UML Notation Guide

This guide describes the notation for the visual representation of the Unified Modeling
Language (UML). This notation document contains brief summaries of the semantics
of UML constructs, but the UML Semantics chapter must be consulted for full details.

Contents

This chapter contains the following topics.

Topic Page
Part 1 - Background

“Introduction” 35
Part 2 - Diagram Elements

“Graphs and Their Contents’ 3-6
“Drawing Paths’ 37
“Invisible Hyperlinks and the Role of Tools” 3-7
“Background Information” 3-8
“String” 3-8
“Name” 39
“Label” 3-10
“Keywords” 311
“Expression” 311
“Note” 3-13
“Type-Instance Correspondence” 3-14

Part 3 - Model Management

OMG-UML V1.2 May 1998

3-1

Topic Page
“Packages and Model Organization” 3-15
Part 4 - General Extension Mechanisms
“Constraint and Comment” 3-18
“Element Properties’ 321
“ Stereotypes” 3-22
Part 5 - Static Structure Diagrams
“Class Diagram” 3-25
“Object Diagram” 3-26
“Classifier” 3-26
“Class’ 3-26
“Name Compartment” 3-28
“List Compartment” 3-29
“Attribute” 3-32
“Operation” 3-35
“Type Vs. Implementation Class” 3-38
“Interfaces” 3-39
“Parameterized Class (Template)” 341
“Bound Element” 3-43
“Utility” 3-45
“Metaclass’ 3-45
“Class Pathnames” 3-46
“Importing a Package” 3-47
“Object” 3-48
“Composite Object” 351
“Association” 3-52
“Binary Association” 3-52
“Association End” 3-55
“Multiplicity” 3-59
“Qualifier’ 3-60
“Association Class’ 3-62
“N-ary Association” 3-63
“Composition” 3-65
“Links’ 3-68
3-2 OMG-UML V1.2 May 1998

Topic Page
“Generalization” 3-70
“Dependency” 3-74
“Derived Element” 3-76
Part 6 - Use Case Diagrams

“Use Case Diagram” 3-77
“Use Case” 3-79
“Actor” 3-79
“Use Case Relationships’ 3-80
Part 7 - Sequence Diagrams

“Kinds of Interaction Diagrams” 381
“Sequence Diagram” 3-82
“Object Lifeline” 3-86
“Activation” 3-87
“Message” 3-87
“Transition Times’ 3-89
Part 8 - Collaboration Diagrams

“Collaboration” 3-90
“Collaboration Diagram” 391
“Pettern Structure” 3-93
“Collaboration Contents’ 3-94
“Interactions” 3-96
“Collaboration Roles’ 3-96
“Multiobject” 3-98
“Active object” 3-99
“Message flows” 3-101
“Creation/Destruction Markers’ 3-105
Part 9 - Statechart Diagrams

“Statechart Diagram” 3-106
“States” 3-107
“Composite States’ 3-109
“Events’ 3-111
“Simple Transitions” 3-114
“Complex Transitions” 3-116

OMG-UML V1.1 March 1998

Topic Page
“Transitions to Nested States” 3-117
“Sending Messages” 3-120
“Internal Transitions’ 3-123
Part 10 - Activity Diagrams

“Activity Diagram” 3-124
“Action state” 3-126
“Decisions” 3-127
“Swimlanes’ 3-128
“Action-Object Flow Relationships’ 3-130
“Control Icons’ 3-132
Part 11 - Implementation Diagrams

“Component Diagram” 3-135
“Deployment Diagrams” 3-136
“Nodes” 3-138
“Components’ 3-139
“Location of Components and Objects within Objects’ 3-141

OMG-UML V1.2

May 1998

Part 1 - Background

31

Introduction

This chapter is arranged in parts according to semantic concepts subdivided by
diagram types. Within each diagram type, model elements that are found on that
diagram and their representation are listed. Note that many model elements are usable
in more than one diagram. An attempt has been made to place each description where
it is used the most, but be aware that the document involves implicit cross-references
and that elements may be useful in places other than the section in which they are
described. Be aware also that the document is nonlinear: there are forward references
init. It is not intended to be a teaching document that can be read linearly, but a
reference document organized by affinity of concept.

Each part of this chapter is divided into sections, roughly corresponding to important
model elements and notational constructs. Note that some of these constructs are used
within other constructs; do not be misled by the flattened structure of the chapter.
Within each section the following subsections may be found:

® Semantics: Brief summary of semantics. For a fuller explanation and discussion of
fine points, see the UML Semantics chapter in this document.

® Notation: Explains the notational representation of the semantic concept (“forward
mapping to notation”).

® Presentation options: Describes various options in presenting the model
information, such as the ability to suppress or filter information, alternate ways of
showing things, and suggestions for alternate ways of presenting information within
atool.

Dynamic tools need the freedom to present information in various ways and the
authors do not want to restrict this excessively. In some sense, we are defining the
“canonical notation” that printed documents show, rather than the “ screen notation.”
The ability to extend the notation can lead to unintelligible dialects, so we hope this
freedom will be used in intuitive ways. The authors have not sought to eliminate all
the ambiguity that some of these presentation options may introduce, because the
presence of the underlying model in a dynamic tool serves to easily disambiguate
things. Note that a tool is not supposed to pick just one of the presentation options
and implement it. Tools should offer users the options of selecting among various
presentation options, including some that are not described in this document.

® Style guidelines: Include suggestions for the use of stylistic markers, such as fonts,
naming conventions, arrangement of symbols, etc., that are not explicitly part of the
notation, but that help to make diagrams more readable. These are similar to text
indentation rules in C++ or Smalltalk. Not everyone will choose to follow these
suggestions, but the use of some consistent guidelines of your own choosing is
recommended in any case.

® Example: Shows samples of the notation. String and code examples are given in the
following font: This is a string sample.

OMG-UML V1.1 Introduction March 1998 35

® Mapping: Shows the mapping of notation elements to metamodel e ements

(“ reverse mapping from notation”). This indicates how the notation would be
represented as semantic information. Note that, in general, diagrams are interpreted
in a particular context in which semantic and graphic information is gathered
simultaneously. The assumption is that diagrams are constructed by an editing tool
that internalizes the model as the diagram is constructed. Some semantic constructs
have no graphic notation and would be shown to a user within a tool using a form
or table.

Part 2 - Diagram Elements

3-6

3.2 Graphsand Their Contents

Most UML diagrams and some complex symbols are graphs containing nodes
connected by paths. The information is mostly in the topology, not in the size or
placement of the symbols (there are some exceptions, such as a sequence diagram with
a metric time axis). There are three kinds of visual relationships that are important::

1. connection (usualy of lines to 2-d shapes),
2. containment (of symbols by 2-d shapes with boundaries), and
3. visua attachment (one symbol being “near” another one on a diagram).

These visual relationships map into connections of nodes in a graph, the parsed form of
the notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-
dimensional projections of 3-d shapes (such as cubes), but they are still rendered as
icons on a 2-dimensional surface. In the near future, true 3-dimensional layout and
navigation may be possible on desktop machines; however, it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:

1. Icons- Anicon isagraphical figure of afixed size and shape. It does not expand to
hold contents. Icons may appear within area symbols, as terminators on paths or as
standalone symbols that may or may not be connected to paths.

2. 2-d Symbols - Two-dimensional symbols have variable height and width and they
can expand to hold other things, such as lists of strings or other symbols. Many of
them are divided into compartments of similar or different kinds. Paths are
connected to two-dimensional symbols by terminating the path on the boundary of
the symbol. Dragging or deleting a 2-d symbol affects its contents and any paths
connected to it.

3. Paths - Sequences of line segments whose endpoints are attached. Conceptually a
path is a single topological entity, although its segments may be manipulated
graphically. A segment may not exist apart from its path. Paths are aways attached

OMG-UML V1.2 May 1998

3.3 Drawing Paths

to other graphic symbols at both ends (no dangling lines). Paths may have
terminators, that is, icons that appear in some sequence on the end of the path and
that qualify the meaning of the path symboal.

4. Strings - Present various kinds of information in an “unparsed” form. UML assumes
that each usage of a string in the notation has a syntax by which it can be parsed
into underlying model information. For example, syntaxes are given for attributes,
operations, and transitions. These syntaxes are subject to extension by tools as a
presentation option. Strings may exist as singular elements of symbols or
compartments of symbols, as elementsin lists (in which case the position in the list
conveys information), as labels attached to symbols or paths, or as stand-alone
elements on a diagram.

A path consists of a series of line segments whose endpoints coincide. The entire path
is asingle topological unit. Line segments may be orthogonal lines, oblique lines, or
curved lines. Certain common styles of drawing lines exist: all orthogonal lines, or all
straight lines, or curves only for bevels. The line style can be regarded as a tool
restriction on default line input. When line segments cross, it may be difficult to know
which visual piece goes with which other piece; therefore, a crossing may optionally
be shown with a small semicircular jog by one of the segments to indicate that the
paths do not intersect or connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of the
same kind may connect to a single symbol. In some circumstances (described for the
particular relationship) the line segments connected to the symbol can be combined
into a single line segment, so that the path from that symbol branches into several
paths in akind of tree. Thisis purely a graphical presentation option; conceptualy the
individual paths are distinct. This presentation option may not be used when the
modeling information on the segments to be combined is not identical.

3.4 Invisible Hyperlinksand the Roleof Tools

A notation on a piece of paper contains no hidden information. A notation on a
computer screen may contain additional invisible hyperlinks that are not apparent in a
static view, but that can be invoked dynamically to access some other piece of
information, either in a graphical view or in atextual table. Such dynamic links are as
much a part of a dynamic notation as the visible information, but this guide does not
prescribe their form. We regard them as a tool responsibility. This document attempts
to define a static notation for the UML, with the understanding that some useful and
interesting information may show up poorly or not at al in such a view. On the other
hand, we do not know enough to specify the behavior of all dynamic tools, nor do we
want to stifle innovation in new forms of dynamic presentation. Eventually some of the
dynamic notations may become well enough established to standardize them, but we
do not feel that we should do so now.

OMG-UML V1.1 DrawingPaths = March 1998 37

3-8

3.5 Background Information

3.5.1 Presentation Options

Each appearance of a symbol for a class on a diagram or on different diagrams may
have its own presentation choices. For example, one symbol for a class may show the
attributes and operations and another symbol for the same class may suppress them.
Tools may provide style sheets attached either to individual symbols or to entire
diagrams. The style sheets would specify the presentation choices. (Style sheets would
be applicable to most kinds of symbols, not just classes.)

Not all modeling information is presented most usefully in a graphical notation. Some
information is best presented in atextual or tabular format. For example, much detailed
programming information is best presented as text lists. The UML does not assume
that al of the information in a model will be expressed as diagrams; some of it may
only be available as tables. This document does not attempt to prescribe the format of
such tables or of the forms that are used to access them, because the underlying
information is adequately described in the UML metamodel and the responsibility for
presenting tabular information is a tool responsibility. It is assumed that hidden links
may exist from graphical items to tabular items.

3.6 Sring
A string is a sequence of characters in some suitable character set used to display
information about the model. Character sets may include non-Roman al phabets and
characters.
3.6.1 Semantics

Diagram strings normally map underlying model strings that store or encode
information about the model, although some strings may exist purely on the diagrams.
UML assumes that the underlying character set is sufficient for representing multibyte
characters in various human languages; in particular, the traditional 8-bit ASCII
character set is insufficient. It is assumed that the tool and the computer manipulate
and store strings correctly, including escape conventions for special characters, and
this document will assume that arbitrary strings can be used without further fuss.

3.6.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be
displayed directly. The display of nonprintable characters is unspecified and platform-
dependent. Depending on purpose, a string might be shown as a single-line entity or as
a paragraph with automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the string
itself. They may code for various model properties, some of which are suggested in
this document and some of which are left open for the tool or the user.

OMG-UML V1.2 May 1998

3.6.3 Presentation Options

Tools may present long strings in various ways, such as truncation to a fixed size,
automatic wrapping, or insertion of scroll bars. It is assumed that there is a way to
obtain the full string dynamically.

3.6.4 Example

BankAccount
integrate (f: Function, from: Real, to: Real)
{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks, in
which blocks of cards may stick together during several riffles, the operation is
actually simulated by cutting the deck and merging the cards with an imperfect merge.

3.6.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on
context. In some circumstances, the visual string is parsed into multiple model
elements. For example, an operation signature is parsed into its various fields. Further
details are given with each kind of symbol.

3.7 Name

3.7.1 Semantics

A name is a string that is used to identify a model element uniquely within some
scope. A pathname is used to find a model element starting from the root of the system
(or from some other point). A name is a selector (qualifier) within some scope—the
scope is made clear in this document for each element that can be named.

A pathname is a series of names linked together by a delimiter (such as‘:’). There are
various kinds of pathnames described in this document, each in its proper place and
with its particular delimiter.

3.7.2 Notation

A nameis displayed as a text string graphic. Normally a name is displayed on asingle
line and will not contain nonprintable characters. Tools and languages may impose
reasonable limits on the length of strings and the character set they use for names,
possibly more restrictive than those for arbitrary strings, such as comments.

OMG-UMLV1.1 Name March1998 39

3.7.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very long_name_with_underscores
Pathname:

MathPak::Matrices::BandedMatrix.dimension

3.7.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with
String. Further details are given with the particular element.

3.8 Label
A label is astring that is attached to a graphic symbol.
3.8.1 Semantics
A label isaterm for a particular use of a string on a diagram. It is purely a notational
term.

3.8.2 Notation

A label isastring that is attached graphically to another symbol on adiagram. Visually
the attachment normally is by containment of the string (in a closed region) or by
placing the string near the symbol. Sometimes the string is placed in a definite position
(such as below a symbol) but most of the time the statement is that the string must be
“near” the symbol. A tool maintains an explicit internal graphic linking between a
label and a graphic symbol, so that the label drags with the symbol, but the final
appearance of the diagram is a matter of aesthetic judgment and should be made so
that there is no confusion about which symbol alabel is attached to. Although the
attachment may not be obvious from a visual inspection of a diagram, the attachment
is clear and unambiguous at the graphic level (and poses no ambiguity in the semantic

mapping).

3-10 OMG-UML V1.2 May 1998

3.8.3 Presentation Options

A tool may visually show the attachment of a label to another symbol using various
aids (such as aline in a given color, flashing of matched elements, etc.) as a
convenience.

3.8.4 Example

BankAccount

3.9 Keywords

3.10 Expression

account

Figure3-1 Attachment by Containment and Attachment by Adjacency

The number of easily-distinguishable visual symbolsis limited. The UML notation
makes use of text keywords in places to distinguish variations on a common theme,
including metamodel subclasses of a base class, stereotypes of a metamodel base class,
and groups of list elements. From the user’s perspective, the metamodel distinction
between metamodel subclasses and stereotypes is often unimportant, although it is
important to tool builders and others who implement the metamodel.

The genera notation for the use of a keyword is to enclose it in guillemets («»):
«keyword»

Certain predefined keywords are described in the text of this document. These must be
treated as reserved words in the notation. Others are available for users to employ as
stereotype names. The use of a stereotype name that matches a predefined keyword is
ill-formed.

3.10.1 Semantics

Various UML constructs require expressions, which are linguistic formulas that yield
values when evaluated at run-time. These include expressions for types, boolean
values, and numbers. UML does not include an explicit linguistic analyzer for
expressions. Rather, expressions are expressed as strings in a particular language. The

OMG-UML V1.1 Keywords March1998 311

OCL constraint language is used within the UML semantic definition and may also be
used at the user level; other languages (such as programming languages) may also be
used.

UML avoids specifying the syntax for constructing type expressions because they are
so language-dependent. It is assumed that the name of a class or simple data type will
map into a simple Classifier reference, but the syntax of complicated language-
dependent type expressions, such as C++ function pointers, is the responsibility of the
specification language.

3.10.2 Notation

An expression is displayed as a string defined in a particular language. The syntax of
the string is the responsibility of atool and a linguistic analyzer for the language. The
assumption is that the analyzer can evaluate strings at run-time to yield values of the
appropriate type, or can yield semantic structures to capture the meaning of the
expression. For example, a type expression evaluates to a Classifier reference, and a
boolean expression evaluates to atrue or false value. The language itself is known to a
modeling tool but is generally implicit on the diagram, under the assumption that the
form of the expression makes its purpose clear.

3.10.3 Example

BankAccount
BankAccount * (*) (Person*, int)
array [1..20] of reference to range (-1.0..1.0) of Real

[i>]and self.size > i]

3.10.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of
Expression, such as ObjectSetExpression or TimeExpression).

3.10.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints
within the UML metamodel itself. The OCL language may be supported by tools for
user-written expressions as well. Other possible languages include various computer
languages as well as plain text (which cannot be parsed by a tool, of course, and is
therefore only for human information).

3-12 OMG-UML V1.2 May 1998

3.10.6 Sdected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can
be chained together. The leftmost element must be an expression for an object or a set
of objects. The expressions are meant to work on sets of values when applicable. For
more details and syntax see the OCL description.

item ‘. selector the selector is the name of an attribute in the item or the
name of arole of the target end of alink attached to the
item. The result is the value of the attribute or the related
object(s). The result is a value or a set of values
depending on the multiplicities of the item and the

association.
item ‘. selector ‘[* qualifier- the selector designates a qualified association that
value ‘]’ qualifies the item. The qualifier-value is a value for the

qualifier attribute. The result is the related object selected
by the qualifier. Note that this syntax is applicable to
array indexing as a form of qualification.

set ‘->' ‘select’ ‘(* boolean- the boolean-expression is written in terms of objects
expression ‘)’ within the set. Theresult is the subset of objectsin the set

for which the boolean expression is true.

3.10.7 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees- >select (title = “Manager” and self.reports- >size > 10)

3.11 Note
A note is a graphical symbol containing textual information (possibly including
embedded images). It is a notation for rendering various kinds of textual information
from the metamodel, such as constraints, comments, method bodies, and tagged values.
3.11.1 Semantics

A note is a notational item. It shows textual information within some semantic
element.

3.11.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It
contains arbitrary text. It appears on a particular diagram and may be attached to zero
or more modeling elements by dashed lines.

OMG-UML V1.1 Note March1998 3-13

3.11.3 Presentation Options

A note may have a stereotype.

A note with the stereotype “constraint” or a more specific form of constraint (such as
the code body for a method) designates a constraint that is part of the model and not
just part of adiagram view. Such a note is the view of a model element (the

constraint). Other kinds of notes are purely notation, they have no underlying model
element.

3.11.4 Example

See also Figure 3-5 on page 3-20 for a note symbol containing a constraint.

This model was built
by Alan Wright after

meeting with the
mission planning team.

Figure3-2 Note

3.11.5 Mapping

A note may represent the textual information in several possible metamodel constructs;
it must be created in context that is known to a tool, and the tool must maintain the

mapping. The string in the note maps to the body of the corresponding modeling
element. A note may represent:

® aconstraint,
® atagged value,
® the body of a method, or

® other string values within modeling elements.

It may also represent a comment attached directly to a diagram element.

3.12 Type-Instance Correspondence

3-14

A major purpose of modeling is to prepare generic descriptions that describe many
specific items. This is often known as the type-instance dichotomy. Many or most of
the modeling concepts in UML have this dual character, usually modeled by two
paired modeling elements, one represents the generic descriptor and the other the
individual items that it describes. Examples of such pairsin UML include: Class-
Object, Association-Link, Parameter-Value, Operation-Call, and so on.

OMG-UML V1.2 May 1998

3

Although diagrams for type-like elements and instance-like elements are not exactly
the same, they share many similarities. Therefore, it is convenient to choose notation
for each type-instance pair of elements such that the correspondence is visually
apparent immediately. There are a limited number of ways to do this, each with
advantages and disadvantages. In UML, the type-instance distinction is shown by
employing the same geometrical symbol for each pair of elements and by underlining
the name string (including type name, if present) of an instance element. This visual
distinction is generally easily apparent without being overpowering even when an
entire diagram contains instance elements.

pl: Point
Point x = 3.14

x: Real y=2.718

y: Real

rotate (angle: Real)

scale (factor: Real)

Point

x=1
y=1.414

Figure3-3 Classes and Objects

A tool is free to substitute a different graphic marker for instance elements at the user’s
option, such as color, fill patterns, or so on.

Part 3 - Model Management

3.13 Packagesand Model Organization

3.13.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested
within other packages. A package may contain both subordinate packages and ordinary
model elements. Some packages may be Subsystems or Models. The entire system
description can be thought of as a single high-level subsystem package with everything
elsein it. All kinds of UML model elements and diagrams can be organized into
packages.

OMG-UML V1.1 Packagesand Model Organization =~ March 1998 315

3-16

Note that packages own model elements and model fragments and are the basis for
configuration control, storage, and access control. Each element can be directly owned
by a single package, so the package hierarchy is a strict tree. However, packages can
reference other packages, so the usage network is a graph.

There are several predefined stereotypes of Model and Subsystem. See the M eta Object
Facility (MOF) Specification for details. In particular, the stereotype «system» of
Subsystem denotes the entire set of models for the complete system being modeled. It
is the root of the package hierarchy and the only model element that is not owned by
some other model element.

3.13.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached on
one corner (usually the left side of the upper side of the large rectangle). It is a manila
folder shape.

® |f contents of the package are not shown, then the name of the package is placed
within the large rectangle.

® If contents of the package are shown, then the name of the package may be placed
within the tab.

