1.1 Overview

UML Summary 1

The UML Summary provides an introduction to the UML, discussing its motivation
and history.

Contents

This chapter contains the following topics.

Topic Page
“Overview” 1-1
“Primary Artifacts of the UML” 1-2
“Motivation to Define the UML” 1-3
“Goals of the UML” 1-4
“Scope of the UML" 1-6
“UML - Past, Present, and Future” 1-11

The Unified Modeling Language (UML) is a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as for business
modeling and other non-software systems. The UML represents a collection of best
engineering practices that have proven successful in the modeling of large and
complex systems.

OMG-UML V1.2 May 1998 1-1

1.2 Primary Artifactsof the UML

What are the primary artifacts of the UML? This can be answered from two different
perspectives: the UML definition itself and how it is used to produce project artifacts.

1.2.1 UML-defining Artifacts

To aid the understanding of the artifacts that constitute the Unified Modeling
Language itself, this document consists of the UML Semantics, UML Notation Guide,
and UML Extensions sections.

1.2.2 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon
how a problem is attacked and how a corresponding solution is shaped. Abstraction,
the focus on relevant details while ignoring others, is a key to learning and
communicating. Because of this:

® Every complex system is best approached through a small set of nearly independent
views of a model. No single view is sufficient.

® Every model may be expressed at different levels of fidelity.

® The best models are connected to reality.

In terms of the views of a model, the UML defines the following graphical diagrams:
® use case diagram

® class diagram

® behavior diagrams:
* statechart diagram
* activity diagram
* interaction diagrams:
«- sequence diagram
«- collaboration diagram

® implementation diagrams:
e component diagram
¢ deployment diagram

Although other names are sometimes given to these diagrams, this list constitutes the
canonical diagram names.

These diagrams provide multiple perspectives of the system under analysis or
development. The underlying model integrates these perspectives so that a self-
consistent system can be analyzed and built. These diagrams, along with supporting
documentation, are the primary artifacts that a modeler sees, although the UML and
supporting tools will provide for a number of derivative views. These diagrams are
further described in the UML Notation Guide (Section 3).

OMG-UML V1.2 May 1998

A frequently asked question has been, "Why doesn't UML support data-flow
diagrams?' Simply put, data-flow and other diagram types that were not included in
the UML do not fit as cleanly into a consistent object-oriented paradigm. Activity
diagrams accomplish much of what people want from DFDs, and then some. Activity
diagrams are also useful for modeling workflow.

1.3 Motivationto Definethe UML

This section describes several factors motivating the UML and includes why modeling
is essential, it highlights a few key trends in the software industry, and describes the
issues caused by divergence of modeling approaches.

1.3.1 Why We Model

Developing a model for an industrial-strength software system prior to its construction
or renovation is as essential as having a blueprint for large building. Good models are
essential for communication among project teams and to assure architectural
soundness. We build models of complex systems because we cannot comprehend any
such system in its entirety. As the complexity of systems increase, so does the
importance of good modeling techniques. There are many additional factors of a
project’s success, but having a rigorous modeling language standard is one essential
factor. A modeling language must include:

® Model elements — fundamental modeling concepts and semantics
® Notation — visual rendering of model elements

® Guidelines — idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become
essential. The UML is a well-defined and widely accepted response to that need. Itis
the visual modeling language of choice for building object-oriented and component-
based systems.

1.3.2 Industry Trends in Software

Asthe strategic value of software increases for many companies, the industry looks for
techniques to automate the production of software. We look for techniques to improve
quality and reduce cost and time-to-market. These techniques include component
technology, visual programming, patterns, and frameworks. We also seek techniques
to manage the complexity of systems as they increase in scope and scale. In particular,
we recognize the need to solve recurring architectural problems, such as physical
distribution, concurrency, replication, security, load balancing, and fault tolerance.
Development for the worldwide web makes some things simpler, but exacerbates these
architectural problems.

Complexity will vary by application domain and process phase. One of the key
motivations in the minds of the UML developers was to create a set of semantics and
notation that adequately addresses all scales of architectural complexity, across all
domains.

OMG-UML V1.2 Motivationto Definethe UML May 1998 1-3

1.3.3 Prior to Industry Convergence

Prior to the UML, there was no clear leading modeling language. Users had to choose
from among many similar modeling languages with minor difference in overall
expressive power. Most of the modeling languages shared a set of commonly accepted
concepts that are expressed slightly differently in various languages. This lack of
agreement discouraged new users from entering the OO market and from doing OO
modeling, without greatly expanding the power of modeling. Users longed for the
industry to adopt one, or a very few, broadly supported modeling languages suitable
for general-purpose usage.

