Preface

0.1 About the Unified Modeling Language (UML)

The Unified Modeling Language (UML) provides system architects working on Object
Analysis and Design with one consistent language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, aswell as for business
modeling.

This specification represents the state-of-the-art convergence of best practices in the
object-technology industry. UML is the proper successor to the object modeling
languages of three previously leading object-oriented methods (Booch, OMT, and
OOSE). The UML isthe union of these modeling languages and more, since it includes
additional expressiveness to handle modeling problems that these methods did not
fully address.

One of the primary goals of UML is to advance the state of the industry by enabling
OO0 visual modeling tool interoperability. However, in order to enable meaningful
exchange of model information between tools, agreement on semantics and notation is
required. UML meets the following requirements:

® Formal definition of a common OA&D meta-model to represent the semantics of
OA&D models, which include static models, behavioral models, usage models, and
architectural models.

® |IDL specifications for mechanisms for model interchange between OA&D tools.
This document includes a set of IDL interfaces that support dynamic construction
and traversal of a user model.

® A human-readable notation for representing OA& D models. This document defines
the UML notation, an elegant graphic syntax for consistently expressing the UML’s
rich semantics. Notation is an essentia part of OA&D modeling and the UML.

OMG-UML V1.2 March 1998 XXiii

0.2 About the Object Management Group (OMG)

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

OMG'’s adoption of the UML specification reduces the degree of confusion within the
industry surrounding modeling languages. It settles unproductive arguments about
method notations and model interchange mechanisms and allows the industry to focus
on higher leverage, more productive activities. Additionally, it enables semantic
interchange between visual modeling tools.

0.3 About ThisDocument

XXiV

This document is intended primarily as a precise and self-consistent definition of the
UML’s semantics and notation. The primary audience of this document consists of the
Object Management Group, standards organizations, book authors, trainers, and tool
builders. The authors assume familiarity with object-oriented analysis and design
methods. The document is not written as an introductory text on building object
models for complex systems, although it could be used in conjunction with other
materials or instruction. The document will become more approachable to a broader
audience as additional books, training courses, and tools that apply to UML become
available.

OMG-UML V1.2 March 1998

The Unified Modeling Language specification defines compliance to the UML, covers
the architectural alignment with other technologies, and is comprised of the following
topics:

UML Summary (Chapter 1) - provides an introduction to the UML, discussing
motivation and history.

UML Semantics (Chapter 2) - defines the right semantics of the Unified Modeling
Language. The UML is layered architecturally and organized by package. Within each
package, the model elements are defined in the following terms:

1. Abstract syntax UML class diagrams are used to present the UML
metamodel, its concepts (metaclasses), relationships,
and constraints. Definitions of the concepts are
included.

2. Well-formedness rules | Therules and constraints on valid models are defined.
The rules are expressed English prose and in a precise
Object Constraint Language (OCL). OCL isa
specification language that uses simple logic for
specifying invariant properties of systems comprising
sets and relationships between sets.

3. Semantics The semantics of model usage are described in
English prose.

UML Notation Guide (Chapter 3) - represents the graphic syntax for expressing the
semantics described by the UML metamodel. Consequently, the UML Notation
Guide's chapters should be read in conjunction with the UML Semantics chapters.

UML Extensions (Chapter 4) - contains the UML Extension for Objectory Process for
Software Engineering and UML Extension for Business Modeling.

OA&D CORBAfacility Interface Definition (Chapter 5) - contains the UML-consistent
interoperability defined in terms of CORBA IDL.

In addition, you will find an appendix of Standard Elements and an appendix that
contains the Object Contraint Language (OCL) syntax, semantics, and grammar. All
OCL features are described in terms of concepts from the UML Semantics chapter.

0.3.1 Dependencies Between Sections

UML Semantics (Chapter 2) can stand on its own, relative to the others, with the
exception of the OCL Specification. The semantics and the OCL are interdependent.
The semantics and notation are nearly independent. What this means is that you can
certainly specify and understand each one in isolation, but the one affects the other.
For example, knowing what kinds of things a developer or modeler finds important to
visualize impacts what kind of underlying semantics are needed. For example,
modeling patterns is something that in our experience we find to be valuable for

OMG-UML V1.2 About ThisDocument March 1998 XXV

systems of scale; this is why the UML metamodel has collaborations as a first-class
citizen. If one does not consider what is important to be visualized, you end up with a
less rich metamodel.

The UML Notation Guide and OA&D CORBAfacility Interface Definition both depend
on the semantics. We consider it advantageous to separate the UML definition and the
facility interface. Having these as separate standards will permit their evolution in the
most flexible way, even though they are not completely independent.

