contents is described by another state
machine.

substate A state that is part of a composite state. See: concurrent
state, disjoint state.

subpackage A package that is contained in another package.

subsystem A grouping of model elements that represents a behavioral
unit in a physical system. A subsystem offers interfaces and
has operations. In addition, the model elements of a
subsystem can be partitioned into specification and
realization elements. See package. See: physical system.

subtype In a generalization relationship, the specialization of
another type; the supertype. See: generalization. Contrast:
supertype.
UML V1.3 June 1999 B-17

B OMG Modeling Glossary

superclass In a generalization relationship, the generalization of
another class; the subclass. See: generalization. Contrast:
subclass.

supertype In a generalization relationship, the generalization of
another type; the subtype. See: generalization. Contrast:
subtype.

supplier A classifier that provides services that can be invoked by
others. Contrast: client.

swimlane A partition on a activity diagram for organizing the
responsibilities for actions. Swimlanes typically correspond
to organizational units in a business model. See: partition.

synch state A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.

system A top-level subsystem in a model. Contrast: physical
system.

tagged value The explicit definition of a property as a name-value pair. In
a tagged value, the name is referred as the tag. Certain tags
are predefined in the UML; others may be user defined.
Tagged values are one of three extensibility mechanisms in
UML. See: constraint, stereotype.

template Synonym: parameterized element.

thread [of control] A single path of execution through a program, a dynamic
model, or some other representation of control flow. Also, a
stereotype for the implementation of an active object as
lightweight process. See process.

time event An event that denotes the time elapsed since the current
state was entered. See: event.

time expression An expression that resolves to an absolute or relative value
of time.

timing mark A denotation for the time at which an event or message
occurs. Timing marks may be used in constraints.

top level A stereotype of package denoting the top-most package in a
containment hierarchy. The topLevel stereotype defines the
outer limit for looking up names, as namespaces “see”
outwards. For example, opLevel subsystem represents the
top of the subsystem containment hierarchy.
B-18 UML V1.3 June 1999

B OMG Modeling Glossary

trace A dependency that indicates a historical or process
relationship between two elements that represent the same
concept without specific rules for deriving one from the
other.

transient object An object that exists only during the execution of the
process or thread that created it.

transition A relationship between two states indicating that an object
in the first state will perform certain specified actions and
enter the second state when a specified event occurs and
specified conditions are satisfied. On such a change of state,
the transition is said to fire.

type A stereotype of class that is used to specify a domain of
instances (objects) together with the operations applicable
to the objects. A type may not contain any methods. See:
class, instance. Contrast: interface.

type expression An expression that evaluates to a reference to one or more
types.

uninterpreted A placeholder for a type or types whose implementation is
not specified by the UML. Every uninterpreted value has a
corresponding string representation. See: any [CORBA].

usage A dependency in which one element (the client) requires the
presence of another element (the supplier) for its correct
functioning or implementation.

use case [class] The specification of a sequence of actions, including
variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case
instances.

use case diagram A diagram that shows the relationships among actors and
use cases within a system.

use case instance The performance of a sequence of actions being specified in
a use case. An instance of a use case. See: use case class.

use case model A model that describes a system’s functional requirements
in terms of use cases.
UML V1.3 June 1999 B-19

B OMG Modeling Glossary
utility A stereotype that groups global variables and procedures in
the form of a class declaration. The utility attributes and
operations become global variables and global procedures,
respectively. A utility is not a fundamental modeling
construct, but a programming convenience.

value An element of a type domain.

vertex A source or a target for a transition in a state machine. A
vertex can be either a state or a pseudo-state. See: state,
pseudo-state.

view A projection of a model, which is seen from a given
perspective or vantage point and omits entities that are not
relevant to this perspective.

view element A view element is a textual and/or graphical projection of a
collection of model elements.

view projection A projection of model elements onto view elements. A view
projection provides a location and a style for each view
element.

visibility An enumeration whose value (public, protected, or private)
denotes how the model element to which it refers may be
seen outside its enclosing namespace.
B-20 UML V1.3 June 1999