Some vendors were discouraged from entering the OO modeling area because of the
need to support many similar, but slightly different, modeling languages. In particular,
the supply of add-on tools has been depressed because small vendors cannot afford to
support many different formats from many different front-end modeling tools. It is
important to the entire OO industry to encourage broadly based tools and vendors, as
well as niche products that cater to the needs of specialized groups.

The perpetual cost of using and supporting many modeling languages motivated many
companies producing or using OO technology to endorse and support the development
of the UML.

While the UML does not guarantee project success, it does improve many things. For
example, it significantly lowers the perpetual cost of training and retooling when
changing between projects or organizations. It provides the opportunity for new
integration between tools, processes, and domains. But most importantly, it enables
developers to focus on delivering business value and gives them a paradigm to
accomplish this.

1.4 GoalsoftheUML

The primary design goals of the UML are as follows:

® Provide users with a ready-to-use, expressive visual modeling language to develop
and exchange meaningful models.

® Provide extensibility and specialization mechanisms to extend the core concepts.
® Be independent of particular programming languages and development processes.
® Provide aformal basis for understanding the modeling language.

® Encourage the growth of the OO tools market.

® Support higher-level development concepts such as collaborations, frameworks,
patterns, and components.

® Integrate best practices.

These goals are discussed in detail below.

OMG-UML V1.2 May 1998

Provide userswith a ready-to-use, expressivevisual modeling languageto
develop and exchange meaningful models

It isimportant that the OOAD standard supports a modeling language that can be used
"out of the box" to do normal general-purpose modeling tasks. If the standard merely
provides a meta-meta-description that requires tailoring to a particular set of modeling
concepts, then it will not achieve the purpose of allowing users to exchange models
without losing information or without imposing excessive work to map their models to
avery abstract form. The UML consolidates a set of core modeling concepts that are
generally accepted across many current methods and modeling tools. These concepts
are needed in many or most large applications, although not every concept is needed in
every part of every application. Specifying a meta-meta-level format for the concepts
is not sufficient for model users, because the concepts must be made concrete for real
modeling to occur. If the concepts in different application areas were substantially
different, then such an approach might work, but the core concepts needed by most
application areas are similar and should be supported directly by the standard without
the need for another layer.

Provide extensibility and specialization mechanismsto extend the core
concepts

OMG expects that the UML will be tailored as new needs are discovered and for
specific domains. At the same time, we do not want to force the common core concepts
to be redefined or re-implemented for each tailored area. Therefore, we believe that the
extension mechanisms should support deviations from the common case, rather than
being required to implement the core OOA& D concepts themselves. The core concepts
should not be changed more than necessary. Users need to be able to

® build models using core concepts without using extension mechanisms for most
normal applications,

® add new concepts and notations for issues not covered by the core,

® choose among variant interpretations of existing concepts, when there is no clear
consensus, and

® gpecialize the concepts, notations, and constraints for particular application
domains.

Beindependent of particular programming languages and devel opment
processes

The UML must and can support al reasonable programming languages. It also must
and can support various methods and processes of building models. The UML can
support multiple programming languages and devel opment methods without excessive
difficulty.

Provideaformal basisfor understanding the modeling language

Because users will use formality to help understand the language, it must be both
precise and approachable; alack of either dimension damages its usefulness. The
formalisms must not require excessive levels of indirection or layering, use of low-
level mathematical notations distant from the modeling domain, such as set-theoretic
notation, or operational definitions that are equivalent to programming an

OMG-UML V1.2 Goalsof theUML May 1998 1-5

1-6

implementation. The UML provides a formal definition of the static format of the
model using a metamodel expressed in UML class diagrams. This is a popular and
widely accepted formal approach for specifying the format of a model and directly
leads to the implementation of interchange formats. UML expresses well-formedness
constraints in precise natural language plus Object Constraint Language expressions.
UML expresses the operational meaning of most constructs in precise natural
language. The fully formal approach taken to specify languages such as Algol-68 was
not approachable enough for most practical usage.