A keyword string may be placed above the package name. The keywords subsystem
and model indicate that the package is a metamodel Subsystem or Model. The
predefined stereotypes system, facade, framework, and top package are also notated
with keywords. User-defined stereotypes of one of these predefined kinds of package
are also notated with keywords, but they must not conflict with the predefined
keywords.

A list of properties may be placed in braces after or below the package name.
Example: {abstract}. See Section 3.15, “Element Properties,” on page 3-21 for details
of property syntax.

The contents of the package may be shown within the large rectangle.

The visibility of a package element outside the package may be indicated by preceding
the name of the element by a visibility symbol (‘+' for public, ‘-’ for private, ‘# for
protected). If the element is an inner package, the visibilities of its elements, as
exported by the outer package, are obtained by:

® combining the visibilities of an element within the package, with
® the visibility of the package itself.

The most restrictive visibility results. Relationships may be drawn between package
symbols to show relationships between some of the elements in the packages. In
particular, dependency between packages implies that one or more dependencies
among the elements exists.

OMG-UML V1.2 May 1998

3.13.3 Presentation Options

A tool may also show visibility by selectively displaying those elements that meet a
given visibility level (e.g., al of the public elements only).

A tool may show visibility by a graphic marker, such as color or font.

3.13.4 Syle Guidelines

It is expected that packages with large contents will be shown as simple icons with
names, in which the contents may be dynamically accessed by “zooming” to a detailed

view.
3.13.5 Example
«subsystem»
Editor
1
oo __| Controller
: :
I | I
: [1 :
' ___] Diagram |
| | Elements |
L L
| | 1 |
1V ¥ 1V v —
Domain Graphics| _________1_____ - Windowing
Elements Core System
MotifCore Motif
1
Microsoft
WindowsCoref[-~--f~-~~-~-------- Windows
Figure3-4 Packages and Their Dependencies
OMG-UML V1.1 Packagesand Model Organization =~ March 1998

3-17

3.13.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is
the name of the Package element. If the package has a keyword that is a predefined
keyword, then the package symbol maps into the corresponding subclass of Package or
into the corresponding stereotype of Package; otherwise, it maps into a user-defined
stereotype of Package.

A symbol directly contained within the package symbol (i.e., not contained within
another symbol) maps into a model element owned by the package element. However,
a symbol whose name is a pathname maps into a reference to a model element owned
by another package. Only the reference is owned by the current package. Relationships
from the package symbol boundary map into relationships to the package element.

Part 4 - General Extension Mechanisms

The elements in this section are general purpose mechanisms that may be applied to
any modeling element. The semantics of a particular use depends on a convention of
the user or an interpretation by a particular constraint language or programming
language; therefore, they constitute an extensibility device for UML.

3.14 Constraint and Comment

3.14.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions
and propositions that must be maintained as true; otherwise, the system described by
the model is invalid (with consequences that are outside the scope of UML). Certain
kinds of constraints (such as an association “or” constraint) are predefined in UML,
others may be user-defined. A user-defined constraint is described in words in a given
language, whose syntax and interpretation is a tool responsibility. A constraint
represents semantic information attached to a model element, not just to a view of it.

A comment is atext string (including references to human-readable documents)
attached directly to a model element. This is equivalent syntactically to a constraint
written in the language “text” whose meaning is significant to humans, but which is
not conceptually executable (except inasmuch as humans are regarded as the
instruments of interpretation). A comment can attach arbitrary textual information to
any model element of presumed general importance.

3.14.2 Notation

A constraint is shown as atext string in braces ({ }). There is an expectation that
individual tools may provide one or more languages in which formal constraints may
be written. One predefined language for writing constraints is OCL (see Object

3-18 OMG-UML V1.2 May 1998

3

Constraint Language Specification, chapter 4); otherwise, the constraint may be written
in natural language. A constraint may be a“comment.” In that case, it iswritten in text
(possibly including pictures or other viewable documents) for “interpretation” by a
human. Each constraint is written in a specific language, although the language is not
generally displayed on the diagram (the tool must keep track of it).

For an element whose notation is atext string (such as an attribute, etc.), the constraint
string may follow the element text string in braces.

For alist of elements whose notation is a list of text strings (such as the attributes
within a class), a constraint string may appear as an element in the list. The constraint
applies to all succeeding elements of the list until another constraint string list element
or the end of the list. A constraint attached to an individual list element does not
supersede the general constraint, but may augment or modify individual constraints
within the constraint string.

For a single graphical symbol (such as a class or an association path), the constraint
string may be placed near the symbol, preferably near the name of the symbol, if any.

For two graphical symbols (such as two classes or two associations), the constraint is
shown as a dashed arrow from one element to the other element labeled by the
constraint string (in braces). The direction of the arrow is relevant information within
the constraint.

For three or more graphical symbols, the constraint string is placed in a note symbol
and attached to each of the symbols by a dashed line. This notation may also be used
for the other cases. For three or more paths of the same kind (such as generalization
paths or association paths), the constraint may be attached to a dashed line crossing all
of the paths.

A comment is shown by atext string placed within a note symbol that is attached to a
model element. The braces are omitted to show that this is purely a textual comment.
(The braces indicate a constraint expressed in some interpretable constraint language.)

OMG-UML V1.1 Constraint and Comment March 1998 3-19

3.14.3 Example
» Member-of =
Person 4‘ {subset} Committee Represents
: an incorporated entity.
1 Chair-of * ,
I
I
I
vorker employee employer '
* T
Person |* I 0.1| cCompany
0.1 |
| boss I
| 1
L e e e e e e = =] {Person.employer =

Person.boss.employer}

Figure3-5 Constraints lllustration

3.14.4 Mapping

The constraint string maps into the body expression in a Constraint element. The
mapping depends on the language of the expression, which is known to a tool but
generally not displayed on a diagram. If the string lacks braces (i.e., a Comment), then
it maps into an expression in the language “text.”

A constraint string following alist entry maps into a Constraint attached to the element
corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate
Constraint attached to each succeeding model element corresponding to subsequent list
entries (until superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a
hidden link by atool operating in context. The tool must maintain the graphical
linkage implicitly. The constraint string maps into a Constraint attached to the element
corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the
two elements corresponding to the symbols connected by the arrow.

A constraint string in a note symbol maps into a Constraint attached to the elements
corresponding to the symbols connected to the note symbol by dashed lines.

3-20 OMG-UML V1.2 May 1998

3.15 Element Properties

Many kinds of elements have detailed properties that do not have a visual notation. In
addition, users can define new element properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes
properties represented by attributes in the metamodel as well as both predefined and
user-defined tagged values.

3.15.1 Semantics

Note that we use property in a general sense to mean any value attached to a model
element, including attributes, associations, and tagged values. In this sense it can
include indirectly reachable values that can be found starting at a given element.

A tagged value is a keyword-value pair that may be attached to any kind of model
element (including diagram elements as well as semantic model elements). The
keyword is called a tag. Each tag represents a particular kind of property applicable to
one or many kinds of model elements. Both the tag and the value are encoded as
strings. Tagged values are an extensibility mechanism of UML permitting arbitrary
information to be attached to models. It is expected that most model editors will
provide basic facilities for defining, displaying, and searching tagged values as strings
but will not otherwise use them to extend the UML semantics. It is expected, however,
that back-end tools such as code generators, report writers, and the like will read
tagged values to alter their semantics in flexible ways.

3.15.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-
delimited sequence of property specifications all inside a pair of braces ({ }).

A property specification has the form
keyword = value

where keyword is the name of a property (metamodel attribute or arbitrary tag) and
valueis an arbitrary string that denotes its value. If the type of the property is Boolean,
then the default value is true if the value is omitted. That is, to specify a value of true
you may include just the keyword. To specify a value of false, you omit the name
completely. Properties of other types require explicit values. The syntax for displaying
the value is a tool responsibility in cases where the underlying model value is not a
string or a number.

Note that property strings may be used to display built-in attributes as well as tagged
values.

OMG-UML V1.1 Element Properties = March 1998 321

3.15.3 Presentation Options

A tool may present property specifications on separate lines with or without the
enclosing braces, provided they are marked appropriately to distinguish them from
other information. For example, properties for a class might be listed under the class
name in a distinctive typeface, such as italics or a different font family.

3.15.4 Syle Guidelines

It islegal to use strings to specify properties that have graphical notations; however,
such usage may be confusing and should be used with care.

3.15.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

3.15.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a
tagged value (predefined or user-defined). A tool must enforce the correspondence to
built-in attributes.

3.16 Sereotypes

3-22

3.16.1 Semantics

A stereotype is, in effect, a new class of modeling element that is introduced at
modeling time. It represents a subclass of an existing modeling element with the same
form (attributes and relationships) but with a different intent. Generally a stereotype
represents a usage distinction. A stereotyped element may have additional constraints
on it from the base class. It is expected that code generators and other tools will treat
stereotyped elements specially. Stereotypes represent one of the built-in extensibility
mechanisms of UML.

3.16.2 Notation

The general presentation of a stereotype is to use the symbol for the base element but
to place a keyword string above the name of the element (if any). The keyword string
is the name of the stereotype within matched guillemets, which are the quotation mark
symbols used in French and certain other languages (for example, «f00»).

Note — A guillemet looks like a double angle-bracket, but it is a single character in
most extended fonts. Most computers have a Character Map utility. Double angle-
brackets may be used as a substitute by the typographically challenged.

OMG-UML V1.2 May 1998

The keyword string is generally placed above or in front of the name of the model
element being described. The keyword string may also be used as an element in alist,
in which case it applies to subsequent list elements until another stereotype string
replaces it, or an empty stereotype string («») nullifies it. Note that a stereotype name
should not be identical to a predefined keyword applicable to the same element type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a
graphic marker (such as texture or color) can be associated with a stereotype. The
UML does not specify the form of the graphic specification, but many bitmap and
stroked formats exist (and their portability is a difficult problem). The icon can be used
in one of two ways:

1. It may be used instead of, or in addition to, the stereotype keyword string as part of
the symbol for the base model element that the stereotype is based on. For example,
in aclass rectangle it is placed in the upper right corner of the name compartment.
In this form, the normal contents of the item can be seen.

2. The entire base model element symbol may be “collapsed” into an icon containing
the element name or with the name above or below the icon. Other information
contained by the base model element symbol is suppressed. More general forms of
icon specification and substitution are conceivable, but we leave these to the
ingenuity of tool builders, with the warning that excessive use of extensibility
capabilities may lead to loss of portability among tools.

UML avoids the use of graphic markers, such as color, that present challenges for
certain persons (the color blind) and for important kinds of equipment (such as
printers, copiers, and fax machines). None of the UML symbols require the use of such
graphic markers. Users may use graphic markers freely in their personal work for their
own purposes (such as for highlighting within a tool) but should be aware of their
limitations for interchange and be prepared to use the canonical forms when necessary.

The classification hierarchy of the stereotypes themselves could be displayed on a
class diagram; however, this would be a metamodel diagram and must be distinguished
(by user and tool) from an ordinary model diagram. In such a diagram each stereotype
is shown as a class with the stereotype «stereotype» (yes, thisis a self-referential
usage). Generalization relationships may show the extended metamodel hierarchy.
Because of the danger of extending the internal metamodel hierarchy, atool may, but
need not, expose this capability on class diagrams. Thisis not a capability required by
ordinary modelers.

OMG-UML V1.1 Sereotypes March1998 3-23

3.16.3 Example

«control» «control» O
PenTracker PenTracker

location: Point location: Point

enable (Mode) enable (Mode)
PenTracker O

location: Point @

enable (Mode) PenTracker

«calls»
JobManager | - — _— _ _ _ _ | Scheduler

Figure3-6 Varieties of Stereotype Notation

3.16.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the
Element corresponding to the symbol containing the name and the Stereotype of the
given name. The use of a stereotype icon within a symbol maps into the stereotype
relationship between the Element corresponding to the symbol containing the icon and
the Stereotype represented by the symbol. A tool must establish the connection when
the symbol is created and there is no requirement that an icon represent uniquely one
stereotype. The use of a stereotype icon, instead of a symbol, must be created in a
context in which a tool implies a corresponding model element and a Stereotype
represented by the icon. The element and the stereotype have the stereotype
relationship.

3-24 OMG-UML V1.2 May 1998

Part 5 - Static Structure Diagrams

3.17 ClassDiagram

Class diagrams show the static structure of the model, in particular, the things that
exist (such as classes and types), their internal structure, and their relationships to other
things. Class diagrams do not show temporal information, although they may contain
reified occurrences of things that have or things that describe temporal behavior. An
object diagram shows instances compatible with a particular class diagram.

REVIEWER: Instead of using ‘thing’ in the above paragraph, can we use a
different word?

This section discusses classes and their variations, including templates and instantiated
classes, and the relationships between classes (association and generalization) and the
contents of classes (attributes and operations).

A class diagram is a graph of Classifier elements connected by their various static
relationships. Note that a “class’ diagram may also contain interfaces, packages,
relationships, and even instances, such as objects and links. Perhaps a better name
would be “static structural diagram” but “class diagram” is shorter and well
established.

3.17.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class
diagrams do not represent divisions in the underlying model.

3.17.2 Notation

A class diagram is a collection of (static) declarative model elements, such as classes,
interfaces, and their relationships, connected as a graph to each other and to their
contents. Class diagrams may be organized into packages either with their underlying
models or as separate packages that build upon the underlying model packages.

3.17.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within
the static structural model may be represented by one or more class diagrams. The
division of the presentation into separate diagrams is for graphical convenience and
does not imply a partitioning of the model itself. The contents of a diagram map into
elements in the static semantic model. If a diagram is part of a package, then its
contents map into elements in the same package.

OMG-UML V1.1 ClassDiagram March 1998 325

3

3.18 Object Diagram

3.19 Classifier

3.20 Class

An object diagram is a graph of instances, including objects and data values. A static
object diagram is an instance of a class diagram; it shows a snapshot of the detailed
state of a system at a point in time. The use of object diagramsisfairly limited, mainly
to show examples of data structures.

Tools need not support a separate format for object diagrams. Class diagrams can
contain objects, so a class diagram with objects and no classesis an “object diagram.”
The phrase is useful, however, to characterize a particular usage achievable in various
ways.

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these
have similar syntax and are therefore all notated using the rectangle symbol with
keywords used as necessary. Because classes are most common in diagrams, a
rectangle without a keyword represents a class, and the other subclasses of Classifier
are indicated with keywords. In the sections that follow, the discussion will focus on
Class, but most of the notation applies to the other element kinds as semantically
appropriate and as described later under their own sections.

A class is the descriptor for a set of objects with similar structure, behavior, and
relationships. UML provides notation for declaring classes and specifying their
properties, as well as using classes in various ways. Some modeling elements that are
similar in form to classes (such as interfaces, signals, or utilities) are notated using
keywords on class symbols; some of these are separate metamodel classes and some
are stereotypes of Class. Classes are declared in class diagrams and used in most other
diagrams. UML provides a graphical notation for declaring and using classes, as well
as a textual notation for referencing classes within the descriptions of other model
elements.

3.20.1 Semantics

A class represents a concept within the system being modeled. Classes have data
structure and behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name
must be unique (among class names) within its package.

3.20.2 Basic Notation

3-26

A class is drawn as a solid-outline rectangle with three compartments separated by
horizontal lines. The top name compartment holds the class name and other general
properties of the class (including stereotype); the middie list compartment holds a list
of attributes; the bottom list compartment holds a list of operations.

OMG-UML V1.2 May 1998

See “Name Compartment” on page 3-28 and “List Compartment” on page 3-29 for
more details.

References

By default a class shown within a package is assumed to be defined within that
package. To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. Compartment names can be used to
remove ambiguity, if necessary (“List Compartment” on page 3-29). A full pathname
can be specified by chaining together package names separated by double colons (::).

3.20.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A
separator lineis not drawn for a missing compartment. If a compartment is suppressed,
no inference can be drawn about the presence or absence of elementsiin it.

Additional compartments may be supplied as atool extension to show other predefined
or user-defined model properties (for example, to show business rules, responsibilities,
variations, events handled, exceptions raised, and so on). Most compartments are
simply lists of strings. More complicated formats are possible, but UML does not
specify such formats; they are a tool responsibility. Appearance of each compartment
should preferably be implicit based on its contents. Compartment names may be used,
if needed.

Tools may provide other ways to show class references and to distinguish them from
class declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype
icon, with the name of the class either inside the class or below the icon. Other
contents of the class are suppressed.

3.20.4 Syle Guidelines

(Note that these are recommendations, hot mandates.)

® Center class name in boldface.

® Center stereotype name in plain face within guillemets above class name.
® Being class names with an uppercase |etter.

® Left justify attributes and operations in plain face.

® Begin attribute and operation names with a lowercase letter.

® Show the names of abstract classes or the signatures of abstract operationsin italics.

OMG-UML V1.1 Class March1998 3-27

As atool extension, boldface may be used for marking special list elements (for
example, to designate candidate keys in a database design). This might encode some
design property modeled as a tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts

or references.
3.20.5 Example
Window
. {abstract,
Window author=Joe,
status=tested}

+size: Area = (100,100)
#visibility: Boolean = invisible
Window +default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

size: Area
visibility: Boolean)
+display ()
. +hide ()
ﬂ:ggl"g 0 +create ()

-attachXWindow(xwin: Xwindow?*)

Figure3-7 Class Notation: Details Suppressed, Analysis-level Details, Implementation-level
Details

3.20.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram.
The name compartment contents map into the class name and into properties of the
class (built-in attributes or tagged values). The attribute compartment maps into a list

of Attributes of the Class. The operation compartment maps into a list of Operations of
the Class.

3.21 Name Compartment

3.21.1 Notation

Displays the name of the class and other properties in up to three sections:

3-28 OMG-UML V1.2 May 1998

An optional stereotype keyword may be placed above the class name within
guillemets, and/or a stereotype icon may be placed in the upper right corner of the
compartment. The stereotype name must not match a predefined keyword.

The name of the class appears next. If the class is abstract, its name appears in italics.
Note that any explicit specification of generalization status takes precedence over the
name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be
placed in braces below the class name. The list may show class-level attributes for
which there is no UML notation and it may also show tagged values. The presence of
a keyword for a Boolean type without a value implies the value true. For example, a
leaf class shows the property “{leaf}”.

The stereotype and property list are optional.

«controller» @

PenTracker

{ leaf, author="Mary Jones”}

Figure 3-8 Name Compartment

3.21.2 Mapping

The contents of the name compartment map into the name, stereotype, and various
properties of the Class represented by the class symbol.

3.22 List Compartment

3.22.1 Notation

Holds alist of strings, each of which is the encoded representation of a feature, such as
an attribute or operation. The strings are presented one to a line with overflow to be
handled in a tool-dependent manner. In addition to lists of attributes or operations,
optional lists can show other kinds of predefined or user-defined values, such as
responsibilities, rules, or modification histories. UML does not define these optional
lists. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order
of the elements is meaningful information and must be accessible within tools (for

example, it may be used by a code generator in generating a list of declarations). The
list elements may be presented in a different order to achieve some other purpose (for

OMG-UML V1.1 ListCompartment March 1998 3-29

3-30

example, they may be sorted in some way). Even if the list is sorted, the items
maintain their original order in the underlying model. The ordering information is
merely suppressed in the view.

An élipsis (. ..) asthefina element of alist or the final element of a delimited
section of alist indicates that additional elements in the model exist that meet the
selection condition, but that are not shown in that list. Such elements may appear in a
different view of the list.

Group properties

A property string may be shown as a element of the list, in which case it applies to all
of the succeeding list elements until another property string appears as a list element.
This is equivalent to attaching the property string to each of the list elements
individually. The property string does not designate a model element. Examples of this
usage include indicating a stereotype and specifying visibility. Keyword strings may
also be used in a similar way to qualify subsequent list elements.

Compartment name

A compartment may display a hame to indicate which kind of compartment it is. The
name is displayed in a distinctive font centered at the top of the compartment. This
capability is useful if some compartments are omitted or if additional user-defined
compartments are added. For a Class, the predefined compartments are named
attributes and operations. An example of a user-defined compartment might be
requirements. The name compartment in a class must always be present; therefore, it
does not require or permit a compartment name.

3.22.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent
ordering of the elements is not visible. A sort is based on some internal property and
does not indicate additional model information. Example sort rules include:

® alphabetical order,
® ordering by stereotype (such as constructors, destructors, then ordinary methods),
® ordering by visibility (public, then protected, then private), etc.

The elements in the list may be filtered according to some selection rule. The
specification of selection rulesis atool responsibility. The absence of items from a
filtered list indicates that no elements meet the filter criterion, but no inference can be
drawn about the presence or absence of elements that do not meet the criterion.
However, the ellipsis notation is available to show that invisible elements exist. It isa
tool responsibility whether and how to indicate the presence of either local or global
filtering, although a stand-alone diagram should have some indication of such filtering
if it isto be understandable.

OMG-UML V1.2 May 1998

If a compartment is suppressed, no inference can be drawn about the presence or
absence of its elements. An empty compartment indicates that no elements meet the
selection filter (if any).

Note that attributes may also be shown by composition (see Figure 3-25 on page 3-67).