	Title
	Table of Contents
	Preface
	0.1 About the Unified Modeling Language (UML)
	0.2 About the Object Management Group (OMG)
	0.3 About This Document
	0.3.1 Dependencies Between Chapters

	0.4 Compliance to the UML
	0.4.1 Compliance to the UML Semantics
	0.4.2 Compliance to the UML Notation
	0.4.3 Compliance to the UML Standard Profiles
	0.4.4 Compliance to the UML CORBAfacility Interface Definition
	0.4.5 Compliance to the UML XMI DTD Specification
	0.4.6 Summary of Compliance Points

	0.5 Acknowledgements
	UML Core Team
	UML 1.1 Semantics Task Force
	UML Revision Task Force
	Contributors and Supporters

	0.6 References

	UML Summary 1
	Contents
	1.1 Overview
	1.2 Primary Artifacts of the UML
	1.2.1 UML-defining Artifacts
	1.2.2 Development Project Artifacts

	1.3 Motivation to Define the UML
	1.3.1 Why We Model
	1.3.2 Industry Trends in Software
	1.3.3 Prior to Industry Convergence

	1.4 Goals of the UML
	1.5 Scope of the UML
	1.5.1 Outside the Scope of the UML
	Programming Languages
	Tools
	Process

	1.5.2 Comparing UML to Other Modeling Languages
	1.5.3 Features of the UML

	1.6 UML - Past, Present, and Future
	1.6.1 UML 0.8 - 0.91
	Precursors to UML
	Booch, Rumbaugh, and Jacobson Join Forces

	1.6.2 UML Partners
	1.6.3 UML - Present and Future
	Standardization of the UML
	Revision of the UML
	Industrialization
	Future UML Evolution

	UML Semantics 2
	Contents
	Part 1 - Background
	2.1 Introduction
	2.1.1 Purpose and Scope
	2.1.2 Approach

	2.2 Language Architecture
	2.2.1 Four-Layer Metamodel Architecture
	Architectural Alignment with the MOF Meta-Metamodel

	2.2.2 Package Structure

	2.3 Language Formalism
	2.3.1 Levels of Formalism
	2.3.2 Package Specification Structure
	Abstract Syntax
	Well-Formedness Rules
	Semantics
	Standard Elements
	Notes

	2.3.3 Use of a Constraint Language
	2.3.4 Use of Natural Language
	2.3.5 Naming Conventions and Typography

	Part 2 - Foundation
	2.4 Foundation Package
	2.5 Core
	2.5.1 Overview
	2.5.2 Abstract Syntax
	Abstraction
	Association
	AssociationClass
	AssociationEnd
	Attribute
	BehavioralFeature
	Binding
	Class
	Classifier
	Comment
	Component
	Constraint
	DataType
	Dependency
	Element
	ElementOwnership
	ElementResidence
	Feature
	Flow
	GeneralizableElement
	Generalization
	Interface
	Method
	ModelElement
	Namespace
	Node
	Operation
	Parameter
	Permission
	PresentationElement
	Relationship
	StructuralFeature
	TemplateParameter
	Usage

	2.5.3 Well-Formedness Rules
	Association
	AssociationClass
	AssociationEnd
	Attribute
	BehavioralFeature
	Binding
	Class
	Classifier
	Comment
	Component
	Constraint
	DataType
	Dependency
	Element
	ElementOwnership
	ElementResidence
	Feature
	GeneralizableElement
	Generalization
	ImplementationClass (stereotype of Class)
	Interface
	Method
	ModelElement
	Namespace
	Node
	Operation
	Parameter
	PresentationElement
	StructuralFeature
	Trace
	Type (stereotype of Class)
	Usage

	2.5.4 Semantics
	Association
	AssociationClass
	Class
	Inheritance
	Instantiation
	Interface
	Operation
	PresentationElement
	Template
	Miscellaneous

	2.6 Extension Mechanisms
	2.6.1 Overview
	2.6.2 Abstract Syntax
	Constraint
	ModelElement (as extended)
	Stereotype
	TaggedValue