Encouragethegrowth of the OO tools market

By enabling vendors to support a standard modeling language used by most users and
tools, the industry benefits. While vendors still can add value in their tool
implementations, enabling interoperability is essential. Interoperability requires that
models can be exchanged among users and tools without loss of information. This can
only occur if the tools agree on the format and meaning of al of the relevant concepts.
Using a higher meta-level is no solution unless the mapping to the user-level concepts
isincluded in the standard.

Support higher-level development concepts such as collaborations,
frameworks, patterns, and components

Clearly defined semantics of these concepts is essential to reap the full benefit of OO
and reuse. Defining these within the holistic context of a modeling language is a
unique contribution of the UML.

I ntegrate best practices

A key motivation behind the development of the UML has been to integrate the best
practices in the industry, encompassing widely varying views based on levels of
abstraction, domains, architectures, life cycle stages, implementation technologies, etc.
The UML isindeed such an integration of best practices.

1.5 Scopeofthe UML

The Unified Modeling Language (UML) is a language for specifying, constructing,
visualizing, and documenting the artifacts of a software-intensive system.

First and foremost, the Unified Modeling Language fuses the concepts of Booch,
OMT, and OOSE. The result is a single, common, and widely usable modeling
language for users of these and other methods.

Second, the Unified Modeling Language pushes the envel ope of what can be done with
existing methods. As an example, the UML authors targeted the modeling of
concurrent, distributed systems to assure the UML adequately addresses these
domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a
standard process. Although the UML must be applied in the context of a process, it is
our experience that different organizations and problem domains require different
processes. (For example, the development process for shrink-wrapped software is an

OMG-UML V1.2 May 1998

1

interesting one, but building shrink-wrapped software is vastly different from building
hard-real-time avionics systems upon which lives depend.) Therefore, the efforts
concentrated first on a common metamodel (which unifies semantics) and second on a
common notation (which provides a human rendering of these semantics). The UML
authors promote a devel opment process that is use-case driven, architecture centric,
and iterative and incremental .

The UML specifies a modeling language that incorporates the object-oriented
community’s consensus on core modeling concepts. It allows deviations to be
expressed in terms of its extension mechanisms. The Unified Modeling Language
provides the following:

® Sufficient semantics and notation to address a wide variety of contemporary
modeling issues in a direct and economical fashion.

® Sufficient semantics to address certain expected future modeling issues, specifically
related to component technology, distributed computing, frameworks, and
executability.

® Extensibility mechanisms so individual projects can extend the metamodel for their
application at low cost. We don’'t want users to adjust the UML metamodel itself.

® Extensibility mechanisms so that future modeling approaches could be grown on
top of the UML.

® Sufficient semantics to facilitate model interchange among a variety of tools.

® Sufficient semantics to specify the interface to repositories for the sharing and
storage of model artifacts.

1.5.1 Outside the Scope of the UML

Programming Languages

The UML, avisual modeling language, is not intended to be a visual programming
language, in the sense of having al the necessary visual and semantic support to
replace programming languages. The UML is a language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system, but it does
draw the line as you move toward code. For example, complex branches and joins are
better expressed in a textual programming language. The UML does have a tight
mapping to a family of OO languages so that you can get the best of both worlds.

Tools

Standardizing a language is necessarily the foundation for tools and process. Tools and
their interoperability are very dependent on a solid semantic and notation definition,
such as the UML provides. The UML defines a semantic metamodel, not a tool
interface, storage, or run-time model, although these should be fairly close to one
another.

OMG-UML V1.2 Scopeof theUML May 1998 1-7

1-8

The UML documents do include some tips to tool vendors on implementation choices,
but do not address everything needed. For example, they don’t address topics like
diagram coloring, user navigation, animation, storage/implementation models, or other
features.

Process

Many organizations will use the UML as a common language for its project artifacts,
but will use the same UML diagram types in the context of different processes. The
UML isintentionally process independent, and defining a standard process was not a
goal of the UML or OMG’s RFP.

The UML authors do recognize the importance of process. The presence of a well-
defined and well-managed process is often a key discriminator between
hyperproductive projects and unsuccessful ones. The reliance upon heroic
programming is not a sustainable business practice. A process

® provides guidance as to the order of ateam’s activities,
® gpecifies what artifacts should be developed,
® directs the tasks of individual developers and the team as a whole, and

® offers criteria for monitoring and measuring a project’s products and activities.

Processes by their very nature must be tailored to the organization, culture, and
problem domain at hand. What works in one context (shrink-wrapped software
development, for example) would be a disaster in another (hard-real-time, human-rated
systems, for example). The selection of a particular process will vary greatly,
depending on such things as problem domain, implementation technology, and skills of
the team.