3.22.3 Example

Rectangle

pl:Point
p2:Point

«constructor»
Rectangle(pl:Point, p2:Point)
«query»

area (): Real

aspect (): Real

;<iJ.pdate»
move (delta: Point)
scale (ratio: Real)

Figure3-9 Stereotype Keyword Applied to Groups of List Elements

OMG-UML V1.1 ListCompartment March 1998 331

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

bill no-shows
match to available rooms

exceptions

invalid credit card

Figure 3-10 Compartments with Names

3.22.4 Mapping

The entries in a list compartment map into alist of Model Elements, one for each list
entry. The ordering of the Model Elements matches the list compartment entries (unless
the list compartment is sorted in some way). In this case, no implication about the
ordering of the Elements can be made (the ordering can be seen by turning off sorting).
However, alist entry string that is a stereotype indication (within guillemets) or a
property indication (within braces) does not map into a separate Model Element.
Instead, the corresponding property applies to each subsequent Model Element until the
appearance of a different stand-alone stereotype or property indicator. The property
specifications are conceptually duplicated for each list Element, although a tool might
maintain an internal mechanism to store or modify them together. The presence of an
elipsis (“...”) as alist entry implies that the semantic model contains at least one
Element with corresponding properties that is not visible in the list compartment.

3.23 Attribute

Used to show attributes in classes. A similar syntax is used to specify qualifiers,
template parameters, operation parameters, and so on (some of these omit certain
terms).

3.23.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however,
the intent and usage is normally different.

3-32 OMG-UML V1.2 May 1998

3

The type of an attribute is a TypeExpression. It may resolve to a class name or it may
be complex, such as array[String] of Point. In any case, the details of the attribute
type expressions are not specified by UML. They depend on the expression syntax
supported by the particular specification or programming language being used.

3.23.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of
an attribute model element. The default syntax is:

visibility name : type-expression = initial-value { property-string }
® Where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker indicates
that the visibility is not shown (not that it is undefined or public). A tool should assign
visibilities to new attributes even if the visibility is not shown. The visibility marker is
a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). Thisformis
used particularly when it isused as an inline list element that applies to an entire block
of attributes.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually al forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a tool-
specific convention.

®* Where name is an identifier string that represents the name of the attribute.

®* Where type-expression is a language-dependent specification of the implementation
type of an attribute.

®* Where initial-value is a language-dependent expression for the initial value of a
newly created object. The initial value is optional (the equal sign is also omitted).
An explicit constructor for a new object may augment or modify the default initial
value.

® Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string;
otherwise, the attribute is instance-scope. The notation justification is that a class-
scope attribute is an instance value in the executing system, just as an object is an
instance value, so both may be designated by underlining. An instance-scope attribute
is not underlined; that is the default.

class-scope-attribute

OMG-UML V1.1 Attribute March 1998 3-33

3-34

There is no symbol for whether an attribute is changeable (the default is changeable).
A nonchangeable attribute is specified with the property “{frozen}”.

In the absence of a multiplicity indicator, an attribute holds exactly 1 value.
Multiplicity may be indicated by placing a multiplicity indicator in brackets after the
attribute name, for example:

colors [3]: Color
points [2..*]: Point

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence
of avalue, as opposed to a particular value from the range. For example, the following
declaration permits a distinction between the null value and the empty string:

name [0..1]: String

A stereotype keyword in guillemets precedes the entire attribute string, including any
visibility indicators. A property list in braces follows the entire attribute string.

3.23.3 Presentation Options
The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a
continuous string.

The syntax of the attribute string can be that of a particular programming language,
such as C++ or Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see “List Compartment” on
page 3-29).

3.23.4 Syle Guidelines

Attribute names typically begin with a lowercase letter. Attribute names are in plain
face.

3.23.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

OMG-UML V1.2 May 1998

3.23.6 Mapping

3.24 Operation

A string entry within the attribute compartment maps into an Attribute within the Class
representing the class symbol. The properties of the attribute map in accord with the
preceding descriptions. If the visibility is absent, then no conclusion can be drawn
about the Attribute visibilities unless a filter is in effect (e.g., only public attributes
shown). Likewise, if the type or initial value are omitted. The omission of an underline
always indicates an instance-scope attribute. The omission of multiplicity denotes a
multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on
the Attribute. In addition, any properties specified on a previous stand-alone property
specification entry apply to the current Attribute (and to others).

Used to show operations defined on classes. Also used to show methods supplied by
classes.

3.24.1 Operation

An operation is a service that an instance of the class may be requested to perform. It
has a name and a list of arguments.

3.24.2 Notation

An operation is shown as atext string that can be parsed into the various properties of
an operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }
® Where visibility is one of:
+ public visibility
protected visibility
- private visibility
The visibility marker may be suppressed. The absence of a visibility marker indicates

that the visibility is not shown (not that it is undefined or public). The visibility marker
is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). Thisformis
used particularly when it isused as an inline list element that applies to an entire block
of operations.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a tool-
specific convention.

OMG-UML V1.1 Operation March 1998 335

3-36

®* Where name is an identifier string.

® Where return-type-expression is a language-dependent specification of the
implementation type or types of the value returned by the operation. The return-type
is omitted if the operation does not return a value (C++ void). A list of expressions
may be supplied to indicate multiple return values.

® Where parameter-list is a comma-separated list of formal parameters, each
specified using the syntax:

kind name : type-expression = default-value

e where kind isin, out, or inout, with the default in if absent.

« where name is the name of a formal parameter.

« where type-expression is the (language-dependent) specification of an
implementation type.

« where default-value is an optional value expression for the parameter, expressed
in and subject to the limitations of the eventual target language.

® Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string.
An instance-scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is
specified by the property “{ query}”; otherwise, the operation may alter the system
state, although there is no guarantee that it will do so.

The concurrency semantics of an operation are specified by a property string with one
of the names: sequential, guarded, concurrent. In the absence of a specification, the
concurrency semantics are undefined and must be assumed to be sequential in the
worst case.

The top-most appearance of an operation signature declares the operation on the class
(and inherited by all of its descendents). If this class does not implement the operation
(i.e., does not supply a method), then the operation may be marked as “{ abstract}” or
the operation signature may be italicized to indicate that it is abstract. Any subordinate
appearances of the operation signature indicate that the subordinate class implements a
method on the operation. (The specification of “{abstract}” or italics on a subordinate
class would not indicate a method, but this usage of the notation would be poor form.)

The actua text or algorithm of a method may be indicated in a note attached to the
operation entry.

An operation entry with the stereotype «signal» indicates that the class accepts the
given signal. The syntax is identical to that of an operation.

The specification of operation behavior is given as a note attached to the operation.
The text of the specification should be enclosed in braces if it is aformal specification
in some language (a semantic Constraint); otherwise, it should be plain text if it isjust
a natural-language description of the behavior (a Comment).

OMG-UML V1.2 May 1998

3

A stereotype keyword in guillemets precedes the entire operation string, including any
visibility indicators. A property list in braces follows the entire operation string.

3.24.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming
language, such as C++ or Smalltalk. Specific tagged properties may be included in the
string.

3.24.4 Syle Guidelines

Operation names typically begin with a lowercase letter. Operation names are in plain
face. An abstract operation may be shown in italics.

3.24.5 Example

+display (): Location

+hide ()

+create ()
-attachXWindow(xwin:Xwindow*)

Figure 3-11 Operation List with a Variety of Operations

3.24.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method
within the Class representing the class symbol. The properties of the operation map in
accordance with the preceding descriptions. See the description of “Attribute” on
page 3-32 for additional details.

The topmost appearance of an operation specification in a class hierarchy maps into an
Operation definition in the corresponding Class or Interface. Interfaces do not have
methods. In a Class, each appearance of an operation entry maps into the presence of a
Method in the corresponding Class, unless the operation entry contains the { abstract}
property (including use of conventions such as italics for abstract operations). If an
abstract operation entry appears within a hierarchy in which the same operation has
aready been defined in an ancestor, it has no effect but is not an error unless the
declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

OMG-UML V1.1 Operation March 1998 3-37

3.24.7 Sgnal Reception

If the objects of a class accept and respond to a given signal, that fact can be indicated
using the same syntax as an operation with the keyword «signal». The response of the
object to the reception of the signal is shown with a state machine. Among other uses,
this notation can show the response of objects of a class to error conditions and
exceptions, which should be modeled as signals.

3.25 TypeVs. Implementation Class

3.25.1 Semantics

Classes can be specialized by stereotypes into Types and Implementation Classes
(although they can be left undifferentiated as well). A Type characterizes a changeable
role that an object may adopt and later abandon. An Implementation Class defines the
physical data structure and procedures of an object as implemented in traditional
languages (C++, Smalltalk, etc.). An object may have multiple Types (which may
change dynamically) but only one ImplementationClass (which is fixed). Although the
usage of Types and ImplementationClasses is different, their internal structure is the
same, so they are modeled as stereotypes of Class. All kinds of Class require that a
subclass fully support the features of the superclass, including support for all inherited
attributes, associations, and operations.

3.25.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the
stereotype “ «type»”. An implementation class is shown with the stereotype
“«implementation class»”. A tool is aso free to alow a default setting for an entire
diagram, in which case all of the class symbols without explicit stereotype indications
map into Classes with the default stereotype. This might be useful for a model that is
close to the programming level.

The implementation of a type by an implementation class is modeled as the Realizes
relationship, shown as a dashed line with a solid triangular arrowhead (a dashed
“generalization arrow”). This symbol implies inheritance of operations, but not of
structure (attributes or associations).

3-38 OMG-UML V1.2 May 1998

3.26

3.25.3 Example
«type» «implementation class»
Collection HashTable
/N
«type» «implementation class»
Set <t----=- HashTableSet
elements: Collection elements: Collection
addElement(Object) addElement(Object)
removeElement(Object) removeElement(Object)
testElement(Object):Boolean testElement(Object):Boolean
setTableSize(Integer)

Figure 3-12 Notation for Types and Implementation Classes

3.25.4 Mapping

Interfaces

A class symbol with a stereotype (including “type” and “implementation class’) maps
into a Class with the corresponding stereotype. A class symbol without a stereotype
maps into a Class with the default stereotype for the diagram (if a default has been
defined by the modeler or tool); otherwise, it maps into a Class with no stereotype.
This symbol is normally used between a class and an interface, but may aso be used
between any two classifiers to show inheritance of operations only without inheritance
of attributes or associations.

3.26.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component,
or other entity (including summarization units such as packages) without specification
of internal structure. Each interface often specifies only a limited part of the behavior
of an actual class. Interfaces do not have implementation. They lack attributes, states,

OMG-UML V1.1 Interfaces March 1998 3-39

3-40

or associations, they only have operations. Interfaces may have generalization
relationships. An interface is formally equivalent to an abstract class with no attributes
and no methods and only abstract operations, but Interface is a peer of Class within the
UML metamodel (both are Classifiers).

3.26.2 Notation

An interface is a Classifer and may also be shown using the full rectangle symbol with
compartments and the keyword «interface». A list of operations supported by the
interface is placed in the operation compartment. The attribute compartment may be
omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface
placed below the symbol. The circle may be attached by a solid line to classes that
support it (also to higher-level containers, such as packages that contain the classes).
This indicates that the class provides al of the operations in the interface type (and
possibly more). The operations provided are not shown on the circle notation; use the
full rectangle symbol to show the list of operations. A class that uses or requires the
operations supplied by the interface may be attached to the circle by a dashed arrow
pointing to the circle. The dashed arrow implies that the class requires no more than
the operations specified in the interface; the client class is not required to actually use
all of the interface operations.

The Realizes relationship from a class to an interface that it supports is shown by a
dashed line with a solid triangular arrowhead (a “ dashed generalization symbol”). This
is the same notation used to indicate realization of atype by an implementation class.
In fact, this symbol can be used between any two classifier symbols, with the meaning
that the client (the one at the tail of the arrow) supports at least al of the operations
defined in the supplier (the one at the head of the arrow), but with no necessity to
support any of the data structure of the supplier (attributes and associations).

OMG-UML V1.2 May 1998

3.26.3 Example
Hashable
String L e]
*

HashTable
isEqual(String):Boolean | contentso -
hash():Integer Comparable P

AN e
N < «uses»
N Phd
N\ -
2\
«interface»
Comparable

isEqual(String):Boolean
hash():Integer

Figure 3-13 Interface Notation on Class Diagram

3.26.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram,
maps into an Interface element with the name given by the symbol. The operation list
of arectangle symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid
line connecting a class symbol and an interface circle, maps into a realization-
specification relationship between the corresponding Class and Interface elements. A
dependency arrow from a class symbol to an interface symbol maps into a «uses»
dependency between the corresponding Class and Interface.

3.27 Parameterized Class(Template)

3.27.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters.
It defines a family of classes, each class specified by binding the parameters to actual
values. Typically, the parameters represent attribute types; however, they can also
represent integers, other types, or even operations. Attributes and operations within the
template are defined in terms of the formal parameters so they too become bound when
the template itself is bound to actual values.

OMG-UML V1.1 Parameterized Class(Template) March 1998 341

A template is not a directly-usable class because it has unbound parameters. Its
parameters must be bound to actual values to create a bound form that is a class. Only
a class can be s superclass or the target of an association (a one-way association from
the template to another classis permissible, however). A template may be a subclass of
an ordinary class. This implies that all classes formed by binding it are subclasses of
the given superclass.

Parameterization can be applied to other Model Elements, such as Collaborations or
even entire Packages. The description given here for classes applies to other kinds of
modeling elements in the obvious way.

3.27.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the
rectangle for the class (or to the symbol for another modeling element). The dashed
rectangle contains a parameter list of formal parameters for the class and their
implementation types. The list must not be empty, although it might be suppressed in
the presentation. The name, attributes, and operations of the parameterized class appear
as normal in the class rectangle; however, they may also include occurrences of the
formal parameters. Occurrences of the formal parameters can also occur inside of a
context for the class, for example, to show a related class identified by one of the
parameters.

3.27.3 Presentation Options
The parameter list may be comma-separated or it may be one per line.
Parameters are restricted attributes, shown as strings with the syntax
name : type
® Where name is an identifier for the parameter with scope inside the template.

® Where type is a string designating a TypeExpression for the parameter.

If the type name is omitted, it is assumed to be a type expression that resolves to a
classifier, such as a class name or a data type. Other parameter types (such as Integer)
must be explicitly shown, they must resolve to valid type expressions.

3-42 OMG-UML V1.2 May 1998

3.27.4 Example
' T.k:Integer |
FArray “~------- -
k..k
.
V\
N\ «bind» (Address,24)
AN
AN

FArray<Point,3> AddressList

Figure 3-14 Template Notation with Use of Parameter as a Reference

3.27.5 Mapping

3.28 Bound Element

The addition of the template dashed box to a symbol causes the addition of the
parameter names in the list as Model Elements within the Namespace of the
Model Element corresponding to the base symbol. Each of the parameter

M odel Elements has the templateParameter association to the Namespace.

3.28.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or
association, because it has a free parameter that is not meaningful outside of a scope
that declares the parameter. To be used, a template’ s parameters must be bound to
actual values. The actual value for each parameter is an expression defined within the
scope of use. If the referencing scope is itself a template, then the parameters of the
referencing template can be used as actual values in binding the referenced template.
The parameter names in the two templates cannot be assumed to correspond because
they have no scope outside of their respective templates.

3.28.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as
follows:

OMG-UML V1.1 Bound Element March 1998 3-43

Template-name ‘<' value-list ‘>’
® Where value-list is a comma-delimited non-empty list of value expressions.

®* Where Template-name is identical to the name of atemplate.
For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template
parameters for the template of the given name.

The bound element name may be used anywhere that an element name of the
parameterized kind could be used. For example, a bound class name could be used
within a class symbol on a class diagram, as an attribute type, or as part of an
operation signature.

Note that a bound element is fully specified by its template; therefore, its content may
not be extended. Declaration of new attributes or operations for classes is not
permitted, for example, but a bound class could be subclassed and the subclass
extended in the usual way.

The relationship between the bound element and its template alternatively may be
shown by a Dependency relationship with the keyword «bind». The arguments are
shown in parentheses after the keyword. In this case, the bound form may be given a
name distinct from the template.

3.28.3 Syle Guidelines

The attribute and operation compartments are normally suppressed within a bound
class, because they must not be modified in a bound template.

3.28.4 Example
See Figure 3-14 on page 3-43.

3.28.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding
dependency between the dependent Model Element (such as Class) corresponding to
the bound element symbol and the provider Model Element (again, such as Class)
whose name matches the name part of the bound element without the arguments. If the
name does not match a template element or if the number of arguments in the bound
element does not match the number of parametersin the template, then the model isill
formed. Each argument in the bound element maps into a Model Element bearing a
templateArgument association to the Namespace of the bound element. The Binding
relationship bears the list of actual argument values.

OMG-UML V1.2 May 1998

3.29 Utility

A utility is a grouping of global variables and procedures in the form of a class
declaration. Thisis not a fundamental construct, but a programming convenience. The
attributes and operations of the utility become global variables and procedures. A
utility is modeled as a stereotype of a class.

3.29.1 Semantics
The instance-scope attributes and operations of a utility are interpreted as global
attributes and operations. It is inappropriate for a utility to declare class-scope

attributes and operations because the instance-scope members are already interpreted
as being at class scope.

3.29.2 Notation

Shown as the stereotype «utility» of Class. It may have both attributes and operations,
all of which are treated as global attributes and operations.

3.29.3 Example

«utility»
MathPak

sin (Angle): Real
cos (Angle): Real
sgrt (Real): Real
random(): Real

Figure 3-15 Notation for Utility

3.29.4 Mapping

Thisis not a special symbol. It simply maps into a Class element with the «utility»
stereotype.

3.30 Metaclass

3.30.1 Semantics

A metaclass is a class whose instances are classes.

OMG-UML V1.1 Utility = March 1998 3-45

3.30.2 Notation

Shown as the stereotype «metaclass» of Class.

3.30.3 Mapping

Thisis not a special symbol. It simply maps into a Class element with the «metaclass»
stereotype.

3.31 ClassPathnames

3.31.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as
relationships to other classes. A reference to aclassin adifferent package is notated by
using a pathname for the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type
specifications for attributes and variables. In these places a reference to aclassis
indicated by simply including the name of the class itself, including a possible package
name, subject to the syntax rules of the expression.

3.31.2 Example

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

Figure 3-16 Pathnames for Classes in Other Packages

3-46 OMG-UML V1.2 May 1998

3.31.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class
with the given name inside the package with the given name. The name is assumed to
be defined in the target package; otherwise, the model isill formed. A Relationship
from a symbol in the current package (i.e., the package containing the diagram and its
mapped elements) to a symbol in another package is part of the current package.

3.32 Importing a Package

3.32.1 Semantics

A class in another package may be referenced. On the package level, the «import»
dependency indicates that the contents of the target packages may be referenced by the
client package or packages recursively embedded within it. The target references must
have visibility sufficient for the referents. Visibilities may be specified on model
elements and on packages. If a model element is nested inside one or more packages,
the visibilities of the element and all of its containers combine according to the rule
that the most restrictive visibility in the set is obtained. It is not possible to selectively
export certain elements from within a nested package; the visibility of the outer
package is applied to each element exported by an inner package. Imports are recursive
within nested levels of packages. A descendent of a class requires at least “protected”
visibility; any other class requires “public” visibility. (See the UML Semantics chapter
for full details.)

Note that an import’s dependency does not modify the namespace of the client or in
any other way automatically create references; it merely grants permission to establish
references. Note also that a tool could automatically create imports dependencies for
users if desired when references are created.

3.32.2 Notation

The imports dependency is displayed as a dependency arrow from the referencing
(client) package to the target (supplier) package containing the target of the references.
The arrow has the stereotype «import». This dependency indicates that elements within
the client package may legally reference elements within the supplier. The references
must also satisfy visibility constraints specified by the supplier. Note that the
dependency does not automatically create any references. It merely grants permission
for them to be established.

OMG-UML V1.1 ImportingaPackage March 1998 3-47

3.32.3 Example

Customers

Banking::CheckingAccount

«import»

|
|
|
Banking v

CheckingAccount

Figure 3-17 Imports Dependency Among Packages

3.32.4 Mapping

Thisis not a special symbol. It maps into a Dependency with the stereotype «import»
between the two packages.

3.33 Object

3.33.1 Semantics

An object represents a particul ar instance of aclass. It hasidentity and attribute values.
The same notation also represents a role within a collaboration because roles have
instance-like characteristics.

3.33.2 Notation

The object notation is derived from the class notation by underlining instance-level
elements, as explained in the general comments in “ Type-Instance Correspondence” on
page 3-14.

An object shown as a rectangle with two compartments.

3-48 OMG-UML V1.2 May 1998

3

The top compartment shows the name of the object and its class, all underlined, using
the syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The
package names precede the classname and are separated by double colons. For
example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper right corner. The stereotype for an object must match
the stereotype for its class.

To show multiple classes that the object is an instance of, use a comma-separated list
of classnames. These classnames must be legal for multiple classification (i.e., only
one implementation class permitted, but multiple roles permitted).

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur
concurrently.

The second compartment shows the attributes for the object and their values as a list.
Each value line has the syntax:

attributename : type = value
The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal
value expressions; however, it is expected that a tool will specify such a syntax using
some programming language.

3.33.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the
class name. This represents an anonymous object of the given class given identity by
its relationships.

The class of the object may be suppressed (together with the colon).
The attribute value compartment as a whole may be suppressed.
Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list
of values held over time. This is a good opportunity for the use of animation by a tool
(the values would change dynamically). An aternate notation is to show the same
object more than once with a «becomes» relationship between them.

OMG-UML V1.1 Object March1998 3-49

3-50

3.33.4 Syle Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are
not objects, because they describe many possible objects. They are instead roles that
may be held by object. Objects in class diagrams serve mainly to show examples of
data structures.

3.33.5 Variations

For alanguage such as Self in which operations can be attached to individual objects at
run time, a third compartment containing operations would be appropriate as a
language-specific extension.