The specifications in the UML Extension documents depend on both the notation and
semantics sections.

0.4 Compliancetothe UML

XXVi

The UML and corresponding facility interface definition are comprehensive. However,
these specifications are packaged so that subsets of the UML and facility can be
implemented without breaking the integrity of the language. The UML Semantics is
packaged as follows:

Behavioral Elements
Use Cases State Collaborations
Machines
\\\\\ . \:/ /,/,,/
N Common t/ M Odel
Behavior M arllagement
| : v
Foundation
Auxiliary | Core | '| Extension
3 -1)
Elements M echanisms
X Data L:,/
Types

Figure0-1 UML Class Diagram Showing Package Structure

This packaging shows the semantic dependencies between the UML model elementsin
the different packages. The IDL in the facility is packaged amost identically. The
notation is also “packaged” along the lines of diagram type. Compliance of the UML is
thus defined along the lines of semantics, notation, and IDL.

OMG-UML V1.2 March 1998

Even if the compliance points are decomposed into more fundamental units, vendors
implementing UML may choose not to fully implement this packaging of definitions,
while still faithfully implementing some of the UML definitions. However, vendors
who want to precisely declare their compliance to UML should refer to the precise
language defined herein, and not loosely say they are “ UML compliant.”

0.4.1 Compliance to the UML Semantics

The basic units of compliance are the packages defined in the UML metamodel. The
full metamodel includes the corresponding semantic rigor defined in the Semantics
section.

The class diagram illustrates the package dependencies, which are also summarized in
the table below.

Table 0-1 Metamodel Packages

Package Prerequisite Packages

DataTypes

Core DataTypes

Auxiliary Elements Core, DataTypes

Common Behavior Core, DataTypes

State Machines Common Behavior, Core, DataTypes

Collaboration Common Behavior, Core, DataTypes

Use Cases Collaboration, Common Behavior, Core,
DataTypes

Model Management Core, DataTypes

Extension Mechanisms Core, DataTypes

Complying with a package requires complying with the prerequisite package.

The semantics are defined in an implementation language-independent way. An
implementation of the semantics, without consistent interface and implementation
choices, does not guarantee tool interoperability. See the OA&D CORBAfacility
Interface Definition (chapter 16).

In addition to the above packages, compliance to a given metamodel package must
load or know about the predefined UML standard elements (i.e., values for all
predefined stereotypes, tags, and constraints). These are defined throughout the
semantics and notation documents and summarized in the UML Standard Elements
appendix. The predefined constraint values must be enforced consistent with their
definitions. Having tools know about the standard elements is necessary for the full
language and to avoid the definition of user-defined elements that conflict with the
standard UML elements. Compliance to the UML Extensions is defined separate from
the UML Semantics, so not al tools need to know about the UML Extensions a priori.

OMG-UML V1.2 Compliancetothe UML March 1998 XXVil

XXVili

For any implementation of UML, it is optional that the tool implement the Object
Constraint Language. A vendor conforming to OCL support must support the
following:

* Validate and store syntactically correct OCL expressions as values for the UML
data types BooleanExpression, Expression, ObjectSetExpression, TimeExpression,
and ProcedureExpression.

® Beableto perform afull type check on the object constraint expression. This check
will test whether all features used in the expression are actually defined in the UML
model and used correctly.

All tools conforming to the UML semantics are expected to conform to the following
aspects of the semantics:

® jts abstract syntax (i.e., the concepts, valid relationships, and constraints expressed
in the corresponding class diagrams),

® well-formedness rules, and

® semantics.

However, vendors are expected to apply some discretion on how strictly the well-
formedness rules are enforced; tools should be able to report on well-formedness
violations, but not necessarily force al models to be well formed. Incomplete models
are common during certain phases of the development lifecycle, so they should be
permitted. See the OA&D CORBAfacility Interface Definition (chapterl6) for its
treatment of well-formedness exception handling, as an example of a technique to
report well-formedness violations.

0.4.2 Compliance to the UML Notation

The UML notation is an essential element of the UML to enable communication
between team members. Compliance to the notation is optional, but the semantics are
not very meaningful without a consistent way of expressing them.

Notation compliance is defined along the lines of the UML Diagrams types. use case,
class, statechart, activity, sequence, collaboration, component, and deployment
diagrams.

If the notation is implemented, a tool must enforce the underlying semantics and
maintain consistency between diagrams if the diagrams share the same underlying
model. By this definition, a simple "drawing tool" cannot be compliant to the UML
notation.