	2.6.3 Well-Formedness Rules
	Constraint
	Stereotype
	ModelElement
	TaggedValue

	2.6.4 Semantics
	2.6.5 Notes

	2.7 Data Types
	2.7.1 Overview
	2.7.2 Abstract Syntax
	ActionExpression
	AggregationKind
	ArgListsExpression
	Boolean
	BooleanExpression
	CallConcurrencyKind
	ChangeableKind
	Expression
	Geometry
	Integer
	IterationExpression
	LocationReference
	Mapping
	MappingExpression
	MessageDirectionKind
	Multiplicity
	MultiplicityRange
	Name
	ObjectSetExpression
	OrderingKind
	ParameterDirectionKind
	ProcedureExpression
	PseudostateKind
	ScopeKind
	String
	Time
	TimeExpression
	TypeExpression
	UnlimitedInteger
	Uninterpreted
	VisibilityKind

	Part 3 - Behavioral Elements
	2.8 Behavioral Elements Package
	2.9 Common Behavior
	2.9.1 Overview
	2.9.2 Abstract Syntax
	Action
	ActionSequence
	Argument
	AttributeLink
	CallAction
	ComponentInstance
	CreateAction
	DestroyAction
	DataValue
	Exception
	Instance
	Link
	LinkEnd
	LinkObject
	NodeInstance
	Object
	Reception
	ReturnAction
	SendAction
	Signal
	Stimulus
	TerminateAction
	UninterpretedAction

	2.9.3 Well-Formedness Rules
	Action
	ActionSequence
	Argument
	AssignmentAction
	AttributeLink
	CallAction
	ComponentInstance
	CreateAction
	DestroyAction
	DataValue
	Exception
	Instance
	Link
	LinkEnd
	LinkObject
	NodeInstance
	Object
	Reception
	ReturnAction
	SendAction
	Signal
	Stimulus
	TerminateAction
	UninterpretedAction

	2.9.4 Semantics
	Object and DataValue
	Link
	Signal, Exception and Stimulus
	Action

	2.10 Collaborations
	2.10.1 Overview
	2.10.2 Abstract Syntax
	AssociationEndRole
	AssociationRole
	ClassifierRole
	Collaboration
	Interaction
	Message

	2.10.3 Well-Formedness Rules
	AssociationEndRole
	AssociationRole
	ClassifierRole
	Collaboration
	Interaction
	Message

	2.10.4 Semantics
	Collaboration
	Interaction

	2.10.5 Notes

	2.11 Use Cases
	2.11.1 Overview
	2.11.2 Abstract Syntax
	Actor
	Extend
	ExtensionPoint
	Include
	Associations
	UseCase
	UseCaseInstance

	2.11.3 Well-FormednessRules
	Actor
	Extend
	ExtensionPoint
	Include
	UseCase
	UseCaseInstance

	2.11.4 Semantics
	Actor
	UseCase

	2.11.5 Notes

	2.12 State Machines
	2.12.1 Overview
	2.12.2 Abstract Syntax
	CallEvent
	ChangeEvent
	CompositeState
	Event
	FinalState
	Guard
	PseudoState
	SignalEvent
	SimpleState
	State
	StateMachine
	StateVertex
	StubState
	SubmachineState
	SynchState
	TimeEvent
	Transition

	2.12.3 Well-FormednessRules
	CompositeState
	FinalState
	Guard
	PseudoState
	StateMachine
	SynchState
	SubmachineState
	Transition

	2.12.4 Semantics
	Event
	State
	CompositeState
	FinalState
	SubmachineState
	Transitions
	StateMachine
	Synch States
	StubStates

	2.12.5 Notes
	Protocol State Machines
	Example: Modeling Class Behavior
	Example: State machine refinement
	Comparison to classical statecharts

	2.13 Activity Graphs
	2.13.1 Overview
	2.13.2 Abstract Syntax
	ActivityGraph
	ActionState
	CallState
	ClassifierInState
	ObjectFlowState
	Partition
	SubactivityState