3.33.6 Example

triangle: Polygon triangle

center = (0,0)
vertices = ((0,0),(4,0),(4,3))

borderColor = black
fillColor = white -Polvaon
triangle: Polygon
scheduler

Figure 3-18 Objects

3.33.7 Mapping

The mapping of an object symbol depends on the diagram: Within a collaboration, it
maps into a ClassifierRole of the corresponding Collaboration. The role has the name
specified by the objectname portion of the symbol name string. The ClassifierRole has
a type association to the Class whose name appears in the classname part of the
symbol name string.

In an object diagram, or within an ordinary class diagram, it maps into an Object of the
Class given by the classname part of the name string. The values of the attributes are
given by the value expressions in the attribute list in the symbol.

OMG-UML V1.2 May 1998

3.34 Composite Object

3.34.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. Thisis
an instance of a composite class, which implies the composition aggregation between
the class and its parts. A composite object is similar to (but simpler and more restricted

than) a collaboration; however, it is defined completely by composition in a static
model.

3.34.2 Notation

A composite object is shown as an object symbol. The name string of the composite
object is placed in a compartment near the top of the rectangle (as with any object).
The lower compartment holds the parts of the composite object instead of alist of
attribute values. (However, even a list of attribute values may be regarded as the parts
of a composite object, so there is not such a difference.) It is possible for some of the
parts to be composite objects with further nesting.

3.34.3 Example

awindow : Window

horizontalBar:ScrollBar

verticalBar:ScrollBar

moves

surface:Pane

moves

title:TitleBar

Figure 3-19 Composite Objects

OMG-UML V1.1 CompositeObject March 1998 351

3.34.4 Mapping

3.35 Association

A composite object symbol maps into an Object of the given Class with composition
links to each of the Objects and Links corresponding to the class box symbols, and
association path symbols directly contained within the boundary of the composite
object symbol (and not contained within another deeper boundary).

Binary associations are shown as lines connecting two class symbols. The lines may
have a variety of adornments to show their properties. Ternary and higher-order
associations are shown as diamonds connected to class symbols by lines.

3.36 Binary Association

3.36.1 Semantics

A binary association is an association among exactly two classes (including the
possibility of a reflexive association from a class to itself).

3.36.2 Notation

3-52

A binary association is drawn as a solid path connecting two class symbols (both ends
may be connected to the same class, but the two ends are distinct). The path may
consist of one or more connected segments. The individual segments have no semantic
significance, but may be graphically meaningful to a tool in dragging or resizing an
association symbol. A connected sequence of segmentsis called a path.

In a binary association, both ends may attach to the same class. The links of such an
association may connect two different objects from the same class or one object to
itself. The latter case is a reflexive association; it may be forbidden by a constraint if
necessary.

The end of an association where it connects to a class is called an association end.
Most of the interesting information about an association is attached to its roles.

The path may also have graphical adornments attached to the main part of the path
itself. These adornments indicate properties of the entire association. They may be
dragged along a segment or across segments, but must remain attached to the path. It is
atool responsibility to determine how close association adornments may approach a
role so that confusion does not occur. The following kinds of adornments may be
attached to a path.

association name

Designates the (optional) name of the association.

OMG-UML V1.2 May 1998

3

Shown as a name string near the path (but not near enough to an end to be confused
with a rolename). The name string may have an optional small black solid triangle in
it. The point of the triangle indicates the direction in which to read the name. The
name-direction arrow has no semantics significance, it is purely descriptive. The
classes in the association are ordered as indicated by the name-direction arrow.

Note — There is no need for a name direction property on the association model; the
ordering of the classes within the association is the name direction. This convention
works even with n-ary associations.

A stereotype keyword within guillemets may be placed above or in front of the
association name. A property string may be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes, operations,
and other associations. This is present if, and only if, the association is an association
class. Shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same underlying
model element, which has a single name. The hame may be placed on the path, in the
class symbol, or on both (but they must be the same name).

Logically, the association class and the association are the same semantic entity;
however, they are graphically distinct. The association class symbol can be dragged
away from the line, but the dotted line must remain attached to both the path and the
class symbol.

3.36.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular
jog to indicate that the paths do not intersect (as in electrical circuit diagrams).
Alternately, crossing can be unmarked but connections might be shown by small dots.

3.36.4 Syle Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique
segments, and curved segments. The choice of a particular set of line stylesis a user
choice.

3.36.5 Options

Or-association

An or-constraint indicates a situation in which only one of several potential
associations may be instantiated at one time for any single object. This is shown as a
dashed line connecting two or more associations, all of which must have aclassin

OMG-UML V1.1 BinaryAssociation March 1998 3-53

common, with the constraint string “{ or}” labeling the dashed line. Any instance of the
class may only participate in one of the associations at one time. Each rolename must
be different. (This is simply a predefined use of the constraint notation.)

3.36.6 Example

« <Job 1.*
Company T
employer | employee

Job
salary

Person

boss
0.1

worker|

<4Manages

/ Person
on}

Account |

\‘\ Corporation

Figure 3-20 Association Notation

3.36.7 Mapping

An association path connecting two class symbols maps to an Association between the
corresponding Classes. If there is an arrow on the association name, then the Class
corresponding to the tail of the arrow is the first class and the Class corresponding to
the head of the arrow is the second Class in the ordering of roles of the Association;
otherwise, the ordering of roles in the association is undetermined. The adornments on
the path map into properties of the Association as described above. The Association is
owned by the package containing the diagram.

3-54 OMG-UML V1.2 May 1998

3.37 Association End

3.37.1 Semantics

An association end is simply an end of an association where it connectsto aclass. It is
part of the association, not part of the class. Each association has two or more ends.
Most of the interesting details about an association are attached to its ends. An
association end is not a separable element, it is just a mechanical part of an association.

3.37.2 Notation

The path may have graphical adornments at each end where the path connects to the
class symbol. These adornments indicate properties of the association related to the
class. The adornments are part of the association symbol, not part of the class symbol.
The end adornments are either attached to the end of the line, or near the end of the
line, and must drag with it. The following kinds of adornments may be attached to an
association end.

multiplicity

Specified by atext syntax. Multiplicity may be suppressed on a particular association
or for an entire diagram. In an incomplete model the multiplicity may be unspecified in
the model itself. In this case, it must be suppressed in the notation.

ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or
unordered. If no indication is given, then it is unordered (the elements form a set).
Various kinds of ordering can be specified as a constraint on the association end. The
declaration does not specify how the ordering is established or maintained. Operations
that insert new elements must make provision for specifying their position either
implicitly (such as at the end) or explicitly. Possible values include:

® unordered - the elements form an unordered set. This is the default and need not be
shown explicitly.

® ordered - the elements of the set are ordered into alist. It is still a set and
duplicates are prohibited. This generic specification includes all kinds of ordering.
This may be specified by the keyword syntax “{ordered}”.

An ordered relationship may be implemented in various ways, however, thisis
normally specified as a language-specified code generation property to select a
particular implementation. An implementation extension might substitute the data
structure to hold the elements for the generic specification “ordered.”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses a design decision:

OMG-UML V1.1 Association End March 1998 3-55

3-56

® sorted - the elements are sorted based on their internal values. The actual sorting
rule is best specified as a separate constraint.

qualifier

Qualifier is optional, but not suppressible.

navigability

An arrow may be attached to the end of the path to indicate that navigation is
supported toward the class attached to the arrow. Arrows may be attached to zero, one,
or two ends of the path. To be totally explicit, arrows may be shown whenever
navigation is supported in a given direction. In practice, it is often convenient to
suppress some of the arrows and just show exceptional situations. See “Presentation
Options’ on page 3-27 for details.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The
diamond may not be attached to both ends of aline, but it need not be present at all.
The diamond is attached to the class that is the aggregate. The aggregation is optional,
but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as
composition.

rolename

A name string near the end of the path. It indicates the role played by the class
attached to the end of the path near the rolename. The rolename is optional, but not
suppressible.

interface specifier
The name of a Classifier with the syntax:
‘" classifiername

It indicates the behavior expected of an associated object by the related object. In other
words, the interface specifier specifies the behavior required to enable the association.
In this case, the actual class usually provides more functionality than required for the
particular association (since it may have other responsibilities).

The use of arolename and interface specifier are equivalent to creating a small
collaboration that includes just an association and two roles, whose structure is defined
by the rolename and role classifier on the original association. Therefore, the original
association and classes are a use of the collaboration. The original class must be
compatible with the interface specifier (which can be an interface or a type).

OMG-UML V1.2 May 1998

3

If an interface specifier is omitted, then the association may be used to obtain full
access to the associated class.

changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is
needed. The property {frozen} indicates that no links may be added, deleted, or moved
from an object (toward the end with the adornment) after the object is created and
initialized. The property {addOnly} indicates that additional links may be added
(presumably, the multiplicity is variable); however, links may not be modified or
deleted.

visibility
Specified by avisibility indicator (‘+', ‘#, ‘- or explicit keyword such as { public}) in
front of the rolename. Specifies the visibility of the association traversing in the
direction toward the given rolename. See “Attribute” on page 3-32 for details of
visibility specification.

Other properties can be specified for association roles, but there is no graphical syntax
for them. To specify such properties, use the constraint syntax near the end of the

association path (atext string in braces). Examples of other properties include
mutability.

3.37.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a
tree by merging the aggregation end into a single segment. This requires that all of the
adornments on the aggregation ends be consistent. Thisis purely a presentation option,
there are no additional semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These
can vary from time to time by user request or from diagram to diagram.

® Presentation option 1. Show all arrows. The absence of an arrow indicates
navigation is not supported.

® Presentation option 2: Suppress al arrows. No inference can be drawn about
navigation. Thisis similar to any situation in which information is suppressed from
aview.

® Presentation option 3: Suppress arrows for associations with navigability in both
directions, show arrows only for associations with one-way navigability. In this
case, the two-way navigability cannot be distinguished from no-way navigation;
however, the latter case is normally rare or nonexistent in practice. Thisis yet
another example of a situation in which some information is suppressed from a
view.

OMG-UML V1.1 Association End March 1998 3-57

3.37.4 Syle Guidelines

If there are multiple adornments on a single role, they are presented in the following
order, reading from the end of the path attached to the class toward the bulk of the
path:

® qualifier
® aggregation symbol
® navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are
not confused with a different association. They may be placed on either side of the
line. It is tempting to specify that they will always be placed on a given side of the line
(clockwise or counterclockwise), but this is sometimes overridden by the need for
clarity in a crowded layout. A rolename and a multiplicity may be placed on opposite
sides of the same role, or they may be placed together (for example, “* employee”).

3.37.5 Example
+points
Containsh 3
Polygon <> Point
{ordered}
1
1 GraphicsBundle
-bundle| color
texture
density

Figure 3-21 Various Adornments on Association Roles

3.37.6 Mapping

The adornments on the end of an association path map into properties of the
corresponding role of the Association. In general, implications cannot be drawn from
the absence of an adornment (it may simply be suppressed) but see the preceding
descriptions for details.

3-58 OMG-UML V1.2 May 1998

3.38 Multiplicity

3.38.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity specification is a
subset of the open set of nonnegative integers.

3.38.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated
sequence of integer intervals, where an interval represents a (possibly infinite) range of
integers, in the format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed
(inclusive) range of integers from the lower bound to the upper bound. In addition, the
star character (*) may be used for the upper bound, denoting an unlimited upper
bound. In a parameterized context (such as a template), the bounds could be
expressions but they must evaluate to literal integer values for any actual use. Unbound
expressions that do not evaluate to literal integer values are not permitted.

If asingleinteger value is specified, then the integer range contains the single integer
value.

If the multiplicity specification comprises a single star (*), then it denotes the
unlimited nonnegative integer range, that is, it is equivalent to *..* = 0..* (zero or
more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they
must resolve to fixed integer ranges within the model (i.e., no dynamic evaluation of
expressions, essentially the same rule on literal values as most programming
languages).

3.38.3 Syle Guidelines

Preferably, intervals should be monotonically increasing. For example, “1..3,7,10" is
preferable to “7,10,1..3".

Two contiguous intervals should be combined into a single interval. For example,
“0..1" is preferable to “0,1".

OMG-UML V1.1 Multiplicity =~ March 1998 3-59

3.38.4 Example

A

© r»r ©

1.~
1.6
1..3,7..10,15,19..*

3.38.5 Mapping

3.39 Qualifier

A multiplicity string maps into a Multiplicity value. Duplications or other nonstandard
presentation of the string itself have no effect on the mapping. Note that Multiplicity is
avalue and not an object. It cannot stand on its own, but is the value of some element

property.

3.39.1 Semantics

A quadlifier is an attribute or list of attributes whose values serve to partition the set of
objects associated with an object across an association. The qualifiers are attributes of
the association.

3.39.2 Notation

3-60

A qualifier is shown as a small rectangle attached to the end of an association path
between the final path segment and the symbol of the class that it connects to. The
gualifier rectangle is part of the association path, not part of the class. The qualifier
rectangle drags with the path segments. The qualifier is attached to the source end of
the association. An object of the source class, together with a value of the qualifier,
uniquely select a partition in the set of target class objects on the other end of the
association (i.e., every target falls into exactly one partition).

The multiplicity attached to the target role denotes the possible cardinalities of the set
of target objects selected by the pairing of a source object and a qualifier value.
Common values include:

® “0..1" (aunique value may be selected, but every possible qualifier value does not
necessarily select a value).

® “1” (every possible qualifier value selects a unique target object; therefore, the
domain of qualifier values must be finite).

OMG-UML V1.2 May 1998

3

e “* (the qualifier value is an index that partitions the target objects into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more
attributes shown one to a line. Qualifier attributes have the same notation as class
attributes, except that initial value expressions are not meaningful.

It is permissible (although somewhat rare), to have a qualifier on each end of a single
association.

3.39.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would
modify the inherent character of the relationship).

A tool may use alighter line for qualifier rectangles than for class rectangles to
distinguish them clearly.

3.39.4 Syle Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although
thisis not always practical.

3.39.5 Example

Bank Chessbhoard
account # rank:Rank
* file:File
0.1 1 ?
1
Person
Square

Figure 3-22 Qualified Associations

3.39.6 Mapping

The presence of a qualifier box on an end of an association path maps into a Qualifier
on the corresponding Association Role. Each attribute entry string inside the qualifier
box maps into an Attribute of the Qualifier.

OMG-UML V1.1 Qualifier March 1998 3-61

3

3.40 Association Class

3.40.1 Semantics

An association class is an association that also has class properties (or a class that has
association properties). Even though it is drawn as an association and a class, it is
really just a single model element.

3.40.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line
to an association path. The name in the class symbol and the name string attached to
the association path are redundant and should be the same. The association path may
have the usual adornments on either end. The class symbol may have the usual
contents. There are no adornments on the dashed line.

3.40.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission
does not change the overall relationship. The association path may not be suppressed.

3.40.4 Syle Guidelines

The attachment point should not be near enough to either end of the path that it
appears to be attached to, the end of the path, or to any of the role adornments.

Note that the association path and the association class are a single model element and
have a single name. The name can be shown on the path, the class symbol, or both. If
an association class has only attributes, but no operations or other associations, then
the name may be displayed on the association path and omitted from the association
class symbol to emphasize its “association nature.” If it has operations and other
associations, then the name may be omitted from the path and placed in the class
rectangle to emphasize its “class nature.” In neither case are the actual semantics
different.

3-62 OMG-UML V1.2 May 1998

3.40.5 Example
c * 1.*
ompan T
pany employer |employee Person

I

Job boss

salary
0.1
worker |
<Manages

Figure 3-23 Association Class

3.40.6 Mapping

An association path connecting two class boxes connected by a dashed line to another
class box maps into a single Association Class element. The name of the Association
Class element is taken from the association path, the attached class box, or both (they
must be consistent if both are present). The Association properties map from the
association path, as specified previously. The Class properties map from the class box,
as specified previously. Any constraints or properties placed on either the association
path or attached class box apply to the Association Class itself, they must not conflict.

3.41 N-aryAssociation

3.41.1 Semantics

An n-ary association is an association among three or more classes (a single class may
appear more than once). Each instance of the association is an n-tuple of values from
the respective classes. A binary association is a special case with its own notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary
multiplicity. The multiplicity on a role represents the potential number of instance
tuples in the association when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

OMG-UML V1.1 N-aryAssociation March 1998 3-63

3-64

3.41.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a
terminator on a path) with a path from the diamond to each participant class. The name
of the association (if any) is shown near the diamond. Role adornments may appear on
each path as with a binary association. Multiplicity may be indicated; however,

gualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This
indicates an n-ary association that has attributes, operations, and/or associations.

3.41.3 Syle Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

3.41.4 Example

This example shows the record of ateam in each season with a particular goalkeeper.
It is assumed that the goalkeeper might be traded during the season and can appear

with different teams.

Year

*
season

* *

Team

team goalkeeper

Player

Record

goals for
goals against
wins

losses

ties

Figure 3-24 Ternary association that is also an association class

OMG-UML V1.2 May 1998

3.41.5 Mapping

3.42 Composition

A diamond attached to some number of class boxes by solid lines maps into an N-ary
Association whose roles are corresponding Classes. The ordering of the Classes in the
Association is indeterminate from the diagram. If a class box is attached to the
diamond by a dashed line, then the corresponding Class supplies the class properties
for an N-ary Association Class.

3.42.1 Semantics

Composition is aform of aggregation with strong ownership and coincident lifetime of
part with the whole. The multiplicity of the aggregate end may not exceed one (it is
unshared). See the Semantics chapters (2-5) for further details.

The parts of a composition may include classes and associations. The meaning of an
association in a composition is that any tuple of objects connected by a single link
must all belong to the same container object.

3.42.2 Notation

Composition may be shown by a solid filled diamond as an association role adornment.
Alternately, UML provides a graphically-nested form that is more convenient for
showing composition in many cases.

Instead of using binary association paths using the composition aggregation
adornment, composition may be shown by graphical nesting of the symbols of the
elements for the parts within the symbol of the element for the whole. A nested class-
like element may have a multiplicity within its composite element. The multiplicity is
shown in the upper right corner of the symbol for the part. If the multiplicity mark is
omitted, then the default multiplicity is many. This represents its multiplicity as a part
within the composite class. A nested element may have a rolename within the
composition; the name is shown in front of its type in the syntax:

rolename *:’ classname
This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of
an association path attached to the element for the whole. The multiplicity may be
shown in the normal way.

Note that attributes are, in effect, composition relationships between a class and the
classes of its attributes.

OMG-UML V1.1 Composition March 1998 3-65

3-66

An association drawn entirely within aborder of the composite is considered to be part
of the composition. Any objects on a single link of it must be from the same
composite. An association drawn such that its path breaks the border of the composite
is not considered to be part of the composition. Any objects on a single link of it may
be from the same or different composites.

Note that the notation for composition resembles the notation for collaboration. A
composition may be thought of as a collaboration in which all of the participants are
parts of a single composite object.

3.42.3 Design Guidelines

This notation is applicable to “class-like” model elements (e.g., classes, types, nodes,
processes, etc.).

Note that a class symbol is a composition of its attributes and operations. The class
symbol may be thought of as an example of the composition nesting notation (with
some special layout properties). However, attribute notation subordinates the attributes
strongly within the class; therefore, it should be used when the structure and identity of
the attribute objects themselves is unimportant outside the class.

OMG-UML V1.2 May 1998

3.42.4 Example

scrollbar

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

2 title | 1 body

Slider

Header

Panel

Window

scrollbar:Slider

1
title:Header

1
body:Panel

Figure 3-25 Different Ways to Show Composition

OMG-UML V1.1 Composition March 1998

3-67

3.42.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although
attributes may be semantically equivalent to composition on a deep level, the mapped
model distinguishes the two forms.

A solid diamond on an association path maps into the composition property on the
corresponding Association Role.

A class box with contained class boxes maps into a set of composition associations;
that is, one composition association between the Class corresponding to the outer class
box and each of the Classes corresponding to the enclosed class boxes. The
multiplicity of the composite end of each association is 1. The multiplicity of each
constituent end is 1 if not specified explicitly; otherwise, it is the value specified in the
corner of the class box or specified on an association path from the outer class box
boundary to an inner class box.

3.43 Links

3.43.1 Semantics

A link is atuple (list) of object references. Most commonly, it is a pair of object
references. It is an instance of an association.

3.43.2 Notation

A binary link is shown as a path between two objects. In the case of a reflexive
association, it may involve aloop with a single object. See “ Association” on page 3-52
for details of paths.

A rolename may be shown at each end of the link. An association name may be shown
near the path. If present, it is underlined to indicate an instance. Links do not have
instance names, they take their identity from the objects that they relate. Multiplicity is
not shown for links because they are instances. Other association adornments
(aggregation, composition, navigation) may be shown on the link roles.

A qualifier may be shown on alink. The value of the qualifier may be shown in its
box.
I mplementation stereotypes

A stereotype may be attached to the link role to indicate various kinds of
implementation. The following stereotypes may be used:

«association» association (default, unnecessary to specify except for
emphasis)
«parameter» procedure parameter

3-68 OMG-UML V1.2 May 1998

«local» local variable of a procedure
«global» global variable
«self» self link (the ability of an object to send a message to
itself)
N-ary link

An n-ary link is shown as a diamond with a path to each participating object. The other
adornments on the association, and the adornments on the roles, have the same
possibilities as the binary link.

3.43.3 Example
officer
Jill:Person
member
treasurer
member
downhillSkiClub:Club Joe:Person
president member
Chris:Person
officer

Figure 3-26 Links

3.43.4 Mapping
The mapping depends on the kind of diagram.

® Within acollaboration diagram, each link path maps to an AssociationRole between
the ClassifierRoles corresponding to the connected class boxes. If a name is placed
on the link path, then it is the name of the Association that is the type of the
AssociationRole. Stereotypes on the path indicate the form of the relationship
within the collaboration.