There are many optional notation adornments. For example, arichly adorned classicon
may include an embedded stereotype icon, alist of properties (tagged values and
metamodel attributes), constraint expressions, attributes with visibilities indicated, and
operations with full signatures. Complying with class diagram support implies the
ability to support all of the associated adornments.

Compliance to the notation in the UML Extensions is described separately.

OMG-UML V1.2 March 1998

0.4.3 Compliance to the UML Extensions

Vendors should specify whether they support each of the UML Extensions or not.
Compliance to an extension means knowledge and enforcement of the semantics and
corresponding notation.

0.4.4 Compliance to the OA&D CORBAfacility Interface Definitions

The IDL modules defined in the OA& D CORBAfacility parallel the packages in the
semantic metamodel. The exception to this is that DataTypes and Extension
mechanisms have been merged in with the core for the facility. Except for this, a
CORBAfacility implementing the interface modules have the same compliance point
options as described in “ Compliance to the UML Notation” listed above.

0.4.5 Summary of Compliance Points

Table 0-2 Summary of Compliance Points

Compliance Point Valid Options

Core no/incomplete, complete, complete including IDL
Auxiliary Elements no/incomplete, complete, complete including IDL
Common Behavior no/incomplete, complete, complete including IDL
State Machines no/incomplete, complete, complete including IDL
Collaboration no/incomplete, complete, complete including IDL
Use Cases no/incomplete, complete, complete including IDL
Model Management no/incomplete, complete, complete including IDL
Extension Mechanisms no/incomplete, complete, complete including IDL
OCL no/incomplete, complete

Use Case diagram no/incomplete, complete

Class diagram no/incomplete, complete

Statechart diagram no/incomplete, complete

Activity diagram no/incomplete, complete

Sequence diagram no/incomplete, complete

Collaboration diagram no/incomplete, complete

Component diagram no/incomplete, complete

Deployment diagram no/incomplete, complete

UML Extension: Business no/incomplete, complete
Engineering

UML Extension: Objectory no/incomplete, complete
Process for Software
Engineering

OMG-UML V1.2 Compliancetothe UML March 1998 XXiX

XXX

0.5 Acknowledgements

The UML was crafted through the dedicated efforts of individuals and companies who
find UML strategic to their future. This section acknowledges the efforts of these
individuals who contributed to defining UML.

UML 1.1 Core Team

* Hewlett-Packard Company: Martin Griss

® |BM Corporation: Steve Cook, Jos Warmer

® |CON Computing: Desmond D’ Souza

® |-Logix: Eran Gery, David Harel

® MCI Systemhouse Corporation: Cris Kobryn, Joaguin Miller
® IntelliCorp and James Martin & Co.: James Odell

® ObjecTime Limited: John Hogg, Bran Selic

® Oracle Corporation: Guus Ramackers

® PLATINUM Technology Inc.: Dilhar DeSilva

® Rational Software: Grady Booch, Ed Eykholt (project lead), Ivar Jacobson, Gunnar
Overgaard, Karin Palmkvist, Jim Rumbaugh

® Taskon A/S Trygve Reenskaug
* Serling Software: John Cheesman, Keith Short
® Unisys Corporation: Sridhar lyengar, GK Khalsa

UML 1.1 Semantics Task Force

During the final submission phase, a team was formed to focus on improving the
formality of the UML 1.0 semantics, as well as incorporating additional ideas from the
partners. Under the leadership of Cris Kobryn, this team was very instrumental in
reconciling diverse viewpoints into a consistent set of semantics, as expressed in the
revised UML Semantics. Other members of this team were Dilhar DeSilva, Martin
Griss, Sridhar lyengar, Eran Gery, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Bran Selic, and Jos Warmer. Booch, Jacobson, and Rumbaugh provided
their expertise to the team, as well.

Contributors and Supporters

We also acknowledge the contributions, influence, and support of the following
individuals.

Jim Amsden, Hernan Astudillo, Colin Atkinson, Dave Bernstein, Philip A. Bernstein,
Michael Blaha, Conrad Bock, Mike Bradley, Ray Buhr, Gary Cernosek, James Cerrato,
Michael Jesse Chonoles, Magnus Christerson, Dai Clegg, Peter Coad, Derek Coleman,
Ward Cunningham, Raj Datta, Mike Devlin, Philippe Desfray, Bruce Douglass, Staffan
Ehnebom, Maria Ericsson, Johannes Ernst, Don Firesmith, Martin Fowler, Adam

Frankl, Eric Gamma, Dipayan Gangopadhyay, Garth Gullekson, Rick Hargrove, Tim
Harrison, Richard Helm, Brian Henderson-Sellers, Michael Hirsch, Bob Hodges,