	2.13.3 Well-Formedness Rules
	ActivityGraph
	ActionState
	CallState
	ObjectFlowState
	PseudoState
	SubactivityState

	2.13.4 Semantics
	ActivityGraph
	ActionState
	ObjectFlowState
	SubactivityState
	Transition

	2.13.5 Notes

	Part 4 - General Mechanisms
	2.14 Model Management
	2.14.1 Overview
	2.14.2 Abstract Syntax
	ElementImport
	Model
	Package
	Subsystem

	2.14.3 Well-Formedness Rules
	ElementImport
	Model
	Package

	2.14.4 Semantics
	Package
	Subsystem
	Model

	2.14.5 Notes

	Index

	UML Notation Guide 3
	Contents
	Part 1 - Background
	3.1 Introduction

	Part 2 - Diagram Elements
	3.2 Graphs and Their Contents
	3.3 Drawing Paths
	3.4 Invisible Hyperlinks and the Role of Tools
	3.5 Background Information
	3.5.1 Presentation Options

	3.6 String
	3.6.1 Semantics
	3.6.2 Notation
	3.6.3 Presentation Options
	3.6.4 Example
	3.6.5 Mapping

	3.7 Name
	3.7.1 Semantics
	3.7.2 Notation
	3.7.3 Example
	3.7.4 Mapping

	3.8 Label
	3.8.1 Semantics
	3.8.2 Notation
	3.8.3 Presentation Options
	3.8.4 Example

	3.9 Keywords
	3.10 Expression
	3.10.1 Semantics
	3.10.2 Notation
	3.10.3 Example
	3.10.4 Mapping
	3.10.5 OCL Expressions
	3.10.6 Selected OCL Notation
	3.10.7 Example

	3.11 Note
	3.11.1 Semantics
	3.11.2 Notation
	3.11.3 Presentation Options
	3.11.4 Example
	3.11.5 Mapping

	3.12 Type-Instance Correspondence

	Part 3 - Model Management
	3.13 Package
	3.13.1 Semantics
	3.13.2 Notation
	3.13.3 Presentation Options
	3.13.4 Style Guidelines
	3.13.5 Example
	3.13.6 Mapping

	3.14 Subsystem
	3.14.1 Semantics
	3.14.2 Notation
	3.14.3 Presentation Options
	3.14.4 Example
	3.14.5 Mapping

	3.15 Model
	3.15.1 Semantics
	3.15.2 Notation
	3.15.3 Presentation Options
	3.15.4 Example
	3.15.5 Mapping

	Part 4 - General Extension Mechanisms
	3.16 Constraint and Comment
	3.16.1 Semantics
	3.16.2 Notation
	3.16.3 Example
	3.16.4 Mapping

	3.17 Element Properties
	3.17.1 Semantics
	3.17.2 Notation
	3.17.3 Presentation Options
	3.17.4 Style Guidelines
	3.17.5 Example
	3.17.6 Mapping

	3.18 Stereotypes
	3.18.1 Semantics
	3.18.2 Notation
	3.18.3 Example
	3.18.4 Mapping

	Part 5 - Static Structure Diagrams
	3.19 Class Diagram
	3.19.1 Semantics
	3.19.2 Notation
	3.19.3 Mapping

	3.20 Object Diagram
	3.21 Classifier
	3.22 Class
	3.22.1 Semantics
	3.22.2 Basic Notation
	References

	3.22.3 Presentation Options
	3.22.4 Style Guidelines
	3.22.5 Example
	3.22.6 Mapping

	3.23 Name Compartment
	3.23.1 Notation
	3.23.2 Mapping

	3.24 List Compartment
	3.24.1 Notation
	Group properties
	Compartment name

	3.24.2 Presentation Options
	3.24.3 Example
	3.24.4 Mapping

	3.25 Attribute
	3.25.1 Semantics
	3.25.2 Notation
	3.25.3 Presentation Options
	3.25.4 Style Guidelines
	3.25.5 Example
	3.25.6 Mapping