® Within an object diagram, each link path maps to a Link between the Objects
corresponding to the connected class boxes. If a name is placed on the link path,
then it is an instance of the given Association (and the role names must match or
the diagram is ill formed).

OMG-UML V1.1 Links March1998 3-69

3

3.44 Generalization

3-70

3.44.1 Semantics

Generalization is the taxonomic relationship between a more general element and a
more specific element that is fully consistent with the first element and that adds
additional information. It is used for classes, packages, use cases, and other elements.

3.44.2 Notation

Generalization is shown as a solid-line path from the more specific element (such as a
subclass) to the more general element (such as a superclass), with a large hollow
triangle at the end of the path where it meets the more general element.

A generalization path may have atext label in the following format:
discriminator

where discriminator is the name of a partition of the subtypes of the superclass. The
subclass is declared to be in the given partition. The absence of a discriminator label
indicates the “empty string” discriminator which is a valid value (the “default”
discriminator).

Generalization may be applied to associations as well as classes, although the notation
may be messy because of the multiple lines. An association can be shown as an
association class for the purpose of attaching generalization arrows.

3.44.3 Presentation Options

A group of generalization paths for a given superclass may be shown as a tree with a
shared segment (including triangle) to the superclass, branching into multiple paths to
each subclass.

If atext label is placed on a generalization triangle shared by several generalization
paths to subclasses, the label appliesto al of the paths. In other words, al of the
subclasses share the given properties.

3.44.4 Details

The existence of additional subclasses in the model that are not shown on a particular
diagram may be shown using an ellipsis (. . .) in place of a subclass.

Note — This does not indicate that additional classes may be added in the future. It
indicates that additional classes exist right now, but are not being seen. Thisis a
notational convention that information has been suppressed, not a semantic statement.

OMG-UML V1.2 May 1998

Predefined constraints may be used to indicate semantic constraints among the
subclasses. A comma-separated list of keywords is placed in braces either near the
shared triangle (if several paths share a single triangle) or near a dotted line that
crosses all of the generalization lines involved. The following keywords (among
others) may be used (the following constraints are predefined):

overlapping A descendent may be descended from more than one
subclass.

disoint A descendent may not be descended from more than one
subclass.

complete All subclasses have been specified (whether or not

shown). No additional subclasses are expected.

incomplete Some subclasses have been specified, but the list is
known to be incomplete. There are additional subclasses
that are not yet in the model. Thisis a statement about the
model itself. Note that thisis not the same as the ellipsis,
which states that additional subclasses exist in the model
but are not shown on the current diagram.

The discriminator must be unique among the attributes and association roles of the
given superclass. Multiple occurrences of the same discriminator name are permitted
and indicate that the subclasses belong to the same partition.

The use of multiple classification dynamic classification affects the dynamic execution
semantics of the language, but is not unusually apparent from a static model.

OMG-UML V1.1 Generalization March 1998 3-71

3.44.5 Example
Shape
Separate Target Style
Polygon Ellipse Spline
Shape
Shared Target Style
/\
Polygon Ellipse Spline

3-72

Figure 3-27 Styles of Displaying Generalizations

OMG-UML V1.2

May 1998

Vehicle

power venue

{overlapping} - —< — — = — - - ™C — — — ~_ {overlapping}
WindPowered M otor Powered Land Water
Vehicle Vehicle Vehicle Vehicle
Truck Sailboat

Figure 3-28 Generalization with Discriminators and Constraints, Separate Target Style

Tree

{digoint, incomplete}

species
Oak Elm Birch
Figure 3-29 Generdization with Shared Target Style
3.44.6 Mapping

Each generalization path between two class boxes maps into a Generalization between
the corresponding Classes. A generalization tree with one arrowhead and many tails
maps into a set of Generalizations, one between each Class corresponding to a class

OMG-UML V1.1 Generalization March 1998 3-73

box on atail and the single Class corresponding to the class box on the head. That is,
atree is semantically indistinguishable from a set of distinct arrows, it is purely a
notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A
property string attached to the head line segment on a generalization tree represents a
(duplicated) property on each of the individual Generalizations.

The presence of an ellipsis (“...”) as a subclass node of a given class indicates that the
semantic model contains at least one subclass of the given class that is not visible on
the current diagram. Normally, this indicator will be maintained automaticallyby an
editing tool.

3.45 Dependency

3.45.1 Semantics

A dependency indicates a semantic relationship between two (or more) model
elements. It relates the model elements themselves and does not require a set of
instances for its meaning. It indicates a situation in which a change to the target
element may require a change to the source element in the dependency.

3.45.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model
element at the tail of the arrow depends on the model element at the arrowhead. The
arrow may be labeled with an optional stereotype and an optional name.

The following kinds of Dependency are predefined and may be indicated with
keywords:

trace — Trace: A historical connection between two elements that
represent the same concept at different levels of meaning.

refine — Refinement: A historical or derivation connection between two
elements with a mapping (not necessarily complete)
between them. A description of the mapping may be
attached to the dependency in a note. Various kinds of
refinement have been proposed and can be indicated by
further stereotyping.

uses — Usage: A situation in which one element requires the presence of
another element for its correct implementation or
functioning. May be stereotyped further to indicate the
exact nature of the dependency, such as calling an
operation of another class, granting permission for access,
instantiating an object of another class, etc.

bind — Binding: A binding of template parameters to actual values to
create a nonparameterized element. See “Part 2 - Diagram
Elements” on page 3-6 for more details.

3-74 OMG-UML V1.2 May 1998

3.45.3 Presentation Options

If one of the elements is a note or constraint, then the arrow may be suppressed
because the direction is clear (the note or constraint is the source of the arrow).

3.45.4 Example

ClassA [— — — — — =1 ClassB

«friend»

<~
~
~

A

«instantiates»!
I

_ _ _xcalls» _ _ | classC

Figure 3-30 Various Usage Dependencies Among Classes

[]

1]

Controller

]

Elem

Diagram

ents

v 1V v

Domain
Elements

Graphics
Core

Figure 3-31 Dependencies Among Packages

OMG-UML V1.1 Dependency

March 1998

ClassD

~
. ~
«friend» ~ |

~ ~ operationZ()

3-75

3.45.5 Mapping

A dashed arrow maps into a Dependency between the Elements corresponding to the
symbols attached to the ends of the arrow. The stereotype and the name (if any)
attached to the arrow are the stereotype and name of the Dependency.

3.46 Derived Element

3.46.1 Semantics
A derived element is one that can be computed from another one, but that is shown for

clarity or that is included for design purposes even though it adds no semantic
information.

3.46.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived
element, such as an attribute or a rolename.

3.46.3 Syle Guidelines

The details of computing a derived element can be specified by a dependency with the
stereotype «derived». Usually it is convenient in the notation to suppress the
dependency arrow and simply place a constraint string near the derived element,
although the arrow can be included when it is helpful.

3-76 OMG-UML V1.2 May 1998

3.46.4 Example
Person
_ birthdate
{age = currentDate - birthdate} r — — — — — 1 -~ lage
1 *
Company k> | Department
employer
1 1| department
employer
WorksForDepartment
*
* Person
/WorksForCompany

{ Person.employer=Person.department.employer }

Figure 3-32 Derived Attribute and Derived Association

3.46.5 Mapping

The presence of a derived adornment (aleading “/” on the symbol name) on a symbol
maps into the setting of the “derived” property of the corresponding Element.

Part 6 - Use Case Diagrams

A use case diagram shows the relationship among actors and use cases within a
system.

3.47 UseCaseDiagram

3.47.1 Semantics

Use case diagrams show elements from the use case model. The use case model
represents functionality of a system or a class as manifested to external interactors with
the system.

OMG-UML V1.1 UseCaseDiagram March 1998 3-77

3.47.2 Notation

A use case diagram is a graph of actors, a set of use cases enclosed by a system
boundary, communication (participation) associations between the actors and the use
cases, and generalizations among the use cases.

3.47.3 Example
Telephone Catalog
\\
. /
place Salesperson
order
/
/ //
Customer Shipping Clerk
establish
credit
\
Supervisor

Figure 3-33 Use Case Diagram

3.47.4 Mapping

A set of use case ellipses within a box with connections to actor symbols maps to a
single UseCaseModel package containing a set of UseCases and Actors with
relationships among them.

3-78 OMG-UML V1.2 May 1998

3.48 UseCase

3.48.1 Semantics

A use case is a coherent unit of functionality provided by a system or class as
manifested by sequences of messages exchanged among the system and one or more
outside interactors (called actors) together with actions performed by the system.

3.48.2 Notation

A use case is shown as an ellipse containing the name of the use case.

An extension point is alocation within a use case at which action sequences from other
use cases may be inserted. Each extension point must have a unique name within a use
case. Extension points may be listed in a compartment of the use case with the heading
extension points.

3.48.3 Presentation Options

The name of the use case may be placed below the ellipse.

3.48.4 Syle Guidelines

Use case hames should follow capitalization and punctuation guidelines used for
behavioral items in the same model.

3.48.5 Mapping

A use case symbol maps to a UseCase with the given name (if any). An extension
point maps into an ExtensionPoint within the UseCase.

3.49 Actor

3.49.1 Semantics

An actor is arole of object or objects outside of a system that interacts directly with it
as part of a coherent work unit (a use case). An Actor element characterizes the role

played by an outside object. One physical object may play several roles; therefore, it

may be modeled by severa actors.

3.49.2 Notation

An actor may be shown as a class rectangle with the stereotype “actor.” The standard
stereotype icon for an actor is the “stick man” figure with the name of the actor below
the figure.

OMG-UML V1.1 UseCase March1998 3-79

3.49.3 Syle Guidelines

Actor names should follow capitalization and punctuation guidelines used for types
and classes in the same model.

3.49.4 Mapping

An actor symbol maps to an Actor with the given name.

3.50 UseCaseReationships

3-80

3.50.1 Semantics

There are several standard relationships among use cases or between actors and use
cases.

® Communicates — The participation of an actor in a use case. Thisis the only
relationship between actors and use cases.

® Extends — An extends relationships from use case A to use case B indicates that an
instance of use case B may include (subject to specific conditions specified in the
extension) the behavior specified by A. Behavior specified by several extenders of
asingle target use case may occur within a single use case instance.

® Uses— A uses relationship from use case A to use case B indicates that an instance
of the use case A will also include the behavior as specified by B.

3.50.2 Notation

The communication relationship between an actor and a use case is shown as a solid
line between the actor and the use case.

An “extends” relationship between use cases is shown by a generalization arrow from
the use case providing the extension to the base use case. The arrow is labeled with the
stereotype «extends».

A “uses’ relationship between use cases is shown by a generalization arrow from the
use case doing the use to the use case being used. The arrow is labeled with the
stereotype «uses».

The relationship between a use case and its external interaction sequences are usually
shown by an invisible hyperlink to sequence diagrams. The relationship between a use
case and its implementation may be shown as a refinement relationship to a
collaboration, but may also be shown as an invisible hyperlink. The expectation is that
atool will support the ability to “zoom into” a use case to see its scenarios and/or
implementation as an interaction.

OMG-UML V1.2 May 1998

3.50.3 Example

Place Order

extension points <}
additional requests

«extends» Request

Catalog

«uses» «uses»

«uses»

Supply
Customer
Data

Arrange
Payment

Figure 3-34 Use Case Relationships

3.50.4 Mapping

A path between use case and/or actor symbols maps into the corresponding
relationship between the corresponding Elements, as described above.

Part 7 - Sequence Diagrams

3.51 Kindsof Interaction Diagrams

A pattern of interaction among objects is shown on an interaction diagram. Interaction
diagrams come in two forms based on the same underlying information, but each
emphasizing a particular aspect of it. The two forms are: sequence diagrams and

collaboration diagrams.

A sequence diagram shows an interaction arranged in time sequence. In particular, it
shows the objects participating in the interaction by their “lifelines’” and the messages
that they exchange arranged in time sequence. It does not show the associations among

the objects.

OMG-UML V1.1 Kindsof Interaction Diagrams March 1998

Sequence diagrams come in several slightly different formats intended for different
pUrposes.

A sequence diagram can exist in a generic form (describes all the possible sequences)
and in an instance form (describes one actual sequence consistent with the generic
form). In cases without loops or branches, the two forms are isomorphic.

Sequence diagrams and collaboration diagrams express similar information, but show
it in different ways. Sequence diagrams show the explicit sequence of messages and
are better for real-time specifications and for complex scenarios. Collaboration
diagrams show the relationships among objects and are better for understanding all of
the effects on a given object and for procedural design.

3.52 SequenceDiagram

3-82

3.52.1 Semantics

A sequence diagram represents an Interaction, which is a set of messages exchanged
among objects within a collaboration to effect a desired operation or resullt.

3.52.2 Notation

A sequence diagram has two dimensions: 1) the vertical dimension represents time and
2) the horizontal dimension represents different objects. Normally time proceeds down
the page. (The dimensions may be reversed, if desired.) Usually only time sequences
are important, but in real-time applications the time axis could be an actual metric.
There is no significance to the horizontal ordering of the objects. Objects can be
grouped into “swimlanes’ on a diagram.

See subsequent sections for details of the contents of a sequence diagram.

Note that much of this notation is drawn directly from the Object Message Sequence
Chart notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself
derived with modifications from the Message Sequence Chart notation.

3.52.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to
proceed in one direction across the page; however, this is not always possible and the
ordering does not convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and
different objects are shown as horizontal lines.

Various labels (such as timing marks, descriptions of actions during an activation, and
so on) can be shown either in the margin or near the transitions or activations that they
label.

OMG-UML V1.2 May 1998

3.52.4 Example
Simple sequence diagram with concurrent objects
caller exchange receiver
lift receiver
a
{b-a<1lsec}
dial tone
b
{c-b<10sec} o
dial digit
c
The call is d
routed through m
the network. d
{d' - d< 5 sec.} ringing tone phone rings
answer phone
_ _ stop tone stop ringing
At this point
the parties
can talk. L L L

Figure 3-35 Simple Sequence Diagram with Concurrent Objects

OMG-UML V1.1 SequenceDiagram March 1998 3-83

op() | |
> 0bl:C1 | |
| |
[x>0] foo(x): J opzco L
[x<0] bar(x) E— : \
doit(2) | \\
doit(w) HL>
N
/ | 7
|) Iy
- T T T T T |
|)\ | //
- | l/
more() | [
| |
> | |
| |
A | |
| |

Figure 3-36 Sequence Diagram with Focus of Control, Conditional, Recursion, Creation,
Destruction

3-84 OMG-UML V1.2 May 1998

3.52.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements
within it, some of which are described in subsequent sections.

Sequencediagram

A sequence diagram maps into an Interaction and an underlying Collaboration. Each
object box with its lifeline maps into a ClassifierRole. The name field maps into the
ClassifierRole name and the type field maps into the type association from the role to
the Classifier with the given name. The associations among roles are not shown on the
sequence diagram. They must be obtained in the model from a complementary
collaboration diagram or other means. A message arrow maps into a M essage between
the ClassifierRoles corresponding to the two lifelines that the arrow connects. Unless
the correct AssociationRole can be determined from a complementary collaboration
diagram or other means, the Message must be attached to a dummy AssociationRole
implied between the two ClassifierRoles for lack of complete information. A timing
label placed on the level of an arrow endpoint maps into the name of the corresponding
Message. A constraint placed on the diagram maps into a Constraint on the entire
Interaction.

An object symbol placed within the frame of the diagram maps into a CreateAction
attached to the Message corresponding to the incoming arrow. If an object termination
symbol (“ X”) is the target of an arrow, it maps into a DestroyAction attached to the
Message corresponding to the arrow; otherwise, it maps into a TerminateAction.

On a diagram with concurrent objects, a predecessor association is established between
M essages corresponding to successive arrows in the vertical sequence. In case of
concurrent arrows, the mapping to a predecessor sequence may be ambiguous and may
reguire additional information.

Procedural sequencediagram

On a procedural sequence diagram (one with focus of control and calls), subsequent
arrows on the same lifeline map into Messages obeying the predecessor association.
An arrow to the head of a focus of control region establishes a nested activation. It
maps into a M essage (synchronous, activation) with associated Call Action (holding the
arguments and referencing the target Operation between the ClassifierRoles
corresponding to the lifelines. All arrows departing the nested activation map into
Messages with an activation Association to the Message corresponding to the arrow at
the head of the activation. A return arrow departing the end of the activation maps into
a Message (synchronous, reply) with:

® an activation Association to the Message corresponding to the arrow at the head of
the activation, and

® apredecessor association to the previous message within the same activation.

OMG-UML V1.1 SequenceDiagram March 1998 3-85

A return must be the final message within a predecessor chain. It is not the predecessor
of any message. Any guard conditions or iteration conditions attached to a message
arrow become recurrence values of the Message. The operation name is used to select
the target Operation with the given name. The operation arguments become argument
Expressions on the Action.

3.53 Object Lifeline

3.53.1 Semantics

A Roleisasdlot for an object within a collaboration that describes the type of object
that may play the role and describes its relationships to other Roles. Within a sequence
diagram the existence and duration of the object in arole is shown, but the
relationships among the roles is not shown. There are ClassifierRoles and
AssociationRoles.

3.53.2 Notation

An object role is shown as a vertical dashed line called the “lifeline.” The lifeline
represents the existence of the object at a particular time. If the object is created or
destroyed during the period of time shown on the diagram, then its lifeline starts or
stops at the appropriate point; otherwise, it goes from the top to the bottom of the
diagram. An object symbol is drawn at the head of the lifeline. If the object is created
during the diagram, then the message that creates it is drawn with its arrowhead on the
object symbol. If the object is destroyed during the diagram, then its destruction is
marked by alarge “ X,” either at the message that causes the destruction or (in the case
of self-destruction) at the final return message from the destroyed object. An object
that exists when the transaction starts is shown at the top of the diagram (above the
first arrow). An object that exists when the transaction finishes hasits lifeline continue
beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality.
Each separate track corresponds to a conditional branch in the message flow. The
lifelines may merge together at some subsequent point.

3.53.3 Example

See Figure 3-36 on page 3-84.

3.53.4 Mapping

See “Mapping” on page 3-85.

3-86 OMG-UML V1.2 May 1998

3.54 Activation

3.54.1 Semantics

An activation (focus of control) shows the period during which an object is performing
an action either directly or through a subordinate procedure. It represents both the
duration of the action in time and the control relationship between the activation and
its callers (stack frame).

3.54.2 Notation

An activation is shown as atall thin rectangle whose top is aligned with its initiation
time and whose bottom is aligned with its completion time. The action being
performed may be labeled in text next to the activation symbol or in the left margin,
depending on style. Alternately, the incoming message may indicate the action, in
which case it may be omitted on the activation itself. In procedural flow of control, the
top of the activation symbol is at the tip of an incoming message (the one that initiates
the action) and the base of the symbol is at the tail of a return message.

In the case of concurrent objects each with their own threads of control, an activation
shows the duration when each object is performing an operation. Operations by other
objects are not relevant. If the distinction between direct computation and indirect
computation (by a nested procedure) is unimportant, the entire lifeline may be shown
as an activation.

In the case of procedura code, an activation shows the duration during which a
procedure is active in the object or a subordinate procedure is active, possibly in some
other object. In other words, all of the active nested procedure activations may be seen
at a given time. In the case of arecursive call to an object with an existing activation,
the second activation symbol is drawn slightly to the right of the first one, so that they
appear to “stack up” visually. (Recursive calls may be nested to an arbitrary depth.)

3.54.3 Example
See Figure 3-36 on page 3-84.

3.54.4 Mapping
See “Mapping” on page 3-85.

3.55 Message

3.55.1 Semantics

A message is a communication between objects that conveys information with the
expectation that action will ensue. The receipt of a message is one kind of event.

OMG-UML V1.1 Activation March 1998 3-87

3-88

3.55.2 Notation

A message is shown as a horizontal solid arrow from the lifeline of one object to the
lifeline of another object. In case of a message from an object to itself, the arrow may
start and finish on the same object symbol. The arrow is labeled with the name of the
message (operation or signal) and its argument values. The arrow may aso be labeled
with a sequence number to show the sequence of the message in the overall interaction.
Sequence numbers are often omitted in sequence diagrams, in which the physical
location of the arrow shows the relative sequences, but they are necessary in
collaboration diagrams. Sequence numbers are useful on both kinds of diagrams for
identifying concurrent threads of control. A message may also be labeled with a guard
condition.

3.55.3 Presentation options

Variation: Asynchronous

An asynchronous message is drawn with a half-arrowhead (one with only one wing
instead of two).

Variation: Call
A procedure call is drawn as a full arrowhead. A return is shown as a dashed arrow.

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at the
end of an activation). It is assumed that every call has a paired return after any
subordinate messages. The return value can be shown on the initial message line. For
nonprocedural flow of control (including parallel processing and asynchronous
messages) returns should be shown explicitly.

Variation:

In a concurrent system, a full arrowhead shows the yielding of athread of control (wait
semantics) and a half arrowhead shows the sending of a message without yielding
control (no-wait semantics).

Variation:

Normally message arrows are drawn horizontally. This indicates the duration required
to send the message is “atomic,” that is, it is brief compared to the granularity of the
interaction and that nothing else can “happen” during the message transmission. Thisis
the correct assumption within many computers. If the message requires some time to
arrive, during which something else can occur (such as a message in the opposite
direction), then the message arrow may be slanted downward so that the arrowhead is
below the arrow tail.