Booch, OMT, OOSE, and many other methods have well-defined processes, and the
UML can support most methods. There has been some convergence on devel opment
process practices, but there is not yet consensus for standardization. What will likely
result is general agreement on best practices and potentially the embracing of a process
framework, within which individual processes can be instantiated. Although the UML
does not mandate a process, its developers have recognized the value of a use-case
driven, architecture-centric, iterative, and incremental process, so were careful to
enable (but not require) this with the UML.

1.5.2 Comparing UML to Other Modeling Languages

It should be made clear that the Unified Modeling Language is not a radical departure
from Booch, OMT, or OOSE, but rather the legitimate successor to all three. This
means that if you are a Booch, OMT, or OOSE user today, your training, experience,
and tools will be preserved, because the Unified Modeling Language is a natural
evolutionary step. The UML will be equally easy to adopt for users of many other
methods, but their authors must decide for themselves whether to embrace the UML
concepts and notation underneath their methods.

OMG-UML V1.2 May 1998

1

The Unified Modeling Language is more expressive yet cleaner and more uniform than
Booch, OMT, OOSE, and other methods. This means that there is value in moving to
the Unified Modeling Language, because it will allow projects to model things they
could not have done before. Users of most other methods and modeling |anguages will
gain value by moving to the UML, since it removes the unnecessary differences in
notation and terminology that obscure the underlying similarities of most of these
approaches.

With respect to other visual modeling languages, including entity-relationship
modeling, BPR flow charts, and state-driven languages, the UML should provide
improved expressiveness and holistic integrity.

Users of existing methods will experience slight changes in notation, but this should
not take much relearning and will bring a clarification of the underlying semantics. If
the unification goals have been achieved, UML will be an obvious choice when
beginning new projects, especialy as the availability of tools, books, and training
becomes widespread. Many visual modeling tools support existing notations, such as
Booch, OMT, OOSE, or others, as views of an underlying model; when these tools add
support for UML (as some already have) users will enjoy the benefit of switching their
current models to the UML notation without loss of information.

Existing users of any OO method can expect a fairly quick learning curve to achieve
the same expressiveness as they previously knew. One can quickly learn and use the
basics productively. More advanced techniques, such as the use of stereotypes and
properties, will require some study since they enable very expressive and precise
models needed only when the problem at hand requires them.

1.5.3 Features of the UML

The goals of the unification efforts were to keep it simple, to cast away elements of
existing Booch, OMT, and OOSE that didn’t work in practice, to add elements from
other methods that were more effective, and to invent new only when an existing
solution was not available. Because the UML authors were in effect designing a
language (albeit a graphical one), they had to strike a proper balance between
minimalism (everything is text and boxes) and over-engineering (having an icon for
every conceivable modeling element). To that end, they were very careful about
adding new things, because they didn’t want to make the UML unnecessarily complex.
Along the way, however, some things were found that were advantageous to add
because they have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including

® extensibility mechanisms (stereotypes, tagged values, and constraints),

® threads and processes,

® distribution and concurrency (e.g., for modeling ActiveX/DCOM and CORBA),
® patterns/collaborations,

® activity diagrams (for business process modeling),

* refinement (to handle relationships between levels of abstraction),

OMG-UML V1.2 Scopeof theUML May 1998 1-9

1-10

® interfaces and components, and

® aconstraint language.

Many of these ideas were present in various individual methods and theories but UML
brings them together into a coherent whole. In addition to these major changes, there
are many other localized improvements over the Booch, OMT, and OOSE semantics
and notation.

The UML is an evolution from Booch, OMT, OOSE, other object-oriented methods,
and many other sources. These various sources incorporated many different elements
from many authors, including non-OO influences. The UML notation is a melding of
graphical syntax from various sources, with a number of symbols removed (because
they were confusing, superfluous, or little used) and with a few new symbols added.
Theideas in the UML come from the community of ideas developed by many different
people in the object-oriented field. The UML developers did not invent most of these
ideas; rather, their role was to select and integrate the best ideas from OO and
computer-science practices. The actual genealogy of the notation and underlying
detailed semantics is complicated, so it is discussed here only to provide context, not
to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other OO
methods. Extensions (e.g., stereotypes and their corresponding icons) can be defined
for various diagrams to support other modeling styles. Stereotypes, constraints, and
taggedV alues are concepts added in UML that did not previously exist in the major
modeling languages.