	3.26 Operation
	3.26.1 Semantics
	3.26.2 Notation
	3.26.3 Presentation Options
	3.26.4 Style Guidelines
	3.26.5 Example
	3.26.6 Mapping

	3.27 Type vs. Implementation Class
	3.27.1 Semantics
	3.27.2 Notation
	3.27.3 Example
	3.27.4 Mapping

	3.28 Interfaces
	3.28.1 Semantics
	3.28.2 Notation
	3.28.3 Example
	3.28.4 Mapping

	3.29 Parameterized Class (Template)
	3.29.1 Semantics
	3.29.2 Notation
	3.29.3 Presentation Options
	3.29.4 Example
	3.29.5 Mapping

	3.30 Bound Element
	3.30.1 Semantics
	3.30.2 Notation
	3.30.3 Style Guidelines
	3.30.4 Example
	3.30.5 Mapping

	3.31 Utility
	3.31.1 Semantics
	3.31.2 Notation
	3.31.3 Example
	3.31.4 Mapping

	3.32 Metaclass
	3.32.1 Semantics
	3.32.2 Notation
	3.32.3 Mapping

	3.33 Enumeration
	3.33.1 Semantics
	3.33.2 Notation
	3.33.3 Mapping

	3.34 Stereotype
	3.34.1 Semantics
	3.34.2 Notation
	3.34.3 Mapping

	3.35 Powertype
	3.35.1 Semantics
	3.35.2 Notation
	3.35.3 Mapping

	3.36 Class Pathnames
	3.36.1 Notation
	3.36.2 Example
	3.36.3 Mapping

	3.37 Accessing or Importing a Package
	3.37.1 Semantics
	3.37.2 Notation
	3.37.3 Example
	3.37.4 Mapping

	3.38 Object
	3.38.1 Semantics
	3.38.2 Notation
	3.38.3 Presentation Options
	3.38.4 Style Guidelines
	3.38.5 Variations
	3.38.6 Example
	3.38.7 Mapping

	3.39 Composite Object
	3.39.1 Semantics
	3.39.2 Notation
	3.39.3 Example
	3.39.4 Mapping

	3.40 Association
	3.41 Binary Association
	3.41.1 Semantics
	3.41.2 Notation
	association name
	association class symbol

	3.41.3 Presentation Options
	3.41.4 Style Guidelines
	3.41.5 Options
	Xor-association

	3.41.6 Example
	3.41.7 Mapping

	3.42 Association End
	3.42.1 Semantics
	3.42.2 Notation
	multiplicity
	ordering
	qualifier
	navigability
	aggregation indicator
	rolename
	interface specifier
	changeability
	visibility

	3.42.3 Presentation Options
	3.42.4 Style Guidelines
	3.42.5 Example
	3.42.6 Mapping

	3.43 Multiplicity
	3.43.1 Semantics
	3.43.2 Notation
	3.43.3 Style Guidelines
	3.43.4 Example
	3.43.5 Mapping

	3.44 Qualifier
	3.44.1 Semantics
	3.44.2 Notation
	3.44.3 Presentation Options
	3.44.4 Style Guidelines
	3.44.5 Example
	3.44.6 Mapping

	3.45 Association Class
	3.45.1 Semantics
	3.45.2 Notation
	3.45.3 Presentation Options
	3.45.4 Style Guidelines
	3.45.5 Example
	3.45.6 Mapping