OMG-UML V1.2 May 1998

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each labeled by a guard
condition. Depending on whether the guard conditions are mutually exclusive, the
construct may represent conditionality or concurrency.

Variation: lteration

A connected set of messages may be enclosed and marked as an iteration. For a
scenario, the iteration indicates that the set of messages can occur multiple times. For
a procedure, the continuation condition for the iteration may be specified at the bottom
of the iteration. If there is concurrency, then some messages in the diagram may be
part of the iteration and others may be single execution. It is desirable to arrange a
diagram so that the messages in the iteration can be enclosed together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a high-level
view.

Variation:

A distinction may be made between a period during which an object has a live
activation and a period in which the activation is actually computing. The former
(during which it has control information on a stack but during which control residesin
something that it called) is shown with the ordinary double line. The latter (during
which it is the top item on the stack) may be distinguished by shading the region.

3.55.4 Mapping
See “Mapping” on page 3-85.

3.56 Transtion Times

3.56.1 Semantics

A message may have a sending time and a receiving time. These are formal names that
may be used within constraint expressions. The two may be the same (if the messageis
considered atomic) or different (if its delivery is nonatomic).

3.56.2 Notation

A transition instance (such as a message in a sequence diagram, a collaboration
diagram, or atransition in a state machine) may be given a name. The name represents
the time at which a message is sent (example: A). In cases where the delivery of the
message in not instantaneous, the time at which the message is received is indicated by
the transition name with a prime sign appended (example: A'"). The name may be
shown in the left margin aligned with the arrow (on a sequence diagram) or near the

OMG-UML V1.1 Transition Times March 1998 3-89

tail of the message flow arrow (on a collaboration diagram). This name may be used in
constraint expressions to designate the time the message was sent. If the message line
is slanted, then the primed-name indicates the time at which the message is received.

Constraints may be specified by placing Boolean expressionsin braces on the sequence
diagram.

3.56.3 Example

See Figure 3-35 on page 3-83.

3.56.4 Mapping

See “Mapping” on page 3-85.

Part 8 - Collaboration Diagrams

3.57 Collaboration

A collaboration diagram shows an interaction organized around the objects in the
interaction and their links to each other. Unlike a sequence diagram, a collaboration
diagram shows the relationships among the object roles. On the other hand, a
collaboration diagram does not show time as a separate dimension, so the sequence of
messages and the concurrent threads must be determined using sequence numbers.

3.57.1 Semantics

3-90

Behavior is implemented by sets of objects that exchange messages within an overall
interaction to accomplish a purpose. To understand the mechanisms used in adesign, it
is important to see only the objects and the messages involved in accomplishing a
purpose or arelated set of purposes, projected from the larger system of which they are
part for other purposes. Such a static construct is called a collaboration.

A collaboration is a set of participants and relationships that are meaningful for a given
set of purposes. The identification of participants and their relationships does not have
global meaning.

A collaboration may be attached to an operation or a use case to describe the context
in which their behavior occurs. The actual behavior may be specified in interactions,
such as sequence diagrams or collaboration diagrams. A collaboration may also be
attached to a class to define the class's static structure.

A parameterized collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the collaboration, including the
classes and relationships, can be parameters of the generic collaboration. The

OMG-UML V1.2 May 1998

parameters are bound to particular model elements in each instantiation of generic
collaboration. Such a parameterized collaboration can capture the structure of a design
pattern (note that a design pattern involves more than structural aspects). Whereas
most collaborations can be anonymous because they are attached to a named entity,
patterns are free standing design constructs that must have names.

A collaboration may be expressed at different levels of granularity. A coarse-grained
collaboration may be refined to produce another collaboration that has a finer
granularity.

3.57.2 Notation

The description of behavior involves two aspects: 1) the structural description of its
participants and 2) the behavioral description of its execution. The two aspects are
often described together on a single diagram, but at times it is useful to describe the
structural and behavioral aspects separately. The structure of objects playing rolesin a
behavior and their relationships is called a collaboration. A collaboration shows the
context in which interaction occurs. The dynamic behavior of the message sequences
exchanged among objects to accomplish a specific purpose is called an interaction. A
collaboration is shown by a collaboration diagram without messages. By adding
messages, an interaction is shown. Different sets of messages may be applied to the
same collaboration to yield different interactions.

3.58 Collaboration Diagram

3.58.1 Semantics

A collaboration diagram represents a Collaboration, which is a set of objects related in
a particular context, and an Interaction, which is a set of messages exchanged among
the objects within a collaboration to effect a desired operation or result.

3.58.2 Notation

A collaboration diagram is a graph of references to objects and links with message
flows attached to its links. The diagram shows the objects relevant to the performance
of an operation, including objects indirectly affected or accessed during the operation.
The collaboration used to describe an operation includes its arguments and local
variables created during its execution as well as ordinary associations.

® Objects created during the execution may be designated as { new} .
® Objects destroyed during the execution may be designated as { destroyed} .

® Objects created during the execution and then destroyed may be designated as
{transient}.

These changes in life state are derivable from the detailed messages sent among the
objects, they are provided as notational conveniences.

OMG-UML V1.1 Collaboration Diagram March 1998 391

The diagram also shows the links among the objects, including transient links
representing procedure arguments, local variables, and self links. Because
collaboration diagrams often are used to help design procedures, they typically show
navigability using arrowheads on links. (An arrowhead on aline between object boxes
indicates alink with one-way navigability. An arrow next to aline indicates a message
flowing in the given direction over the link. Obviously a message arrow cannot flow
backwards over a one-way link.)

Individual attribute values are usually not shown explicitly. If messages must be sent
to attribute values, the attributes should be modeled using associations instead.

The internal messages that implement a method are numbered starting with number 1.
For a procedural flow of control, the subsequent message numbers are nested in
accordance with call nesting. For a nonprocedural sequence of messages exchanged
among concurrent objects, all the sequence numbers are at the same level (that is, they
are not nested).

A collaboration diagram without messages shows the context in which interactions can
occur, without showing any specific interactions. It might be used to show the context
for a single operation or even for all of the operations of a class or group of classes.

3.58.3 Example
redisplay() —» window .
:Controller Window
«parameter»window
¢ 1: displayPositions(window) T 1.1.3.1: add(self)
wire contents {new}
.) local»line
¢ 1.1*i:=1..n]: drawSegment(l)C wire: Wire 110 create((:O rl)»—> :Line {new}
«self> ESEREE 1.1.3: display(window) —»
i- i
¢ 1.1.1a: r0 := position() ¢ 1.1.1b: rl:=position()

3-92

left: Bead right: Bead

Figure 3-37 Collaboration Diagram

OMG-UML V1.2 May 1998

3.58.4 Mapping

A collaboration diagram maps to a Collaboration with a superimposed |nteraction.

3.59 Pattern Sructure

3.59.1 Semantics

A collaboration can be used to specify the implementation of design constructs. For
this purpose, it is necessary to specify its context and interactions. It is aso possible to
view a collaboration as a single entity from the “outside.” For example, this could be
used to identify the presence of design patterns within a system design. A pattern isa
parameterized collaboration. In each use of the pattern, actual classes are substituted
for the parameters in the pattern definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and
Vlissides include much more than structural descriptions. UML describes the structural
aspects and some behavioral aspects of design patterns; however, UML notation does
not include other important aspects of patterns, such as usage trade-offs or examples.
These must be expressed in text or tables.

3.59.2 Notation

A use of acollaboration is shown as a dashed ellipse containing the name of the
collaboration. A dashed line is drawn from the collaboration symbol to each of the
objects or classes (depending on whether it appears within an object diagram or a class
diagram) that participate in the collaboration. Each line is labeled by the role of the
participant. The roles correspond to the names of elements within the context for the
collaboration; such names in the collaboration are treated as parameters that are bound
to specify elements on each occurrence of the pattern within a model. Therefore, a
collaboration symbol can show the use of a design pattern together with the actual
classes that occur in that particular use of the pattern.

OMG-UML V1.1 Pattern Structure March 1998 3-93

i

CallQueue subject SlidingBarlcon
\ handler
AN e

queue: List of Call \ - d reading: Real
source: Object > d color: Color
waitAlarm: Alarm / < range: Interval
capacity: Integer \ Observer \

/

AN
-

handler.reading = length (subject.queue)
range = (0 .. capacity)

Figure 3-38 Use of a Collaboration

3.59.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol
attached by an arrow to the pattern occurrence symbol, the corresponding Class is
bound to the template parameter that is the type association target of the ClassifierRole
in the Pattern with the name equal to the name on the arrow.

3.60 Collaboration Contents

The contents of a collaboration are modeling elements that interact within a given
context for a particular purpose, such as performing an operation or a use case, it is a
“society of objects.” A collaboration is a fragment of a larger complete model that is
intended for a particular purpose.

3.60.1 Semantics

A collaboration shows one or more roles together with their contents, associations, and
neighbor roles, plus additional relationships and classes as needed. To use a
collaboration, each role must be bound to an actual class that can support the
operations required of the role.

3-94 OMG-UML V1.2 May 1998

3.60.2 Notation

A collaboration is shown as a graph of class references and association references.
Each referenceis arole of the collaboration; that is, each entity is playing arole within
the context of the collaboration, a role that is only part of its full description. The
names of the objects represent their roles within the collaboration. A collaboration is a
prototype; in each use of the collaboration the roles are bound to actual objects. There
are several ways to show the diagram:

Methods

If the collaboration shows the implementation of an operation (a method), then it is
usually drawn as a separate collaboration diagram including context to which message
flow is added to obtain an interaction. The collaboration for the operation includes the
target object of the operation and any other objects that it calls on, directly or
indirectly, to implement the operation. The collaboration includes the objects present
before the operation, the objects present after the operation (these may be the same or
mostly the same as the ones before), and objects that exist only during the operation
(these may be marked as «new», «destroyed», and «transient»). Only objects involved
in the operation implementation need to be shown. To show the implementation of an
operation, message flows are superimposed on the links between objects in the
collaboration; each flow shows a step within the method for the operation (see
“Message flows” on page 3-101).

Classes

A collaboration is normally defined for a single operation. By taking the union of all of
the collaborations for all of the operations of a class, an overall collaboration for the
entire class can be shown. This collaboration shows all of the context for the
implementation of the class.

In both cases, the usual assumption is that objects and classes not shown on the
collaboration are not affected by the operation. It is not always safe to assume that all
of the objects on a collaboration diagram are used by the operation.

Different collaborations may be devised for the same class for different purposes. Each
collaboration may show a somewhat different subset of attributes, operators, and
related objects that are relevant to each purpose. Where actual operations often fall into
related groups, each collaboration might specify a consistent view shared by several
operations that is somewhat different from the view needed by other operations on the
same type. Similarly, the model of typesin a business organization can often be
divided into several collaborations, each from the point of view of a particular
stakeholder.

OMG-UML V1.1 Collaboration Contents March 1998 3-95

3

3.61 Interactions

A collaboration of objects interacts to accomplish a purpose (such as performing an
operation) by exchanging messages. The messages may include both signals and calls,
as well as more implicit interaction through conditions and time events. A specific
pattern of message exchanges to accomplish a specific purpose is called an interaction.

3.61.1 Semantics

An interaction is a behavioral specification that comprises a sequence of message
exchanges among a set of objects within a collaboration to accomplish a specific
purpose, such as the implementation of an operation. To specify an interaction, it is
first necessary to specify a collaboration; that is, to establish the objects that interact
and their relationships. Then the possible interaction sequences are specified. These
can be specified in a single description containing conditionals (branches or
conditional signals), or they can be specified by supplying multiple descriptions, each
describing a particular path through the possible execution paths.

3.61.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both
diagram formats show the execution of collaborations. However, sequence diagrams
only show the participating objects and do not show their relationships to other objects
or their attributes; therefore, they do not fully show the context aspect of a
collaboration. Sequence diagrams do show the behavioral aspect of collaborations
explicitly, including the time sequence of message and explicit representation of
method activations. Sequence diagrams are described in “ Sequence Diagram” on
page 3-82. Collaboration diagrams show the full context of an interaction, including
the objects and their relationships relevant to a particular interaction, so they are often
better for design purposes. Collaboration diagrams are described in the following
sections.

3.61.3 Example

See Collaboration Diagram section for a collaboration underlying an interaction.

3.62 Collaboration Roles

3.62.1 Semantics

A Roleisaslot for an object within a collaboration that describes the type of object
that may play the role and describes its relationships to other Roles. There are
ClassifierRoles and AssociationRoles.

3-96 OMG-UML V1.2 May 1998

3.62.2 Notation

A collaboration role is shown using the notation for an object or alink. Keep in mind,
however, that in the context of a collaboration these represent roles that bind to actual
objects or links when the collaboration is used, not actual objects and links.

A class role is shown as a class rectangle symbol. Normally only the name
compartment is shown. The hame compartment contains the string:

classRoleName : Classifiername

The classname can include a full pathname of enclosing packages, if necessary. A tool
will normally permit shortened pathnames to be used when they are unambiguous. The
package names precede the classname and are separated by double colons. For
example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper right corner. The stereotype for an object must match
the stereotype for its class.

A class role representing a set of objects includes a multiplicity indicator (such as“*")
in the upper right corner of the class box.

An association role is shown as a path between two class role symbols. If the name of
the corresponding association is included, it is underlined. Rolenames are not
underlined. Even in absence of underlining, a line connecting class roles is an
association role.

If one end of the association role path is connected to a multiple class role, then a
multiplicity indicator may be placed on that end to emphasize the multiplicity.
3.62.3 Presentation options

The name of the object may be omitted. In this case, the colon should be kept with the
class name. This represents an anonymous object of the given class given identity by
its relationships.

The class of the object may be suppressed (together with the colon).

3.62.4 Example

See Figure 3-37 on page 3-92.

3.62.5 Mapping

The object symbol in a collaboration diagram maps to a ClassifierRole whose name
matches the object part of the name string; the role has a type Association to a
Classifier whose name matches the type part of the name string.

OMG-UML V1.1 Collaboration Roles March 1998 3-97

3

3.63 Multiobject

3.63.1 Semantics

A multi-object represents a set of objects on the “ many” end of an association. Thisis
used to show operations that address the entire set, rather than a single object in it. The
underlying static model is unaffected by this grouping. This corresponds to an
association with multiplicity “ many” used to access a set of associated objects.

3.63.2 Notation

3-98

A multi-object is shown as two rectangles in which the top rectangle is shifted slightly
vertically and horizontally to suggest a stack of rectangles. A message arrow to the
multi-object symbol indicates a message to the set of objects (for example, a selection
operation to find an individual object).

To perform an operation on each object in a set of associated objects requires two
messages: 1) an iteration to the multi-object to extract links to the individual objects
and then 2) a message sent to each individual object using the (temporary) link. This
may be elided on a diagram by combining the messages into a single message that
includes an iteration and an application to each individual object. The target rolename
takes a“ many” indicator (*) to show that many individual links are implied. Although
this may be written as a single message, in the underlying model (and in any actual
code) it requires the two layers of structure (iteration to find links, message using each
link) mentioned previously.

An object from the set is shown as a normal object symbol, but it may be attached to
the multi-object symbol using a composition link to indicate that it is part of the set. A
message arrow to the simple object symbol indicates a message to an individual object.

Typically a selection message to a multi-object returns a reference to an individual
object, to which the original sender then sends a message.

OMG-UML V1.2 May 1998

3.63.3 Example

client

aServer {local}

servers
:Server

—

1: aServer:=find(specs)

—>
2: process(request)

:Server

Figure 3-39 Multi-object

3.63.4 Mapping

3.64 Activeobject

A multi-object symbol maps to a ClassifierRole with multiplicity “ many” (or whatever
is explicitly specified). In other respects, it maps the same as an object symbol.

An active object is one that owns a thread of control and may initiate control activity.
A passive object is one that holds data, but does not initiate control. However, a
passive object may send messages in the process of processing a request that it has
received. In a collaboration diagram, a ClassifierRole that is an active class represents
the active objects that occur during execution.

3.64.1 Semantics

An active object is an object that owns a thread of control. Processes and tasks are
traditional kinds of active objects.

3.64.2 Notation

A role for an active object is shown as an object symbol with a heavy border.
Frequently active object roles are shown as composites with embedded parts.

The property keyword {active} may also be used to indicate an active object.

OMG-UML V1.1 Activeobject March 1998 3-99

3-100

3.64.3 Example

localt iob currentJob
{local} jo .TransferJob

job

:Factory
Scheduler

| 1: start(job)

:Factory

:Factory Manager

TAZ,BZ / 2: completed(job)

JobMar

T B2: completed

| 1/B1: start(job)

) A2: completed

J 1/ A1L: start(job)

:Robot

:OQven

Figure 3-40 Composite Active Object

3.64.4 Mapping

An active object symbol maps as an obj
active property is set.

A nested object symbol (active or not) maps into a Classifierrole that has a
responding to its contents, as described under

composition association to the roles cor
Composition.

OMG-UML V1.2

ect symbol does, with the addition that the

May 1998

3.65 Messageflows

3.65.1 Semantics

A message flow is the sending of a message from one object to another. The
implementation of a message may take various forms, such as a procedure call, the
sending of asignal between active threads, the explicit raising of events, and so on.

3.65.2 Notation

A message flow is shown as alabeled arrow placed near alink. The meaning is that the
link is used to transport, or otherwise implement, the delivery of the message to the
target object. The arrow points along the link in the direction of the target object (the
one that receives the message).

Control flowtype
The following arrowhead variations may be used to show different kinds of messages:
filledsolidarrowhead —>
Procedure call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. May be used with ordinary

procedure calls. May also be used with concurrently active objects when one of
them sends a signal and waits for a nested sequence of behavior to complete.

stickarrowhead ——

Flat flow of control. Each arrow shows the progression to the next step in sequence.
Normally all of the messages are asynchronous.

half stickarrowhead ——

Asynchronous flow of control. Used instead of the stick arrowhead to explicitly
show an asynchronous message between two objects in a procedural sequence.

other variations

Other kinds of control may be shown, such as “balking” or “time-out;” however,
these are treated as extensions to the UML core.

Message |abel
The label has the following syntax:

OMG-UML V1.1 Messageflows March 1998 3-101

3-102

predecessor guard-condition sequence-expression return-value := message-name
argument-list

The label indicates the message sent, its arguments and return values, and the
sequencing of the message within the larger interaction, including call nesting,
iteration, branching, concurrency, and synchronization.

Predecessor

The predecessor is a comma-separated list of sequence numbers followed by a slash
(r):
sequence-number ‘...t

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must
match the sequence number of another message.

The meaning is that the message flow is not enabled until all of the message flows
whose sequence numbers are listed have occurred (athread can go beyond the required
message flow and the guard remains satisfied). Therefore, the guard condition
represents a synchronization of threads.

Note that the message corresponding to the numerically preceding sequence number is
an implicit predecessor and need not be explicitly listed. All of the sequence numbers
with the same prefix form a sequence. The numerical predecessor is the one in which
the final term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.

Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon
(*:"). Each term represents a level of procedura nesting within the overall interaction.
If al the control is concurrent, then nesting does not occur. Each sequence-term has
the following syntax:

[integer | name] [recurrence]

The integer represents the sequential order of the message within the next higher level
of procedural calling. Messages that differ in one integer term are sequentialy related
at that level of nesting. Example: Message 3.1.4 follows message 3.1.3 within
activation 3.1.

The name represents a concurrent thread of control. Messages that differ in the final
name are concurrent at that level of nesting. Example: message 3.1a and message 3.1b
are concurrent within activation 3.1. All threads of control are equal within the nesting
depth.

The recurrence represents conditional or iterative execution. This represents zero or
more messages that are executed depending on the conditions involved. The choices
are:

OMG-UML V1.2 May 1998

“** ‘1" iteration-clause ‘]’ An iteration
‘[' condition-clause ‘]’ A branch

An iteration represents a sequence of messages at the given nesting depth. The
iteration clause may be omitted (in which case the iteration conditions are unspecified).
The iteration-clause is meant to be expressed in pseudocode or an actual programming
language, UML does not prescribe its format. An example would be: *[i := 1..n].

A condition represents a message whose execution is contingent on the truth of the
condition clause. The condition-clause is meant to be expressed in pseudocode or an
actual programming language; UML does not prescribe its format. An example would
be: [x >].

Note that a branch is notated the same as an iteration without a star. One might think
of it as an iteration restricted to a single occurrence.

The iteration notation assumes that the messages in the iteration will be executed
sequentially. Thereis also the possibility of executing them concurrently. The notation
for thisis to follow the star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels.
Each level of structure specifies its own iteration within the enclosing context.

Sgnature

A signature is a string that indicates the name, the arguments, and the return value of
an operation, message, or signa. These have the following properties.

Return-value

Thisisalist of names that designates the values returned by the message within the
subsequent execution of the overall interaction. These identifiers can be used as
arguments to subsequent messages. If the message does not return a value, then the
return value and the assignment operator are omitted.

Message-name

This is the name of the event raised in the target object (which is often the event of
requesting an operation to be performed). It may be implemented in various ways, one
of which is an operation call. If it isimplemented as a procedure call, then this is the
name of the operation, and the operation must be defined on the class of the receiver or
inherited by it. In other cases, it may be the name of an event that is raised on the
receiving object. In normal practice with procedural overloading, both the message
name and the argument list types are required to identify a particular operation.

