UML 2.0Infrastructure Specification

This OMG document replaces the submission document (ad/03-01-01) and the Draft Adopted
specification (ptc/03-07-05). It isan OMG Final Adopted Specification and is currently in the
finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by November 7, 2003.

You may view the pending issues for this specification from the OMG revision issues web page
http: //mww.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 30, 2004. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catal og.

OM G Adopted Specification
ptc/03-09-15

Date: September 2003

Unified Modeling Language (UML) Specification: Infrastructure
version 2.0

ptc/03-09-15

Copyright © 2002, Adaptive Ltd.
Copyright © 1997-2003, Object Management Group
Copyright © 2001-2003 U2 Partners (www.u2-partners.org).

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
againgt liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.FR. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBANet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

S o0 oL PR UPTUPRRPRPIN 1
P22 ©C0 01 1] 1 4=" 0 (o TSP 1
3 NOrMELIVE REFEIENCES ...ttt sttt 3
4 TermS and DEfINITIONSccoiiuiiieiirieseee ettt sb et seesaeebesneenee s 3
5 SYMBOIS .ttt sr et nn 19
6 Additional INFOIMELTIONoiuiiieiiiee et sb et nae e sneeaeas 20
6.1 Changes to Adopted OMG Specificationscccccevunirimriiiriiiiiiiiennn, 20

6.2 Architectural Alignment and MDA SUPPOItccooeeiiieiieieice e 20

6.3 How to Read this Specificationccccceeeiiii . 20

6.4 ACKNOWIEAGMENTSuuiiii i e e e e e e e e e e e e e e e eesenne 20

= O I 1o [o 1 o SO 22
7 Language ATCNITECTUIEocueeie ettt ettt e e e e e neeneeenennnn 23
7.1 Design PriNCIPIES .oooeeieeee e s 23

7.2 Infrastructure ArchiteCtUreoooiiiiiii i 23

A T o] £ PP PP PP PP PPPPPPPPIN 24

T.2.2 PIOFIES oottt e et e e aabeea e 25

7.2.3 Architectural Alignment between UML and MOFcccccvieviee e, 26

7.2.4 SUPErSLrUCLUre ArChitECIUIEocoiieiiii i e 26

7.2.5 Reusing INfraAStIUCIUIEceuiiiiiiieeiis i e e e e e e s aereeeee s 27

7.2.6 The Kernel PACKaQgeuuuuiiiiiieeei ittt e e e e e e e 27

7.2.7 Metamodel [aYEIINGcooi oot 28

7.2.8 The four-layer metamodel hierarchycccccccveiiiiiiiiic e, 28

S 1Y/ 1=1 2= U Lo o 1= T Vo T 29

7.2.10 An example of the four-level metamodel hierarchyccccccccciviiiiiiinnenneenn, 30

8 Language FOrMEalISIMcc.eoiiiiiiiee ettt sttt s sb e e 32
8.1 Levels of FOrMaliSIMccooiiiiiiiiiiie et 32

ST A B - To | = Vg RPN 33

8.1.2 INSTANCE MOUE ...coeiiiiiiie e e e e e e et eeeeas 33

8.2 Class Specification StrUCLUIEcoooiiiiiiii i e 33

ST I B 1o] o] (o] o TP 33

8.2.2 ASSOCIALIONS ...eiiiiiiei ettt e ettt ettt e e e e e e e et e e e e e e et e e e e e e e ba e neaeaaaeaaas 34

8.2.3 CONSITAINTSeeiiiiiiieie ettt e et e et e e e e e e s e e s bbb e e et e e e e ae e e e e s annbebbaeeeeeas 34

8.2.4 Additional Operations (OPtioNAl)cooiiiiiiii e 34

8.2.5 SEMANTICS ...ttt ettt e e e e e e e e e e e 34

8.2.6 Semantic Variation Points (Optional)cc.ueeiiiiiiiiiie e 34

ST A o] = (o o PP TP P PP 35

8.2.8 Presentation Options (OPLIONAI)ooviiiiiiiiiiiiiiee e 35

UML Infrastructure 2.0 Adopted Specification i

8.2.9 Style Guidelines (0PtiIoNAI)ccvvviiiiiiiiee e ————— 35

8.2.10 Examples (OPLtioNal)ccooeiiiiiiiiiiiiiir e e e 35
8.2.11 Rationale (OPtioNAl)coiciiiieiiiee e ———————— 35
8.2.12 Changes fromM UML 1.4oouiiiiiiiee e r e e e e e e e s ee e e 35