OMG-UML V1.2 March 1998

0.6 References

Glenn Hollowell, Yves Holvoet, Jon Hopkins, John Hsia, Ralph Johnson, Anneke
Kleppe, Philippe Kruchten, Paul Kyzivat, Martin Lang, Grant Larsen, Reed Letsinger,
Mary Loomis, Jeff MacKay, Robert Martin, Terrie McDaniel, Jim McGee, Bertrand
Meyer, Mike Meier, Randy Messer, Greg Meyers, Fred Mol, Luis Montero, Paul
Moskowitz, Andy Moss, Jan Pachl, Paul Patrick, Woody Pidcock, Bill Premerlani, Jeff
Price, Jerri Pries, Terry Quatrani, Mats Rahm, George Reich, Rich Reitman, Rudolf M.
Riess, Erick Rivas, Kenny Rubin, Jim Rye, Danny Sabbah, Tom Schultz, Ed
Seidewitz, Gregson Siu, Jeff Sutherland, Dan Tasker, Dave Tropeano, Andy Trice,
Dan Uhlar, John Vlissides, Larry Wall, Paul Ward, Alan Wills, Rebecca Wirfs-Brock,
Bryan Wood, Ed Y ourdon, and Steve Zeigler.

[Bock/Odell 94]

[Booch et a.]

[Cook 94]

[D’ Souza 974

[D’ Souza 97b]

[Fowler 97]

[Griss 96]

[Harel 87]

[Harel 964]

[Harel 96b]

C. Bock and J. Odell, "A Foundation For Composition,"
Journal of Object-oriented Programming, October 1994.

Grady Booch, Jim Rumbaugh, and Ivar Jacobson, Unified
Modeling Language User Guide, ISBN: 0-201-57168-4,
Addison Wesley, est. publication December 1997. See
www.awl.comvcp/uml/uml.html.

S. Cook and J. Daniels, Designing Object Systems: Object-
oriented Modelling with Syntropy, Prentice-Hall Object-
Oriented Series, 1994,

D. D’Souzaand A. Wills, "Input for the OMG Submission,"
www.iconcomp.convcatalysis

D. D’Souza and A. Wills, "Catalysis: Component and
Framework based development"
www.iconcomp.convcatalysis

M. Fowler with K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, ISBN 0-201-32563-2,
Addison-Wesely, 1997.

http: //maww.awl .comvcp/uml/uml.html

M. Griss, Domain Engineering And Variability In The
Reuse-Driven Software Engineering Business. Object
Magazine. Dec 1996. (See www.hpl.hp.com/reuse)

D. Harel, "Statecharts: A Visual Formalism for Complex
Systems," Science of Computer Programming 8 (1987),
231-274.

D. Harel and E. Gery, "Executable Object Modeling with
Statecharts,” Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE
Press, March, 1996, pp. 246-257.

D. Harel and A. Naamad, "The STATEMATE Semantics of
Statecharts,” ACM Trans. Soft. Eng. Method 5:4 (Oct.
1996).

OMG-UML V1.2

References

March 1998 XXXI

XXXii

[Jacobson et a.]

[Malan 96]

[Martin/Odel| 95]

[Ramackers 95]

[Ramackers 96]

[Rumbaugh et al.]

[UML Web Sites]

Ivar Jacobson, Grady Booch, and Jim Rumbaugh, The
Objectory Software Development Process, ISBN: 0-201-
57169-2, Addison Wesley est. publication December 1997.
See www.awl.com/cp/uml/uml.html and the "Rational
Objectory Process' on www.rational.com.

R. Malan, D. Coleman, R. Letsinger et a, The Next
Generation of Fusion, Fusion Newsletter, Oct 1996. (See
www.hpl.hp.com/fusion.)

J. Martin and J. Odell, Object-oriented Methods, A
Foundation, ISBN: 0-13-630856-2, Prentice Hall, 1995

Ramackers, G. and Clegg, D., "Object Business Modelling,
reguirements and approach” in Sutherland, J. and Patel, D.
(eds.), Proceedings of the OOPSLA95 workshop on
Business Object Design and Implementation, Springer
Verlag, publication pending.

Ramackers, G. and Clegg, D., "Extended Use Cases and
Business Objects for BPR," ObjectWorld UK ‘96, London,
June 18-21, 1996.

Jim Rumbaugh, Ivar Jacobson, and Grady Booch, Unified
Modeling Language Reference Manual, ISBN: 0-201-
30998-X, Addison Wesley, est. publication December 1997.
See www.awl.corm/cp/uml/uml.html.

www.rational .com/umi
uml.systemhouse.mci.com

OMG-UML V1.2

March 1998