Argument list

This is a comma-separated list of arguments (actual parameters) enclosed in
parentheses. The parentheses can be used even if the list is empty. Each argument is an
expression in pseudocode or an appropriate programming language (UML does not

OMG-UML V1.1 Messageflows March 1998 3-103

3-104

prescribe). The expressions may use return values of previous messages (in the same
scope) and navigation expressions starting from the source object (that is, attributes of
it and links from it and paths reachable from them).

3.65.3 Presentation Options

Instead of text expressions for arguments and return values, data tokens may be shown
near a message. A token is a small circle labeled with the argument expression or
return value name. It has a small arrow on it that points along the message (for an
argument) or opposite the message (for a return value). Tokens represent arguments
and return values. The choice of text syntax or tokens is a presentation option.

The syntax of messages may instead be expressed in the syntax of a programming
language, such as C++ or Smalltalk. All of the expressions on a single diagram should
use the same syntax, however.

3.65.4 Example

See Figure 3-37 on page 3-92 for examples within a diagram.
Samples of control message |abel syntax:
2: display (x, y) simple message
1.3.1: p:= find(specs) nested call with return value
[x < 0] 4: invert (x, color) conditional message

A3,B4/ C3.1*: update () synchronization with other threads, iteration

3.65.5 Mapping

A message flow symbol maps into a Message between the ClassifierRoles
corresponding to the boxes connected by the association path bearing the message flow
symbol. The control flow type sets the corresponding Message properties.

The predecessor expression, together with the sequence expression, determines the
predecessor and activation (caller) associations between the Message and other
messages. The predecessors of the Message are the messages corresponding to the
sequence numbers in the predecessor list as well as the message corresponding to the
immediate preceding sequence number as the Message (i.e., 1.2.2 is the one preceding
1.2.3). The caller of the Message is the Message whose sequence humber is truncated
by one position (i.e., 1.2 is the caler of 1.2.3).

The return value maps into a message from the called object to the caller with direction
return. Its predecessor is the final message within the procedure. Its activation is the
message that called the procedure.

The recurrence expression, the iteration clause, and the condition clause determine the
recurrence value in the Message.

OMG-UML V1.2 May 1998

3

The operation name and the form of the signature determine the Operation attached to
the CallAction associated with the Message.

The arguments of the signature determine the arguments associated with the
CallAction.

In a procedural interaction, each message flow symbol also maps into a second
Message with the properties (synchronous, reply) representing the return flow. This
Message has an activation Association to the original call Message. Its associated
Action is a ReturnAction bearing the return values as arguments (if any).

3.66 Creation/Destruction Markers

3.66.1 Semantics

During the execution of an interaction some objects and links are created and some are
destroyed. The creation and destruction of elements can be marked.

3.66.2 Notation

An object or link that is created during an interaction has the keyword new as a
constraint. An object or link that is destroyed during an interaction has the keyword
destroyed as a constraint. The keyword may be used even if the element has no name.
Both keywords may be used together, but the keyword transient may be used in place
of new destroyed.

3.66.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For
example, each kind of lifetime might be shown in a different color. A tool may aso
use animation to show the creation and destruction of elements and the state of the
system at various times.

3.66.4 Example

See Figure 3-37 on page 3-92.

3.66.5 Mapping

Creation or destruction indicators map into CreateActions or DestroyActions actions
on the target ClassifierRoles or into TerminateActions. The actions correspond to
messages that cause the changes. These status indicators are merely summaries of the
total actions.

OMG-UML V1.1 Creation/Destruction Markers March 1998 3-105

3

Part 9 - Statechart Diagrams

A statechart diagram shows the sequences of states that an object or an interaction goes

through during its life in response to received stimuli, together with its responses and
actions.

The semantics and notation described in this chapter are substantially those of David
Harel’ s statecharts with modifications to make them object-oriented. His work was a
major advance on the traditional flat state machines. Statechart notation also

implements aspects of both Moore machines and Mealy machines, traditional state
machine models.

3.67 Satechart Diagram

3.67.1 Semantics
A state machine is a graph of states and transitions that describes the response of an

object of a given class to the receipt of outside stimuli. A state machine is attached to
a class or a method.

3.67.2 Notation

A statechart diagram represents a state machine. The states are represented by state
symbols and the transitions are represented by arrows connecting the state symbols.
States may also contain subdiagrams by physical containment and tiling.

| 3-106 OMG-UML V1.2 May 1998

Active (Timeout 1

do/ play messageJ

dial digit(n)
[incomplete]

after (15 sec.)
after (15 sec.)

(DialTone) dial digit(n) i
: ialin
it (do/ play dial tone g

] dial digit(n)[invalid] N
receiver o .
. dial digit(n)[valid]
/get dial tone (Invalid / /connect
Edle l LdO/ play messageJ l Connecting

[.] busy
Pinned Busy connected

callee do/ play busy
callee hangs up tone
ﬁglrlgs up answers
/disconnect (o
j Ringing

l Talking | callee answers do/ play ringing
\ /enable speech tone /

Figure 3-41 State Diagram

3.67.3 Mapping

A statechart diagram maps into a StateMachine. That StateM achine may be attached to
a Class or a Method, but there is no explicit notation for this.

3.68 Sates

3.68.1 Semantics

A state is a condition during the life of an object or an interaction during which it
satisfies some condition, performs some action, or waits for some event. An object
remains in a state for a finite (non-instantaneous) time.

Actions are atomic and non-interruptible. A state may correspond to ongoing activity.
Such activity is expressed as a nested state machine. Alternately, ongoing activity may
be represented by a pair of actions, one that starts the activity on entry to the state and
one that terminates the activity on exit from the state.

OMG-UML V1.1 Sates March1998 3-107

3-108

Each subregion of a state may have initial states and final states. A transition to the
enclosing state represents a transition to the initial state. A transition to a final state
represents the completion of activity in the enclosing region. Completion of activity in
all concurrent regions represents completion of activity by the enclosing state and
triggers a “completion of activity” event” on the enclosing state. Completion of the
outermost state of an object corresponds to its death.

3.68.2 Notation

A state is shown as a rectangle with rounded corners. It may have one or more
compartments. The compartments are all optional. They are as follows:

® Name compartment

Holds the (optional) name of the state as a string. States without names are
“anonymous’ and are all distinct It is undesirable to show the same named state
twice in the same diagram, as confusion may ensue.

® Internal transition compartment

Holds alist of internal actions or activities performed in response to events received
while the object is in the state, without changing state. These have the format:

event-name argument-list ‘[’ guard-condition ‘]'‘/" action-expression

Each event name or pseudo-event name may appear may appear more than once per
state if the guard conditions are different. The following special actions have the same
form, but represent reserved words that cannot be used for event names:

‘entry’ /" action-expression

An atomic action performed on entry to the state
‘exit’ ‘/" action-expression

An atomic action performed on exit from the state

Entry and exit actions may not have arguments or guard conditions (because they are
invoked implicitly, not explicitly). However, the entry action at the top level of the
state machine for a class may have parameters that represent the arguments that it
receives when it is created.

Action expressions may use attributes and links of the owning object and parameters of
incoming transitions (if they appear on all incoming transitions).

The following keyword represents the invocation of a nested state machine:
‘do’ ‘/" machine-name (argument-list)

The machine-name must be the name of a state machine that has an initial and final
state. If the nested machine has parameters, then the argument list must match
correctly. When this state is entered after any entry action, then execution of the nested
state machine begins with itsinitial state. When the nested state machine reaches its

OMG-UML V1.2 May 1998

final state, any exit action in the current state is performed. The current state is
considered completed and may take a transition based on implicit completion of
activity.

3.68.3 Example

(Typing Password\

entry / set echo invisible
exit / set echo normal
character / handle character

help / display help

Figure 3-42 State

3.68.4 Mapping

A state symbol maps into a State. See “Composite States” on page 3-109 for further
details on which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the
same name map into the same state. However, each state symbol with no name (or an
empty name string) maps into a distinct anonymous State.

® Aninterna action string with the name “entry” or “exit” maps into an association.
» The source is the State corresponding to the enclosing state symbol.
» The target is an ActionSeguence that maps the action expression.
* The association is the Entry action or the Exit action association.

® Aninternal action string with the name “do” maps into the invocation of a nested
state machine.

Any other internal action maps into an internal Transition from the corresponding State
to a Transition. The action expression maps into the ActionSequence and Guard for the
Transition. The event name and arguments map into an Event corresponding to the
event name and arguments. The Transition has a trigger Association to the Event.

3.69 Composite Sates

3.69.1 Semantics

A state can be decomposed using and-relationships into concurrent substates or using
or-relationships into mutually exclusive disjoint substates. A given state may only be
refined in one of these two ways. Its substates may be refined in the same way or the
other way.

OMG-UML V1.1 CompositeStates March 1998 3-109

3-110

A newly-created object startsin its initial state. The event that creates the object may
be used to trigger atransition from theinitial state symbol. An object that transitions to
its outermost final state ceases to exist.

3.69.2 Notation

An expansion of a state shows its fine structure. In addition to the (optional) name and
internal transition compartments, the state may have an additional compartment that
contains a region holding a nested diagram. For convenience and appearance, the text
compartments may be shrunk horizontally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region
of the state using dashed lines to divide it into subregions. Each subregion is a
concurrent substate. Each subregion may have an optional name and must contain a
nested state diagram with digjoint states. The text compartments of the entire state are
separated from the concurrent substates by a solid line.

An expansion of a state into digoint substates is shown by showing a nested state
diagram within the graphic region.

An initial (pseudo) state is shown as a small solid filled circle. In a top-level state
machine, the transition from an initial state may be labeled with the event that creates
the object; otherwise, it must be unlabeled. If it is unlabeled, it represents any
transition to the enclosing state. The initial transition may have an action. The initial
state is a notational device. An object may not be in such a state, but must transition to
an actual state.

A final (pseudo) state is shown as a circle surrounding a small solid filled circle (a
bull’s eye). It represents the completion of activity in the enclosing state and it triggers
atransition on the enclosing state labeled by the implicit activity completion event
(usually displayed as an unlabeled transition).

3.69.3 Example

/ Dialing \

(" start) digit) (* partial Dial) [number.isValid()]
entry/ start dial tone entry/number.append(n) O
exit/ stop dial tone - J
_ J
digit(n)

Figure 3-43 Sequentia Substates

OMG-UML V1.2 May 1998

Taking Class \

Incomplete

1 ®
----------------------------- ()
®

fail \
Failed

_/

Figure 3-44 Concurrent Substates

3.69.4 Mapping

3.70 Events

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into
a SimpleState. If it is tiled by dashed lines into subregions, then it maps into a
CompositeState with the isConcurrent value true; otherwise, it maps into a
CompositeState with the isConcurrent value false.

An initia state symbol or afinal state symbol map into a Pseudostate of kind initial or
final.

3.70.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an
occurrence that may trigger a state transition. Events may be of several kinds (not
necessarily mutually exclusive).

® A designated condition becoming true (usually described as a boolean expression)
is a ChangeEvent. These are notated with the keyword when followed by a boolean
expression in parentheses. The event occurs whenever the value of the expression

OMG-UML V1.1 Events March1998 3-111

3-112

changes from false to true. Note that this is different from a guard condition. A
guard condition is evaluated once whenever its event fires. If it is false, then the
transition does not occur and the event is lost. Example: when (balance < 0).

® Receipt of an explicit signal from one object to another is a SignalEvent. One of
these is notated by the signature of the event as a trigger on a transition.

® Receipt of acall for an operation by an object is a CallEvent. These are notated by
the signature of the operation as a trigger on atransition. There is no visual
difference from a signal event, it is assumed that the names distinguish them.

® Passage of a designated period of time after a designated event (often the entry of
the current state) or the occurrence of a given date/time is a TimeEvent. These are
notated as time expressions as triggers on transitions. One common time expression
is the passage of time since the entry to the current state. This is notated with the
keyword after followed by an amount of time in parentheses. Example: after (10
seconds).

The event declaration has scope within the package it appears in and may be used in
state diagrams for classes that have visibility inside the package. An event is not local
to asingle class.

3.70.2 Notation

A signal or call event can be defined using the following format:
event-name ‘(* comma-separated-parameter-list ‘)’

A parameter has the format:
parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class
diagram. The parameters are specified as attributes. A signal can be specified as a
subclass of another signal. This indicates that an occurrence of the subevent triggers
any transition that depends on the event or any of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an
expression that evaluates (at modeling time) to an amount of time, such as “after (5
seconds)” or after (10 seconds since exit from state A).” If no starting point is
indicated, then it is the time since the entry to the current state. Other time events can
be specified as conditions, such as when (date = Jan. 1, 2000).

A condition becoming true is shown with the keyword when followed by a boolean
expression. This may be regarded as a continuous test for the condition until it is true,
although in practice it would only be checked on a change of values (and there are
ways to determine when it must be checked). This is mapped into a ChangeEvent in
the model.

OMG-UML V1.2 May 1998

3

Signals can be declared on a class diagram with the keyword «signal» on a rectangle

symbol. These define signal names that may be used to trigger transitions. Their
parameters are shown in the attribute compartment. They have no operations. They

may appear in a generalization hierarchy. Note that they are not real classes and may

not appear in relationships to real classes.

3.70.3 Example
«signal»
InputEvent
time
«signal»
Userlnput
device
I |
«signal» «signal»
Mouse Keyboard
Button Character
location character

i

al

«signal» «signal»
Mouse Mouse
Button Button
Down Up

«signal» «signal»
Control Graphic
Character Character
«signal» «signal» «signal»
Space Alphanumeric Punctuation

Figure 3-45 Signal Declaration

3.70.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are

given by the name string and the attribute list of the box. Generalization arrows

between signal class boxes map into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an
implicit reference of the Event with the given name. It is an error if various uses of the
same name (including any explicit declarations) do not match.

OMG-UML V1.1 Events

March 1998

3-113

3

3.71 SmpleTranstions

3-114

3.71.1 Semantics

A simple transition is a relationship between two states indicating that an object in the
first state will enter the second state and perform certain specified actions when a
specified event occurs, if specified conditions are satisfied. On such a change of state,
thetransition is said to “fire.” Thetrigger for atransition is the occurrence of the event
labeling the transition. The event may have parameters, which are available within
actions specified on the transition or within actions initiated in the subsequent state.
Events are processed one at atime. If an event does not trigger any transition, it is
simply ignored. If it triggers more than one transition within the same sequential
region (i.e., not in different concurrent regions), only one will fire. The choice may be
nondeterministic if afiring priority is not specified.

3.71.2 Notation

A transition is shown as a solid arrow from one state (the source state) to another state
(the target state) labeled by a transition string. The string has the following format:

event-signature ‘[guard-condition ‘]’ ‘/* action-expression ‘' send-clause
The event-signature describes an event with its arguments:
event-name ‘(' parameter ‘, ...")

The guard-condition is a Boolean expression written in terms of parameters of the
triggering event and attributes and links of the object that owns the state machine. The
guard condition may also involve tests of concurrent states of the current machine, or
explicitly designated states of some reachable object (for example, “in Statel” or “not
in State2"). State names may be fully qualified by the nested states that contain them,
yielding path names of the form “ Statel::State2::State3.” This may be used in case
same state name occurs in different composite state regions of the overall machine.

The action-expression is a procedural expression that is executed if and when the
transition fires. It may be written in terms of operations, attributes, and links of the
owning object and the parameters of the triggering event. The action-clause must be an
atomic operation, that is, it may not be interruptible. It must be executed entirely
before any other actions are considered. The transition may contain more than one
action clause (with delimiter).

‘The send-clause is a special case of an action, with the format:
destination-expression ‘.’ destination-message-name ‘(* argument ‘.’ ...)

The transition may contain more than one send clause (with delimiter). The relative
order of action clauses and send clauses is significant and determines their execution
order.

The destination-expression is an expression that evaluates to an object or a set of
objects.

OMG-UML V1.2 May 1998

The destination-message-name is the name of a message (operation or signal)
meaningful to the destination object(s).

The destination-expression and the arguments may be written in terms of the
parameters of the triggering event and the attributes and links of the owning object.

Branches

A simple transition may be extended to include a tree of decision symbols (see
“Decisions” on page 3-127). Thisis equivalent to a set of individual transitions, one
for each path through the tree, whose guard condition is the “and” of all of the
conditions along the path.

Transition times

Names may be placed on transitions to designate the times at which they fire. See
“Transition Times” on page 3-89.

3.71.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location)
~ object.highlight ()

The event may be any of the types. Selecting the type depends on the syntax of the
name (for time events, for example); however, SignalEvents and CallEvents are not
distinguishable by syntax and must be discriminated by their declaration elsewhere.

3.71.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition
and its attachments. The arrow connects two state symbols. The Transition has the
corresponding States as its source (the state at the tail) and destination (the state at the
head) States in associations to the Transition.

The event name and parameters map into an Event element, which may be a
SignalEvent, a CallEvent, or a TimeExpression (if it has the proper syntax). The event
is attached as a trigger Association to the Transition.

The guard condition maps into a Guard element attached to the Transition.

An action expression maps into an ActionSeguence attached as an effect Association to
the Transition. The target object expression (if any) in the expression maps into a
target ObjectSetExpression. Each term in the action expression maps into an Action
that is a part of the ActionSequence. A send clause maps into a RaiseAction with an
ObjectSetExpression for the destination.

A transition time label on atransition maps into a TimingMark attached to the
Transition.

OMG-UML V1.1 SmpleTransitions March 1998 3-115

3

3.72 Complex Transitions

A complex transition may have multiple source states and target states. It represents a
synchronization and/or a splitting of control into concurrent threads without concurrent
substates.

3.72.1 Semantics

A complex transition is enabled when all the source states are occupied. After a
complex transition fires, al its destination states are occupied.

3.72.2 Notation

A complex transition is shown as a short heavy bar (a synchronization bar, which can
represent synchronization, forking, or both). The bar may have one or more solid
arrows from states to the bar (these are the source states). The bar may have one or
more solid arrows from the bar to states (these are the destination states). A transition
string may be shown near the bar. Individual arrows do not have their own transition
strings.

3.72.3 Example

Figure 3-46 Complex Transition

3.72.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork Pseudostate. A bar
with multiple transition arrows entering it maps into a join Pseudostate. The
Transitions corresponding to the incoming and outgoing arrows attach to the
pseudostate as if it were aregular state. If a bar has multiple incoming and multiple
outgoing arrows, then it maps into a Join connected to a Fork pseudostate by a single
Transition with no attachments.

3-116 OMG-UML V1.2 May 1998

3.73 Transtionsto Nested Sates

3.73.1 Semantics

A transition drawn to the boundary of a complex state is equivalent to atransition to its
initial state (or to a complex transition to the initial states of each of its concurrent
subregions, if it is concurrent). The entry action is always performed when a state is
entered from outside.

A transition from a complex state indicates a transition that applies to each of the states
within the state region (at any depth). It is “inherited” by the nested states. Inherited
transitions can be masked by the presence of nested transitions with the same trigger.

3.73.2 Notation

A transition drawn to a complex state boundary indicates a transition to the complex
state. Thisis equivalent to a transition to the initial state within the complex state
region. Theinitial state must be present. If the state is a concurrent complex state, then
the transition indicates a transition to the initial state of each of its concurrent
substates.

Transitions may be drawn directly to states within a complex state region at any
nesting depth. All entry actions are performed for any states that are entered on any
transition. On atransition within a concurrent complex state, transition arrows from the
synchronization bar may be drawn to one or more concurrent states. Any other
concurrent subregions start with their default initial states.

A transition drawn from a complex state boundary indicates a transition of the complex
state. If such atransition fires, any nested states are forcibly terminated and perform
their exit actions, then the transition actions occur and the new state is established.

Transitions may be drawn directly from states within a complex state region at any
nesting depth to outside states. All exit actions are performed for any states that are
exited on any transition. On a transition from within a concurrent complex state,
transition arrows may be specified from one or more concurrent states to a
synchronization bar; therefore, specific states in the other regions are irrelevant to
triggering the transition.

A state region may contain a history state indicator shown as a small circle containing
an ‘H.” The history indicator applies to the state region that directly contains it. A
history indicator may have any number of incoming transitions from outside states. It
may have at most one outgoing unlabeled transition. This identifies the default
“previous state” if the region has never been entered. If atransition to the history
indicator fires, it indicates that the object resumes the state it last had within the
complex region. Any necessary entry actions are performed. The history indicator may
also be ‘H*’ for deep history. This indicates that the object resumes the state it last had
at any depth within the complex region, rather than being restricted to the state at the
same level as the history indicator. A region may have both shallow and deep history
indicators.

OMG-UML V1.1 Transitionsto Nested States March 1998 3-117

3-118

3.73.3 Presentation options

Stubbed transitions

Nested states may be suppressed. Transitions to nested states are subsumed to the most
specific visible enclosing state of the suppressed state. Subsumed transitions that do
not come from an unlabeled final state or go to an unlabeled initial state may (but need
not) be shown as coming from or going to stubs. A stub is shown as a small vertical
line drawn inside the boundary of the enclosing state. It indicates a transition
connected to a suppressed internal state. Stubs are not used for transitions to initial or
from final states.

Note that events should be shown on transitions leading into a state, either to the state
contour or to an internal substate, including a transition to a stubbed state. Normally
events should not be shown on transitions leading from a stubbed state to an external
state. Think of atransition as belonging to its source state. If the source state is
suppressed, then so are the details of the transition. Note also that a transition from a
final state is summarized by an unlabeled transition from the complex state contour
(denoting the implicit event “action complete” for the corresponding state).

3.73.4 Example

See Figure 3-44 on page 3-111 and Figure 3-46 on page 3-116 for examples of
complex transitions. Following are examples of stubbed transitions and the history
indicator.