	3.46 N-ary Association
	3.46.1 Semantics
	3.46.2 Notation
	3.46.3 Style Guidelines
	3.46.4 Example
	3.46.5 Mapping

	3.47 Composition
	3.47.1 Semantics
	3.47.2 Notation
	3.47.3 Design Guidelines
	3.47.4 Example
	3.47.5 Mapping

	3.48 Link
	3.48.1 Semantics
	3.48.2 Notation
	Implementation stereotypes
	N-ary link

	3.48.3 Example
	3.48.4 Mapping

	3.49 Generalization
	3.49.1 Semantics
	3.49.2 Notation
	3.49.3 Presentation Options
	3.49.4 Example
	3.49.5 Mapping

	3.50 Dependency
	3.50.1 Semantics
	3.50.2 Notation
	3.50.3 Presentation Options
	3.50.4 Example
	3.50.5 Mapping

	3.51 Derived Element
	3.51.1 Semantics
	3.51.2 Notation
	3.51.3 Style Guidelines
	3.51.4 Example
	3.51.5 Mapping

	3.52 InstanceOf
	3.52.1 Semantics
	3.52.2 Notation
	3.52.3 Mapping

	Part 6 - Use Case Diagrams
	3.53 Use Case Diagram
	3.53.1 Semantics
	3.53.2 Notation
	3.53.3 Example
	3.53.4 Mapping

	3.54 Use Case
	3.54.1 Semantics
	3.54.2 Notation
	3.54.3 Presentation Options
	3.54.4 Style Guidelines
	3.54.5 Mapping

	3.55 Actor
	3.55.1 Semantics
	3.55.2 Notation
	3.55.3 Style Guidelines
	3.55.4 Mapping

	3.56 Use Case Relationships
	3.56.1 Semantics
	3.56.2 Notation
	3.56.3 Example
	3.56.4 Mapping

	3.57 Actor Relationships
	3.57.1 Semantics
	3.57.2 Notation
	3.57.3 Example
	3.57.4 Mapping

	Part 7 - Sequence Diagrams
	3.58 Kinds of Interaction Diagrams
	3.59 Sequence Diagram
	3.59.1 Semantics
	3.59.2 Notation
	3.59.3 Presentation Options
	3.59.4 Example
	3.59.5 Mapping
	Sequence diagram

	3.60 Object Lifeline
	3.60.1 Semantics
	3.60.2 Notation
	3.60.3 Example
	3.60.4 Mapping

	3.61 Activation
	3.61.1 Semantics
	3.61.2 Notation
	3.61.3 Example
	3.61.4 Mapping

	3.62 Message and Stimulus
	3.62.1 Semantics
	3.62.2 Notation
	3.62.3 Presentation options
	3.62.4 Mapping

	3.63 Transition Times
	3.63.1 Semantics
	3.63.2 Notation
	3.63.3 Presentation Options
	3.63.4 Example
	3.63.5 Mapping

	Part 8 - Collaboration Diagrams
	3.64 Collaboration
	3.64.1 Semantics
	3.64.2 Notation
	3.64.3 Mapping

	3.65 Collaboration Diagram
	3.65.1 Semantics
	3.65.2 Notation
	Instance level
	Specification level

	3.65.3 Example
	3.65.4 Mapping

	3.66 Pattern Structure
	3.66.1 Semantics
	3.66.2 Notation
	3.66.3 Mapping

	3.67 Collaboration Contents
	3.67.1 Semantics
	3.67.2 Notation
	3.67.3 Mapping

	3.68 Interactions
	3.68.1 Semantics
	3.68.2 Notation
	3.68.3 Example

	3.69 Collaboration Roles
	3.69.1 Semantics
	3.69.2 Notation
	3.69.3 Presentation options
	3.69.4 Example
	3.69.5 Mapping

	3.70 Multiobject
	3.70.1 Semantics
	3.70.2 Notation
	3.70.3 Example
	3.70.4 Mapping

	3.71 Active object
	3.71.1 Semantics
	3.71.2 Notation
	3.71.3 Example
	3.71.4 Mapping

	3.72 Message and Stimulus
	3.72.1 Semantics
	3.72.2 Notation
	Control flow type
	Arrow label
	Predecessor
	Sequence expression
	Signature

	3.72.3 Presentation Options
	3.72.4 Example
	3.72.5 Mapping

	3.73 Creation/Destruction Markers
	3.73.1 Semantics
	3.73.2 Notation
	3.73.3 Presentation options
	3.73.4 Example
	3.73.5 Mapping

	Part 9 - Statechart Diagrams
	3.74 Statechart Diagram
	3.74.1 Semantics
	3.74.2 Notation
	3.74.3 Mapping