8.3 Use of a Constraint LANQUAJEcceevveiiiiiiiiiieeieeeeeeeeee e 35
8.4 Use of Natural LangUageccevvviiiiiiiiiiii e, 36
8.5 Conventions and TYPOGraphycceeeriiiiiiiiiiiiiee e 36
Part 11 - INfrastructure LIDFarycooeeeiiice et nneeneens 37
O COrEIADSITBCIIONS ...o.viieieiieieie ettt bbbttt bbbt e e ens 39
9.1 BehavioralFeatures packageccccvvveiiiiiiiiiii 40
9.1.1 BEhAVIOTAIFEALUIEeiiiiiiiiiiie ittt st e e et e e e e nee s 41
O.1.2 PArBMELET ...ttt e e e e e e e e e e e e e e e e a e 42

9.2 Changeabilities package ... 43
9.2.1 ChangeabilityKiNdccoiiiiiiiiiie e e e e e e e e 43
9.2.2 StructuralFeature (as specialized)oocciiiiiiiiiiiee e ———— 44

9.3 Classifiers packageoovvvviiiiiiiiii 45
1S IR T A O - T = PSSR PR 45
.32 FRATUIE ..ot e e e e e e e e e e et e et e e e e e bbb bbb 46

9.4 CoMMENLS PACKAGE ..coeeeiiieieeeeeee e 47
LS I R OL0 1011 0= o | S TSR TOURRRRP 47
9.4.2 Element (8S SPECIAlIZEA)ooiueiiiiieeeeee e 48

9.5 Constraints Packageccccviieiiiiii . 49
1S TS A o 0 153 1 -1 | AU P TR 50
9.5.2 Namespace (as SPECIAlIZEA)eeeiiiiiiiiiiiiii e 52

9.6 EIements PACKAGEcoooeiiiiiiiiiieeee et 53
9.7 EXPresSions PACKAGEccoiiiiiiiiiiiiiie e 54
LS A T o £ o o P ERRRRR 54
9.7.2 OPAQUEEXPIESSION ..eeiiieiieii ittt e e e e e e e e et e e e e e e e e e enesnnnrenes 55
9.7.3 ValUuESPECIICALION ...vveiiiiieeii e e e e s e e e e e e e e e e e e ennenes 56

9.8 Generalizations PACKAGEcovvviiiiiiiie i 57
9.8.1 Classifier (as Specialized)cccuuiiiiiiiiei i a e 58
9.8.2 GENEIANIZALION ...eiiiiiiiiie et e e e e e e 59

9.9 INStANCES PACKAGE ...oviieiiiiiiieiieee e 61
9.9.1 INStaNCESPECIfICALIONieiiiiii et e e e e e e eaeeees 62
9.9.2 INSLANCEVAIUEeeiiiiiiiiei ettt e e e e e e e et e e e e e aae e e e e e annnenes 64

1S IR S (o) AP UPT PP 65
9.10 Literals PaCKAQE ...ocovvieiiiiiiieiieee e 66
9.10.1 LItEralBOOIBANeeeiiiiiieeiie ittt ettt e e e e e e e e e et e e e e e e e e e e e e neneeees 66

S I O 2 1 (=T =1 a1 (= o = PP URPTRRRPTN 67
9.10.3 LIEIAINUIL ...ttt e e e e e e e e e e e e e e e e e nrneeees 68
9.10.4 LiteralSPeCifiCatiONoooiuuiiiiiiiie e 69
9.10.5 LILEIAISIIING ...ueeiiieeieiiiae ettt e e e e e e e e st e e e ee e e e e e e e e annneeeeees 69
9.10.6 LiteralUnlimitedNaturalc..oueiiiiiiiaiie e 70
9.11 MUItIPliCItIeS PACKAGE ...coeieiiiiiiieieeee e 71
9.11.1 MUltipliCItyBIEMENT ..o 71
9.12 MultiplicityEXpressions packageccooeveeeeieieieieeeeeeeeeee e 74
9.12.1 MultiplicityElement (Specialized)c.coviiiiiiiiiiiiieieee e 75