OMG-UML V1.2 May 1998

Figure 3-47 Stubbed Transitions

n / AL \ interrupt

resume

A2

o /

Figure 3-48 History Indicator

3.73.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the
corresponding States and similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

OMG-UML V1.1 Transitionsto Nested States March 1998 3-119

A stubbed transition does not map into anything in the model. It is a notational elision
that indicates the presence of transitions to additional states in the model that are not
visible in the diagram.

3.74 Sending Messages

3-120

3.74.1 Semantics

Messages are sent by an action in an object to atarget set of objects. The target set can
be a single object, the entire system, or some other set. The sender can be subsumed to
an object, a composite object, or aclass.

3.74.2 Notation

See “Location of Components and Objects within Objects’ on page 3-141 for the text
syntax of sending messages that cause events for other objects.

Sending such a message can also be shown visually. See “Object Lifeline” on
page 3-86 and “Message flows” on page 3-101 for details of showing messages in
sequence diagrams and collaboration diagrams.

Sending a message between state diagrams may be shown by drawing a dashed arrow
from the sender to the receiver. Messages must be sent between objects, so this means
that the diagram must be some form of object diagram containing objects (not classes).
The arrow is labeled with the event name and arguments of the event that is caused by
the reception of the event. Each state diagram must be contained within an object
symbol representing a collaborating object. Graphically, the state diagrams may be
nested physically within an object symbol, or the object enclosing one state diagram
may be implicit (being the object owning the main state diagram at issue). The state
diagrams represent the states of the collaborating objects.

Note that this notation may also be used on other kinds of diagrams to show sending of
events between classes or objects.

The sender symbol may be one of:

® A transition. The message is sent as part of the action of firing the transition. This
is an alternate presentation to the text syntax for sending messages.

® An object. The message is sent by an object of the class at some point initslife, but
the details are unspecified.

The receiver may be one of:

® An object, including a class reference symbol containing a state diagram. The
message is received by the object and may trigger atransition on the corresponding
event. There may be many transitions involving the event. This notation may not be
used when the target object is computed dynamically. In that case, atext expression
must be used.

OMG-UML V1.2 May 1998

3

® A transition. The transition must be the only transition in the object involving the
given event, or at least the only transition that could possibly be triggered by the
particular sending of the message. This notation may not be used when the
transition triggered depends on the state of the receiving object and not just on the
sender.

® A class designation. This notation would be used to model the invocation of class-
scope operations, such as the creation of a new instance. The receipt of such a
message causes the instantiation of anew object in its default initial state. The event
seen by the receiver may be used to trigger atransition from its default initial state
and represents a way to pass information from the creator to the new object.

3.74.3 Example

VCR

toggle Power

toggle Power

toggle Power

“/CR” “power” button
Remote Control AVCR.togglePower
Controlling

Controlling

-~ mar

TV
“power” button
elevision.togglePower

togglePower

v

Television

toggle Power

toggle Power

Figure 3-49 Sending Messages

OMG-UML V1.1 SendingMessages March 1998 3121

Pawn /Alive double move \
= En passant

opponent moves

o Unmoved
create(file,rank=2)

capture

single move

Moved '
when (piece on 8th rank) \Move

"\piece.create(file,rank)
{where piece =
Queen, Rook, Bishop, or Knight}

captured

O,

Figure 3-50 Creating and Destroying Objects

3.74.4 Mapping

A send arrow to an object maps into a SendAction whose message is a Signal that
corresponds to the name on the arrow and whose target ObjectSetExpression
corresponds to the target object.

If the arrow goes directly to atransition in the target object statechart, then the target
ObjectSetExression corresponds to the object owning the statechart containing the
transition. In addition, the transition in the target statechart implicitly triggers on the
event being sent (i.e., the name of the sent event is effectively written on the target
transition).

If the sender symbol is an object, then the diagram is suggestive of the sender but has
no actual semantic mapping.

| 3-122 OMG-UML V1.2 May 1998

3.75

Internal Transitions

3.75.1 Semantics

An internal transition is a transition that remains within a single state rather than a
transition that involves two states. It represents the occurrence of an event that does
not cause a change of state. Entering the state (from any other state not nested in the
particular state) and exiting the state (to any other state not nested in the particular
state) are treated notationally as internal transitions with the reserved words “entry”
and “exit;” however, they are not really internal transitions in the internal model.

Note that an internal transition is not equivalent to a self-transition from a state back to
the same state. The self-transition causes the exit and entry actions on the state to be
executed and the initial state to be entered, whereas the internal transition does not
invoke the exit and entry actions and does not cause a change of state (including a
nested state).

3.75.2 Notation

An internal transition is attached to the state rather than a transition. Graphically it is
shown as a text string within the internal transition compartment on a state symbol.
The syntax of an internal transition string is the same as for an external transition. See
“Simple Transitions” on page 3-114 for details.

(Typing Password \

help / display help
entry / set echo invisible
exit / set echo normal

Figure3-51 State with Internal Transitions

3.75.3 Mapping

The mapping for internal transitions has been given in “Mapping” on page 3-109.

OMG-UML V1.1 Internal Transitions March 1998 3-123

3

Part 10 - Activity Diagrams
3.76 Activity Diagram

3.76.1 Semantics

An activity model is a variation of a state machine in which the states are Activities
representing the performance of operations and the transitions are triggered by the
completion of the operations. It represents a state machine of a procedure itself, the
procedure is the implementation of an operation on the owning class.

3.76.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most)
of the states are action states and in which all (or at least most) of the transitions are
triggered by completion of the actions in the source states. The entire activity diagram
is attached (through the model) to a class or to the implementation of an operation or a
use case. The purpose of this diagram is to focus on flows driven by internal
processing (as opposed to external events). Use activity diagrams in situations where
all or most of the events represent the completion of internally-generated actions (that
is, procedural flow of control). Use ordinary state diagrams in situations where
asynchronous events occur.

3-124 OMG-UML V1.2 May 1998

3.76.3 Example

Person::Prepare Beverage

PY [Find \ [no coffee] [no colal

\ Beverage /
[found coffee] [found colal
Put Coffee
in Filter Add Water Get
to Reservoir Cups
Put Filter
in Machine Get cans
of cola
Turnon
Machine
"coffeePot.turnOn
light goes out

| Pour Coffee]

Figure 3-52 Activity Diagram

OMG-UML V1.1 ActivityDiagram March 1998 3-125

3.77 Action state

3.76.4 Mapping

An activity diagram maps into an ActivityModel.

3.77.1 Semantics

An action state is a shorthand for a state with an internal action and at least one
outgoing transition involving the implicit event of completing the internal action (there
may be several such transitionsif they have guard conditions). Action states should not
have internal transitions or outgoing transitions based on explicit events, use normal
states for this situation. The normal use of an action state is to model a step in the
execution of an algorithm (a procedure).

3.77.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs
on the two sides. The action-expression is placed in the symbol. The action expression
need not be unique within the diagram.

Transitions leaving an action state should not include an event signature. Such
transitions are implicitly triggered by the completion of the action in the state. The
transitions may include guard conditions and actions.

3.77.3 Presentation options

The action may be described by natural language, pseudocode, or programming
language code. It may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams; however,
they are more commonly used with activity diagrams, which are specia cases of state
diagrams.

3.77.4 Example

<matrix.invert (toIerance:ReaJD

Figure 3-53 Activities

OMG-UML V1.2 May 1998

3.77.5 Mapping

An action state symbol maps into an ActionState invoking a CallAction. Thisis
equivalent to an entry action on aregular state. There is no exit nor any internal
transitions. The State is normally anonymous.

3.78 Decisions

3.78.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when
guard conditions are used to indicate different possible transitions that depend on
Boolean conditions of the owning object. UML provides shorthand for showing
decisions.

3.78.2 Notation

A decision may be shown by labeling multiple output transitions of an action with
different guard conditions.

The icon provided for a decision is the traditional diamond shape, with one or more
incoming arrows and with two or more outgoing arrows, each labeled by a distinct
guard condition with no event trigger. All possible outcomes should appear on one of
the outgoing transitions.

Note that a chain of decisions may be part of a complex transition, but only the first
segment in such a chain may contain an event trigger label. All segments may have
guard expressions.

3.78.3 Example

Calculate [cost < $50] Charge
customer’s

total cost
account

=

[cost 3 $50]

Get
authorization

Figure 3-54 Decision

OMG-UML V1.1 Decisions March 1998 3-127

3.78.4 Mapping

A decision symbol maps into a Pseudostate of kind branch. Each label on an outgoing
arrow maps into a Guard on the corresponding Transition, leaving the Pseudostate.

3.79 Swmimlanes

3.79.1 Semantics

Actions may be organized into swimlanes. Swimlanes are a kind of package used to
organize responsibility for activities within a class. They often correspond to
organizational units in a business model.

3.79.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from
neighboring swimlanes by vertical solid lines on both sides. Each swimlane represents
responsibility for part of the overall activity, and may eventually be implemented by
one or more objects. The relative ordering of the swimlanes has no semantic
significance, but might indicate some affinity. Each action is assigned to one
swimlane. Transitions may cross lanes. There is no significance to the routing of a
transition path.

| 3-128 OMG-UML V1.2 May 1998

3.79.3 Example

Customer

Request service

Pay

Collect order

O

—

Sales

]

Deliver order

N

Stockroom

Fill order

Figure 3-55 Swimlanes in Activity Diagram

3.79.4 Mapping

A swimlane maps into a Partition of the Statesin the ActivityModel. A state symbol in
a swimlane causes the corresponding State to belong to the corresponding Partition.

OMG-UML V1.1 Swimlanes

March 1998

3-129

3

3.80 Action-Object Flow Relationships

3-130

3.80.1 Semantics

Activities operate by and on objects. Two kinds of relationships can be shown: 1) The
kinds of objects that have primary responsibility for performing an action and 2) the
other objects whose values are used or determined by the action. These are modeled as
messages sent between the object owning the activity model and the objects that are
input or output by the actions in the model.

3.80.2 Notation

Object responsible for an action

The object responsible for performing an action can be shown by drawing a lifeline
and placing actions on lifelines Each lifeline represents a distinct object. There may be
multiple lifelines for different objects of the same or different kinds. If this approach is
chosen, usually a sequence diagram should be used. See “Sequence Diagram” on
page 3-82. If an object lifeline is not shown, then some object within the swimlane
package is responsible for the action, but the object is not shown. Multiple actions
within a single swimlane can be handled by the same or different objects.

Object flow

Objects that are input to or output by an action may be shown as object symbols. A
dashed arrow is drawn from an action outgoing transition to an output object, and a
dashed arrow is drawn from an input object to an incoming arrow of an action. The
same object may be (and usually is) the output of one action and the input of one or
more subsequent actions.

The control flow (solid) arrows may be omitted when the object flow (dashed) arrows
supply aredundant constraint. In other words, when an action produces an output that
is input by a subsequent action, that object flow relationship implies a control
constraint.

Object in state

Frequently the same object is manipulated by a number of successive activities. It is
possible to show the arrows to and from al of the relevant activities. For greater
clarity, the object may be displayed multiple times on a diagram, each appearance
denoting a different point during its life. To distinguish the various appearances of the
same object, the state of the object at each point may be placed in brackets and
appended to the name of the object (for example, PurchaseOrder[approved]). This
notation may also be used in collaboration diagrams.

OMG-UML V1.2 May 1998

3.80.3 Example

Customer
Request service
B iplacec)
Pay
Order
[delivered]

T

Collect order

Sales

Stockroom

Order
[entered]

1

[Fill order

Figure 3-56 Actions and Object Flow

3.80.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing
Transitions correspond to the incoming and outgoing arrows. The Transitions have no
attachments. The class name and (optional) state name of the object flow symbol map

into a Class or a ClassifierlnState with the given name(s).

OMG-UML V1.1

Action-Object Flow Relationships

March 1998

3

3.81 Control Icons

The following icons provide explicit symbols for certain kinds of information that can
be specified on transitions. These icons are not necessary for constructing activity
diagrams, but many users prefer the added impact that they provide.

3.81.1 Sereotypes

3-132

Sgnal receipt

The receipt of asignal may be shown as a concave pentagon that looks like a rectangle
with atriangular notch in its side (either side). The signature of the signal is shown
inside the symbol. A unlabeled transition arrow is drawn from the previous action state
to the pentagon and another unlabeled transition arrow is drawn from the pentagon to
the next action state. This symbol replaces the event label on the transition. A dashed
arrow may be drawn from an object symbol to the notch on the pentagon to show the
sender of the signal; thisis optional.

Sgnal sending

The sending of asignal may be shown as a convex pentagon that looks like a rectangle
with a triangular point on one side (either side). The signature of the signal is shown
inside the symbol. A unlabeled transition arrow is drawn from the previous action state
to the pentagon and another unlabeled transition arrow is drawn from the pentagon to
the next action state. This symbol replaces the send-signal label on the transition. A
dashed arrow may be drawn from the point on the pentagon to an object symbol to
show the receiver of the signal, this is optional.

OMG-UML V1.2 May 1998

Turnon

Machine

turnOn — —=>| coffeePot

Brew coffee

|
|
|
|
|
light goes out % _ _ _ _

(Pour Coffee)

Figure 3-57 Symbols for Signal Receipt and Sending

Deferred events

A frequent situation is when an event that occurs must be “ deferred” for later use while
some other activity is underway. (Normally an event that is not handled immediately is
lost.) This may be thought of as having an internal transition that handles the event and
places it on an internal queue until it is needed or until it is discarded. Each state or
activity specifies a set of events that are deferred if they occur during the state or
activity. If an event is not included in the set of deferred events for a state, then it is
discarded from the queue even if it has already occurred. If atransition depends on an
event, the transition fires immediately if the event is already on the internal queue. If
several transitions are possible, the leading event in the queue takes precedence.

A deferred event is shown by listing it within the state followed by a slash and the
special operation defer. If the event occurs, it is saved and it recurs when the object
transitions to another state, where it may be deferred again. When the object reaches a
state in which the event is not deferred, it must be accepted or lost. The indication may
be placed on a composite state, in which case it remains deferred throughout the
composite state.

When used in conjunction with an action state, a deferred event that occurs during the
action state is deferred until the action is completed, when it may trigger a transition.
This means that the transition will occur correctly regardless of the relative order of
the event and the action completion.

OMG-UML V1.1 Control Icons March 1998 3-133

Turnon

Machine

turnOn

Brew coffee
light goes out / defer

Get Cups
light goes out / defer
light goes out <

(Pour Coffee)

Figure 3-58 Deferred Event

3.81.2 Mapping

An input event symbol maps into an event trigger on the Transition between the States
corresponding to the connected state symbols.

An output event symbol maps into a RaiseAction on the Transition between the States
corresponding to the connected state symbols.

An input event symbol whose successor is ajoin symbol maps into an event trigger on
a Transition to an implicit dummy State. The outgoing Transition from the dummy
State enters the join Pseudostate.

A deferred event attached to a state maps into a deferredEvent association from the
State to the Event.

3-134 OMG-UML V1.2 May 1998

Part 11 - | mplementation Diagrams

Implementation diagrams show aspects of implementation, including source code
structure and run-time implementation structure. They come in two forms: 1)
component diagrams show the structure of the code itself and 2) deployment diagrams
show the structure of the run-time system.

3.82 Component Diagram

3.82.1 Semantics

A component diagram shows the dependencies among software components, including
source code components, binary code components, and executable components. A
software module may be represented as a component type. Some components exist at
compile time, some exist at link time, some exist at run time, and some exist at more
than one time. A compile-only component is one that is only meaningful at compile
time. The run-time component in this case would be an executable program.

A component diagram has only atype form, not an instance form. To show component
instances, use a deployment diagram (possibly a degenerate one without nodes).

3.82.2 Notation

A component diagram is a graph of components connected by dependency
relationships. Components may also be connected to components by physical
containment representing composition relationships.

A diagram containing component types and node types may be used to show compiler
dependencies, which are shown as dashed arrows (dependencies) from a client
component to a supplier component that it depends on in some way. The kinds of
dependencies are language-specific and may be shown as stereotypes of the
dependencies.

The diagram may also be used to show interfaces and calling dependencies among
components, using dashed arrows from components to interfaces on other components.

OMG-UML V1.1 ComponentDiagram March 1998 3-135

3.82.3 Example

Scheduler —}) reservations

/

Planner —%O update

GUI

Figure 3-59 Component Diagram

3.82.4 Mapping

A component diagram maps to a static model whose elements include Components.
3.83 Deployment Diagrams

3.83.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the
software components, processes, and objects that live on them. Software component
instances represent run-time manifestations of code units. Components that do not exist
as run-time entities (because they have been compiled away) do not appear on these
diagrams, they should be shown on component diagrams.

3.83.2 Notation

A deployment diagram is a graph of nodes connected by communication associations.
Nodes may contain component instances. This indicates that the component lives or
runs on the node. Components may contain objects, this indicates that the object is part

3-136 OMG-UML V1.2 May 1998

3

of the component. Components are connected to other components by dashed-arrow
dependencies (possibly through interfaces). This indicates that one component uses the
services of another component. A stereotype may be used to indicate the precise
dependency, if needed.

The deployment type diagram may also be used to show which components may run
on which nodes, by using dashed arrows with the stereotype «supports».

Migration of components from node to node or objects from component to component
may be shown using the «becomes» stereotype of the dependency relationship. In this
case the component or object is resident on its node or component only part of the
entire time.

Note that a process is just a special kind of object (see Active Object).

3.83.3 Example

AdminServer:HostMachine

«database»
_ meetingsDB

:Scheduler

'\ reservations

Joe’'sMachine:PC \

E :Planner

Figure 3-60 Nodes

3.83.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not
particularly distinguished in the model.

OMG-UML V1.1 Deployment Diagrams March 1998 3-137

3

3.84 Nodes

3.84.1 Semantics

A node is arun-time physical object that represents a processing resource. Generally,
having at least a memory and often processing capability as well. Nodes include
computing devices but also human resources or mechanical processing resources.
Nodes may be represented as type and as instances. Run time computational instances,
both objects and component instances, may reside on node instances.

3.84.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube. A node
type has a type name:

node-type

A node instance has a name and a type name. The node may have an underlined name
string in it or below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of
anode it is. Either or both elements are optional.

Dashed-arrow dependency arrows show the capability of a node type to support a
component type. A stereotype may be used to state the precise kind of dependency.

Component instances and objects may be contained within node instance symbols.
This indicates that the items reside on the node instances. Containment may also be
shown by aggregation or composition association paths.

Nodes may be connected by associations to other nodes. An association between nodes
indicates a communication path between the nodes. The association may have a
stereotype to indicate the nature of the communication path (for example, the kind of
channel or network).

3.84.3 Example

This example shows two nodes containing an object (cluster) that migrates from one
node to another and an object that remains in place.

| 3-138 OMG-UML V1.2 May 1998

Nodel

«database»

«cluster»
/

/
Y «becomes»

/
Node2 Y

Va

«cluster»

Figure 3-61 Use of Nodes to Hold Objects

3.84.4 Mapping

A node maps to a Node. The nesting of symbols within the node symbol maps into a
composition association between a node and constituent Classes, or a composition link
between a Node and constituent Objects.

3.85 Components

3.85.1 Semantics

A component type represents a distributable piece of implementation of a system,
including software code (source, binary, or executable) but also including business
documents, etc., in a human system. Components may be used to show dependencies,
such as compiler and run-time dependencies or information dependencies in a human
organization. A component instance represents a run-time implementation unit and
may be used to show implementation units that have identity at run time, including
their location on nodes.

OMG-UML V1.1 Components March 1998 3-139

3.85.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its
side. A component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type
may be shown as an underlined string either within the component symbol or above or
below it, with the syntax:

component-name ‘" component-type

A property may be used to indicate the life-cycle stage that the component describes
(source, binary, executable, or more than one of those). Components (including
programs, DLLs, run-time linkable images, etc.) may be located on nodes.

3.85.3 Example

The example shows a component with interfaces and also a component that contains
objects at run time.

. . 40 _
Dictionary spell-check

— O synonyms

mymailer: Mailer

RoutingList

Mailbox

Figure 3-62 Components

3.85.4 Mapping

A component symbol maps to a Component. Graphical nesting of other symbols maps
into a composition association of the Component to Classes or Objectsin it.

Interface circles attached to the component symbol by solid lines map into supports
Dependencies to Interfaces.

3-140 OMG-UML V1.2 May 1998

3.86 Location of Componentsand Objectswithin Objects

3.86.1 Semantics

Instances may be located within other instances. For example, objects may live in
processes that live in components that live on nodes. In more complicated situations
processes may migrate from node to node, so a process may live in many nodes and
deal with many components over time.

3.86.2 Notation

The location of an instance (including objects, component instances, and node
instances) within another instance may be shown by physical nesting. Containment
may also be shown by aggregation or composition association paths. Alternately, an
instance may have a property tag “location” whose value is the nhame of the containing
instance.

If an object moves during an interaction, then it may be as two or more occurrences
with a “becomes’ dependency between the occurrences. The dependency may have a
time property attached to it to show the time when the object moves. Each occurrence
represents the object during a period of time. Messages should be directed to the
correct occurrence of the object.

3.86.3 Example

See the other diagrams in this section for examples of objects and components located
on nodes as well as migration.

3.86.4 Mapping

Physical nesting of symbols maps into composition association from the Element
corresponding to the outer symbol to the Elements corresponding to the contents.

OMG-UML V1.1 Location of Componentsand Objectswithin Objects =~ March 1998 3-141

| 3-142 OMG-UML V1.2 May 1998