	3.75 State
	3.75.1 Semantics
	3.75.2 Notation
	3.75.3 Example
	3.75.4 Mapping

	3.76 Composite States
	3.76.1 Semantics
	3.76.2 Notation
	3.76.3 Examples
	3.76.4 Mapping

	3.77 Events
	3.77.1 Semantics
	3.77.2 Notation
	3.77.3 Example
	3.77.4 Mapping

	3.78 Simple Transitions
	3.78.1 Semantics
	3.78.2 Notation
	Transition times

	3.78.3 Example
	3.78.4 Mapping

	3.79 Transitions to and from Concurrent States
	3.79.1 Semantics
	3.79.2 Notation
	3.79.3 Example
	3.79.4 Mapping

	3.80 Transitions to and from Composite States
	3.80.1 Semantics
	3.80.2 Notation
	3.80.3 Presentation options
	Stubbed transitions

	3.80.4 Example
	3.80.5 Mapping

	3.81 Factored Transition Paths
	3.81.1 Semantics
	3.81.2 Notation
	3.81.3 Examples

	3.82 Submachine States
	3.82.1 Semantics
	3.82.2 Notation
	3.82.3 Example
	3.82.4 Mapping

	3.83 Synch States
	3.83.1 Semantics
	3.83.2 Notation
	3.83.3 Example
	3.83.4 Mapping

	Part 10 - Activity Diagrams
	3.84 Activity Diagram
	3.84.1 Semantics
	3.84.2 Notation
	3.84.3 Example
	3.84.4 Mapping

	3.85 Action state
	3.85.1 Semantics
	3.85.2 Notation
	3.85.3 Presentation options
	3.85.4 Example
	3.85.5 Mapping

	3.86 Subactivity state
	3.86.1 Semantics
	3.86.2 Notation
	3.86.3 Example
	3.86.4 Mapping

	3.87 Decisions
	3.87.1 Semantics
	3.87.2 Notation
	3.87.3 Example
	3.87.4 Mapping

	3.88 Swimlanes
	3.88.1 Semantics
	3.88.2 Notation
	3.88.3 Example
	3.88.4 Mapping

	3.89 Action-Object Flow Relationships
	3.89.1 Semantics
	3.89.2 Notation
	Object responsible for an action
	Object flow
	Object in state

	3.89.3 Example
	3.89.4 Mapping

	3.90 Control Icons
	3.90.1 Notation
	Signal receipt
	Signal sending
	Deferred events

	3.90.2 Mapping

	3.91 Synch States
	3.92 Dynamic Invocation
	3.92.1 Semantics
	3.92.2 Notation
	3.92.3 Mapping

	3.93 Conditional Forks

	Part 11 - Implementation Diagrams
	3.94 Component Diagram
	3.94.1 Semantics
	3.94.2 Notation
	3.94.3 Example
	3.94.4 Mapping

	3.95 Deployment Diagram
	3.95.1 Semantics
	3.95.2 Notation
	3.95.3 Example
	3.95.4 Mapping

	3.96 Node
	3.96.1 Semantics
	3.96.2 Notation
	3.96.3 Example
	3.96.4 Mapping

	3.97 Component
	3.97.1 Semantics
	3.97.2 Notation
	3.97.3 Example
	3.97.4 Mapping

	Index

	UML Standard Profiles 4
	Contents
	Part 1 - UML Profile for Software Development Processes
	4.1 Overview
	4.2 Introduction
	4.3 Summary of Profile
	4.3.1 TaggedValues
	4.3.2 Constraints
	4.3.3 Prerequisite Profiles

	4.4 Stereotypes and Notation
	4.4.1 Model, Package, and Subsystem Stereotypes
	Use Case
	Analysis
	Design
	Implementation
	Notation