UML Infrastructure 2.0 Adopted Specification

9.13 NameSPacCeS PACKAGEccoeee i 76

9.13.1 NamMEAEIEBMENT ..ttt e e e e e e e e e e e eas 77
O.13.2 NAIMESPACE ...t eiee e ettt e e e e e e e e e e e e e e e aaaaeeaeeeeeeeeaebsbenenbannnanan 78
9.14 OWNErships PACKAGEcoooiiiii e 79
9.14.1 Element (8S SPECIAIIZEA)eeriiiiieiiiiiiie e 80
9.15 RedefinitioNs PACKAgEccooeiiiiiieeeee e 81
9.15.1 RedefinableEIEmMENTeeiiiiii et 82
9.16 Relationships package ... 83
9.16.1 DirectedRelatioNShipvviiiiiiiiiee e 84
9.16.2 RElAtIONSKIP wvviiiiiiiieee e 85
9.17 StructuralFeatures package ... 86
9.17.1 SHrUCLUIAIFEALUIE .. .eeiiiii ettt 86
9.18 SUPEr PACKAGE ...ceeieeeeeee e, 87
9.18.1 Classifier (as SPeCialiZed)coouiiiiiiii e 87
9.19 TypedElements PACKAGEccooeeiieii e 90
LS TR R T R Y/ o1 90
9.19.2 TYPEAEIEMENT ...ttt e e e e e e e e e e e e enbneeeeeas 91
9.20 Visibilities PACKAGEcoooeeii i 91
9.20.1 NamedElement (as specialized) ..o 92
9.20.2 VISIDIIEYKING ...ttt sttt e e s e e sabe e e sbeeean 93

10 COrEIBASIC ..ueiiiiiiiiicieeieeee ettt bbbttt b b bbb e e e nne s 9
10.1 TYPES IAGIAM .ottt ee ettt e e s e e e e ee e neeees 95
0 00t I = PSPPSR 95
10.1.2 NaMEAEIBMENEeiiiiiiiiiee ettt s 95
10.1.3 TYPEAEIEMENT ...t e e e e e e e e s r e e e e e e e e e s 96

O I O P 1T Yo [=T | = o 97
O T2 R - T PP P PP 97
02 @] o 1= - i [o] o SRR 98
L0.2.3 PArQMELE ...ceeiiieieee ettt e e e e e s e e 98

O T] o o = o USSP 99
10.3 DataTypes iagramcccooioeeieee e nenennes 100
O R 0t I T 1=) I o = USSR 100
10.3.2 ENUMETALIONviiiiiiiiiiie ettt ettt e e nene e e 100
10.3.3 ENUMETAtIONLITETAleeeiiieiieiieeere e 101
O B o 01117 1Y o = S 101
10.4 Packages Qiagramccccccccouuueuuierurinnrineernrirereerrrererrreeer .. —————————————————. 102
L10.4.1 PACKAGE .eeeeiiiiiieeie ettt e e e e e e e e e aeeaaeas 102
10.4.2 Type (additional Properti®S)ceooueeeiieiiiiiee e e e e e e 102

11 COrEICONSITUCESvieeirieiiee et r e n e 104
50 o To | o [=T | = 1 . PRSP 105
11.1.1 Comment (as SPECIANIZEA)ceeiiiiiiiie e 106
11.1.2 DirectedRelationship (as specialized)ccccccoiiiiiiiiiiiiiiii e 107
11.1.3 Element (as SPECIAIIZEA)coiiiiiiiiiiiiiiie e 107
11.1.4 Relationship (as Specialized)ccouuiiiiiiiie e 108
11.2 EXPresSions diagram ...oooooooe oo e eenee 108
11.2.1 EXpression (8s SpecialiZed)cc.uueiiiiiiiieae e 109
11.2.2 OpaqueExpression (as SpecialiZed) ... 110
11.2.3 ValueSpecification (as specialiZed) ... 110