Statechart diagrams are substantially based on the statecharts of David Harel with
minor modifications. The Activity diagram, which shares much of the same
underlying semantics, is similar to the work flow diagrams developed by many sources
including many pre-OO sources.

Sequence diagrams were found in a variety of OO methods under a variety of names
(interaction, message trace, and event trace) and date to pre-OO days. Collaboration
diagrams were adapted from Booch (object diagram), Fusion (object interaction
graph), and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of
patterns.

The implementation diagrams (component and deployment diagrams) are derived from
Booch’s module and process diagrams, but they are now component-centered, rather
than module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the
metamodel. User-defined icons can be associated with given stereotypes for tailoring
the UML to specific processes.

OMG-UML V1.2 May 1998

1

Object Constraint Language is used by UML to specify the semantics and is provided
as alanguage for expressions during modeling. OCL is an expression language having
its root in the Syntropy method and has been influenced by expression languages in
other methods like Catalysis. The informal navigation from OMT has the same intent,
where OCL is formalized and more extensive.

Each of these concepts has further predecessors and many other influences. We realize
that any brief list of influences is incomplete and we recognize that the UML is the
product of along history of ideas in the computer science and software engineering
area.

1.6 UML - Past, Present, and Future

The UML was developed by Rational Software and its partners. Many companies are
incorporating the UML as a standard into their development process and products,
which cover disciplines such as business modeling, requirements management,
analysis & design, programming, and testing.

1.6.1 UML 0.8-0.91

Precursorsto UML

I dentifiable object-oriented modeling languages began to appear between mid-1970
and the late 1980s as various methodol ogists experimented with different approaches
to object-oriented analysis and design. Severa other techniques influenced these
languages, including Entity-Relationship modeling, the Specification & Description
Language (SDL, circa 1976, CCITT), and other techniques. The number of identified
modeling languages increased from less than 10 to more than 50 during the period
between 1989-1994. Many users of OO methods had trouble finding complete
satisfaction in any one modeling language, fueling the "method wars." By the mid-
1990s, new iterations of these methods began to appear, most notably Booch '93, the
continued evolution of OMT, and Fusion. These methods began to incorporate each
other’s techniques, and a few clearly prominent methods emerged, including the
OOSE, OMT-2, and Booch '93 methods. Each of these was a complete method, and
was recognized as having certain strengths. In simple terms, OOSE was a use-case
oriented approach that provided excellent support business engineering and
requirements analysis. OMT-2 was especially expressive for analysis and data-
intensive information systems. Booch '93 was particularly expressive during design
and construction phases of projects and popular for engineering-intensive applications.

Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim
Rumbaugh of Rational Software Corporation began their work on unifying the Booch
and OMT (Object Modeling Technique) methods. Given that the Booch and OMT
methods were already independently growing together and were collectively
recognized as leading object-oriented methods worldwide, Booch and Rumbaugh
joined forces to forge a complete unification of their work. A draft version 0.8 of the

OMG-UML V1.2 UML - Past, Present, and Future May 1998 1-11

Unified Method, as it was then called, was released in October of 1995. In the Fall of
1995, Ivar Jacobson and his Objectory company joined Rational and this unification
effort, merging in the OOSE (Object-Oriented Software Engineering) method. The
Objectory name is now used within Rational primarily to describe its UML-compliant
process, the Rational Objectory Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim
Rumbaugh, and Ivar Jacobson were motivated to create a unified modeling language
for three reasons. First, these methods were already evolving toward each other
independently. It made sense to continue that evolution together rather than apart,
eliminating the potential for any unnecessary and gratuitous differences that would
further confuse users. Second, by unifying the semantics and notation, they could
bring some stability to the object-oriented marketplace, allowing projects to settle on
one mature modeling language and letting tool builders focus on delivering more
useful features. Third, they expected that their collaboration would yield
improvements in all three earlier methods, helping them to capture lessons learned and
to address problems that none of their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:

1. Enable the modeling of systems (and not just software) using object-oriented
concepts

2. Establish an explicit coupling to conceptual as well as executable artifacts
3. Address the issues of scale inherent in complex, mission-critical systems
4. Create a modeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike
designing a programming language. There are tradeoffs. First, one must bound the
problem: Should the notation encompass requirement specification? (Y es, partially.)
Should the notation extend to the level of a visua programming language? (No.)
Second, one must strike a balance between expressiveness and simplicity: Too simple
anotation will limit the breadth of problems that can be solved; too complex a notation
will overwhelm the mortal developer. In the case of unifying existing methods, one
must also be sensitive to the installed base: Make too many changes, and you will
confuse existing users. Resist advancing the notation, and you will miss the
opportunity of engaging a much broader set of users. The UML definition strives to
make the best tradeoffs in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9
and 0.91 documents in June and October of 1996. During 1996, the UML authors
invited and received feedback from the general community. They incorporated this
feedback, but it was clear that additional focused attention was still required.