	4.4.2 Class Stereotypes
	Entity
	Control
	Boundary
	Notation

	4.4.3 Association Stereotypes
	Communicate
	Subscribe
	Notation

	4.5 Well-Formedness Rules
	4.5.1 Generalization
	4.5.2 Association
	4.5.3 Model, Package, and Subsystem Containment

	Part 2 - UML Profile for Business Modeling
	4.6 Introduction
	4.7 Summary of Profile
	4.7.1 Tagged Values
	4.7.2 Constraints
	4.7.3 Prerequisite Profiles

	4.8 Stereotypes and Notation
	4.8.1 Model, Package, and Subsystem Stereotypes
	Use Case
	Object
	Organization Unit
	Work Unit
	Notation

	4.8.2 Class Stereotypes
	Worker
	Case Worker
	Internal Worker
	Entity
	Notation
	Example of Alternate Notations

	4.8.3 Association Stereotypes
	Communicate
	Subscribe
	Notation

	4.9 Well-Formedness Rules
	4.9.1 Generalization
	4.9.2 Association

	UML CORBAfacility Interface Definition 5
	Contents
	5.1 Overview
	5.1.1 Tool Sharing Options
	Model Transfer
	General-purpose Repository
	UML Facility

	5.2 Mapping of UML Semantics to Facility Interfaces
	5.2.1 Transformation of UML Semantics Metamodel into Interfaces Metamodel
	Transformation for Association Classes

	5.2.2 Mapping from MOF to IDL
	5.2.3 MOF Generic Interfaces

	5.3 Facility Implementation Requirements
	5.4 IDL Modules
	5.4.1 Reflective
	5.4.2 Foundation
	5.4.3 BehavioralElements
	5.4.4 ModelManagement

	UML XMI DTD Specification 6
	6.1 Overview
	6.2 Physical Metamodel
	Names
	Additions
	Association Classes
	MOF stereotypes

	6.3 UML XMI DTD

	Object Constraint Language Specification 7
	Contents
	7.1 Overview
	7.1.1 Why OCL?
	7.1.2 Where to Use OCL

	7.2 Introduction
	7.2.1 Legend
	7.2.2 Example Class Diagram

	7.3 Connection with the UML Metamodel
	7.3.1 Self
	7.3.2 Specifying the UML context
	7.3.3 Invariants
	7.3.4 Pre- and Postconditions
	7.3.5 General Expressions

	7.4 Basic Values and Types
	7.4.1 Types from the UML Model
	7.4.2 Enumeration Types
	7.4.3 Let Expression
	7.4.4 Type Conformance
	7.4.5 Re-typing or Casting
	7.4.6 Precedence Rules
	7.4.7 Use of Infix Operators
	7.4.8 Comment
	7.4.9 Undefined Values

	7.5 Objects and Properties
	7.5.1 Properties
	7.5.2 Properties: Attributes
	7.5.3 Properties: Operations
	7.5.4 Properties: Association Ends and Navigation
	Missing Rolenames
	Navigation over Associations with Multiplicity Zero or One
	Combining Properties

	7.5.5 Navigation to Association Classes
	7.5.6 Navigation from Association Classes
	7.5.7 Navigation through Qualified Associations
	7.5.8 Using Pathnames for Packages
	7.5.9 Accessing overridden properties of supertypes
	7.5.10 Predefined properties on All Objects
	7.5.11 Features on Classes Themselves
	7.5.12 Collections
	7.5.13 Collections of Collections
	7.5.14 Collection Type Hierarchy and Type Conformance Rules
	7.5.15 Previous Values in Postconditions

	7.6 Collection Operations
	7.6.1 Select and Reject Operations
	7.6.2 Collect Operation
	Shorthand for Collect

	7.6.3 ForAll Operation
	7.6.4 Exists Operation
	7.6.5 Iterate Operation

	7.7 The Standard OCL Package
	7.8 Predefined OCL Types
	7.8.1 Basic Types
	OclType
	OclAny
	OclState
	OclExpression
	Real
	Integer
	String
	Boolean
	Enumeration

	7.8.2 Collection-Related Types
	Collection
	Set
	Bag
	Sequence

	7.9 Grammar

	UML Standard Elements A
	OMG Modeling Glossary B
	Notation Conventions
	Glossary Terms