UML Infrastructure 2.0 Adopted Specification iii

11.3 Classes diagramcccooeeiiiiiiiiii e 111

B 0 ==Y ol - L1 T o SRR PRSP 112
11.3.2 Class (8S SPECIAlIZEA)ueeeiiiiiiiieee et 118
11.3.3 Classifier (additional Properti€s)oocuueuiieeiiiiieeeee e 120
11.3.4 Operation (additional Properties)coooeicuuieiiiiiieieee e 123
11.3.5 Property (as SPECIANIZEA)eeiiiiiiiiiiiiiee e 123
11.3.6 ClasSifiers diagramueeeieieiieeee et e e e e e e e e ee e 127
11.3.7 Classifier (s SPeCialiZed)cooiiiiii i 127
11.3.8 Feature (8s SPEeCIaliZEd)ceiiiiiiiiiiiiieie e 128
11.3.9 MultiplicityElement (as specialized)ccccooiiiiiiiiiiiiiiiieeee e 128
11.3.10 RedefinableElement (as specialized)ccccveiiiiiiiiiiii e 129
11.3.11 StructuralFeature (as specialized) ... 129
11.3.12 Type (8S SPECIALIZEA)ueiiiiiiiiiiie et 130
11.3.13 TypedElement (as SpecialiZed)ooooiiiiiiiiiiiiiai e 130
11.4 Constraints diagramcoooiiiiiii i ————————— 131
3 R o 1 = 1 | SRS RTR PSR 131
11.4.2 Namespace (additional properties)ccccueeeeeeieiieaainiiiie e 132
11.5 DataTypes iagramcooooiiiiiiieieeei e 132
11.5.1 DataType (as SPECIAliZe€d)uvviiieeeeiiii e 133
11.5.2 Enumeration (as SPeCialized)cceeeiiiiiiiiiiiiiieiiee e 135
11.5.3 EnumerationLiteral (as specialized)cccccveeeieiiiiiiiiee e 136
11.5.4 Operation (additional Properties)cccecuveririiieiiee e 137
11.5.5 PrimitiveType (as specCialized)ccooooiiiiiiiiiiiiiiee e 137
11.5.6 Property (additional Properti€S)c.cccoivcuviriiiiieeiee e seccre e e e 138
11.6 Namespaces diagramcooooiieiiiiiiiii e 138
0 G300 = =Y o T= T 14 o o S 139
11.6.2 NamedElement (as specialized)ccoocvviiiiiiiiiei e 142
11.6.3 Namespace (as SPeCIaliZed)cceeeiiiiiiiiieiiiie e 142
11.6.4 PackageableEIEMENTouiiiiiiiieeie e 144
B G ST o= Tod & Vo 11 [0 oo o OSSO 144
11.7 Operations diagramooooeiiiiii e 146
11.7.1 BehavioralFeature (as specialized)ccccvviiiiiieeiiiiiie e 147
11.7.2 Operation (as SPECIAlIZEA)eviiiieeeeei i ——————- 147
11.7.3 Parameter (as SPeCialiZed)ccooiiiiiciiiiieiiice e 151
11.8 Packages diagram ..o 152
11.8.1 Type (additional PrOPErtiES)ceeeiiiiiiiieiiiie e 152
R - Tod ¢ Vo [P RT TSRS 153
11.8.3 PACKAGEMEITEcoeeiiiiettte ettt ettt e e e e e e e e e e nb e e ee s 155

12 COre:PrMItIVETYPES ...ccviieeeiteeieieeie ettt ettt s be et e seesbe e be st e sreenaesneenseans 160
12.1 PrimitiveTypes PaCKagecooieiiiiiiii i 160
2 0 R = o To [T o SRRSO 160
N A 11 (=0 =] SRR PP 161
I RC IS 1 11 o o PP U P UPPRTUPPRTO 162
12.2.4 UNBMILEANGLUIALceeeeiee et e e e 163

T 00 = . L0 1= SRR 164
13.1 Profiles package ... 165
13.1.1 Extension (from Profiles) ... 165
13.1.2 ExtensionENnd (from ProfilesS) ... 168

UML Infrastructure 2.0 Adopted Specification

13.1.3 Class (from Constructs, ProfileS)ccccccceeieiiiiiiiir e 169

13.1.4 Package (from Constructs, Profil€S)cccccoeeiiiiiiiiiie e 170
13.1.5 Profile (from Profil@S)eeuvieiiiiiiee et 170
13.1.6 ProfileApplication (from ProfileS)cccuvuiiiiiieeii e 173
13.1.7 Stereotype (from ProfileS)cooiiiiiiiiiiiie e 174
Part 11 - APPENTICES ..ottt st et sb e be st e sbeeeeeneeneas 179
A. XMI Seridization and SChEmMAccoeeiiiiiie e e 180
B. Support for Model Driven ArChiteCtUIecooeeiereeneeeree e 181
170 1= OSSR 183

UML Infrastructure 2.0 Adopted Specification Y

Vi

UML Infrastructure 2.0 Adopted Specification

1 Scope

ThisUML 2.0: Infrastructure is the first of two complementary specifications that represent a major revision to the Object
Management Group's Unified Modeling Language (UML), for which the previous current version was UML v1.5. The
second specification, which uses the architectural foundation provided by this specification, is the UML 2.0:
Superstructure (ptc/03-08-02).