1.6.2 UML Partners

During 1996, it became clear that several organizations saw UML as strategic to their
business. A Request for Proposal (RFP) issued by the Object Management Group
(OMG) provided the catalyst for these organizations to join forces around producing a

1-12 OMG-UML V1.2 May 1998

joint RFP response. Rational established the UML Partners consortium with several
organizations willing to dedicate resources to work toward a strong UML definition.
Those contributing most to the UML definition included: Digital Equipment Corp.,
HP, i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft,
Oracle, Rational Software, Tl, and Unisys. This collaboration produced UML, a
modeling language that was well defined, expressive, powerful, and generally
applicable.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich
Technologies; and Softeam also submitted separate RFP responses to the OMG. These
companies joined the UML partners to contribute their ideas, and together the partners
produced the revised UML 1.1 response. The focus of the UML 1.1 release was to
improve the clarity of the UML 1.0 semantics and to incorporate contributions from
the new partners.

This document is based on the UML 1.1 release and is the result of a collaborative
team effort. The UML Partners have worked hard as a team to define UML. While
each partner came in with their own perspective and areas of interest, the result has
benefited from each of them and from the diversity of their experiences. The UML
Partners contributed a variety of expert perspectives, including, but not limited to, the
following: OMG and RM-ODP technology perspectives, business modeling, constraint
language, state machine semantics, types, interfaces, components, collaborations,
refinement, frameworks, distribution, and metamodel.

1.6.3 UML - Present and Future

The UML is nonproprietary and open to al. It addresses the needs of user and
scientific communities, as established by experience with the underlying methods on
which it is based. Many methodologists, organizations, and tool vendors have
committed to use it. Since the UML builds upon similar semantics and notation from
Booch, OMT, OOSE, and other leading methods and has incorporated input from the
UML partners and feedback from the general public, widespread adoption of the UML
should be straightforward.

There are two aspects of "unified" that the UML achieves: First, it effectively ends
many of the differences, often inconsequential, between the modeling languages of
previous methods. Secondly, and perhaps more importantly, it unifies the perspectives
among many different kinds of systems (business versus software), development
phases (requirements analysis, design, and implementation), and internal concepts.

Standar dization of the UML

Many organizations have already endorsed the UML as their organization’s standard,
since it is based on the modeling languages of leading OO methods. The UML is
ready for widespread use. This document is suitable as the primary source for authors
writing books and training materials, as well as devel opers implementing visual
modeling tools. Additional collateral, such as articles, training courses, examples, and
books, will soon make the UML very approachable for a wide audience.

OMG-UML V1.2 UML - Past, Present, and Future May 1998 1-13

1-14

Industrialization

Many organizations and vendors worldwide have already embraced the UML. The
number of endorsing organizations is expected to grow significantly over time. These
organizations will continue to encourage the use of the Unified Modeling Language by
making the definition readily available and by encouraging other methodologists, tool
vendors, training organizations, and authors to adopt the UML.

The real measure of the UML’s success is its use on successful projects and the
increasing demand for supporting tools, books, training, and mentoring.

Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future
improvements in modeling concepts. We have addressed many |eading-edge
techniques, but expect additional techniques to influence future versions of the UML.
Many advanced techniques can be defined using UML as a base. The UML can be
extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including
those for visual modeling, simulation, and development environments. As interesting
tool integrations are developed, implementation standards based on the UML will
become increasingly available.

The UML has integrated many disparate ideas, so this integration will accelerate the
use of O0. Component-based development is an approach worth mentioning. It is
synergistic with traditional object-oriented techniques. While reuse based on
components is becoming increasingly widespread, this does not mean that component-
based techniques will replace object-oriented techniques. There are only subtle
differences between the semantics of components and classes.

OMG-UML V1.2 May 1998