The UML 2.0: Infrastructure defines the foundational language constructs required for UML 2.0. It is complemented by
UML 2.0: Superstructure, which defines the user level constructs required for UML 2.0.

Editorial Comment: The FTF needs to review and complete this section -- this version was derived from the
“Introduction” section of the Preface in the Draft Adopted Specification

2 Conformance

Editorial Comment: The FTF needs to review and complete this section -- this version was derived from the
“Introduction” section of the Preface in the Draft Adopted Specification

The basic units of compliance for UML are the packages which define the UML metamodel. Unless otherwise qualified,
complying with a package requires complying with its abstract syntax, well-formedness rules, semantics and notation.

In the case of the UML Infrastructure, its InfrastructureLibrary is intended to be flexibly reused by UML2, MOF2,
CWM2 and future metmodels. In order to maximize its flexibility for reuse, each subpackage in the InfrastructurelLibrary
constitutes a separate compliance point.

All metamodels that reuse the InfrastructureLibrary should clearly specify which packages they reuse, and further clarify
which packages are imported without change, and which packages are imported and extended via specialization. For
example, the UML::AuxiliaryConstructs::Profiles package imports the InfrastructureLibrary::Profiles package without
change, whereas the UML ::Classes::Kernel package imports all the Infrastructure::Core subpackages and extends some of
their classes via specialization. In the latter case, specific specializations needs to be clearly defined.

The following table summarizes the compliance points of the UML 2.0: Infrastructure, where the following compliance
options are valid:

no compliance Implementation does not comply with the abstract syntax, well-formedness rules,
semantics and notation of the package.

partial compliance Implementation partially complies with the abstract syntax, well-formedness rules,
semantics and notation of the package.

compliant compliance Implementation fully complies with the abstract syntax, well-formedness rules,
semantics and notation of the package.

interchange compliance Implementation fully complies with the abstract syntax, well-formedness rules,
semantics, notation and XM schema of the package.

UML 2.0: Infrastructure - Final Adopted Specification 1

Table 1 - Summary of Compliance Points

Compliance Point

Valid Options

Core::Abstractions;:Behavioral Features

no, partial, complete, interchange

Core::Abstractions::Changeabilities

no, partial, complete, interchange

Core::Abstractions;:Classifiers

no, partial, complete, interchange

Core::Abstractions::Comments

no, partial, complete, interchange

Core::Abstractions;:Constraints

no, partial, complete, interchange

Core::Abstractions::Elements

no, partial, complete, interchange

Core::Abstractions::Expressions

no, partial, complete, interchange

Core::Abstractions;:Generalizations

no, partial, complete, interchange

Core::Abstractions::Instances

no, partial, complete, interchange

Core::Abstractions;:Literals

no, partial, complete, interchange

Core::Abstractions::Multiplicities

no, partial, complete, interchange

Core::Abstractions::MultiplicityExpressions

no, partial, complete, interchange

Core::Abstractions::Namespaces

no, partial, complete, interchange

Core::Abstractions::Ownerships

no, partial, complete, interchange

Core::Abstractions;:Redefinitions

no, partial, complete, interchange

Core::Abstractions::Rel ationships

no, partial, complete, interchange

Core::Abstractions:;: Structural Features

no, partial, complete, interchange

Core::Abstractions:: Super

no, partial, complete, interchange

Core::Abstractions;:Visibilities

no, partial, complete, interchange

Core::Basic

no, partial, complete, interchange

Core::Constructs

no, partial, complete, interchange

Core::PrimitiveTypes

no, partial, complete, interchange

Core::Profiles

no, partial, complete, interchange

UML 2.0: Infrastructure - Final Adopted Specification

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« UML 2.0: Superstructure Specification
« MOF 2.0: Core Specification
» MOF 2.0: XMI Mapping Specification

Editorial Comment: The FTF needs to review and complete this section

4 Terms and Definitions

Editorial Comment: The FTF needs to review and complete this section -- the version in this document was
produced by literal copying of the contents of the Glossary from the UML 2.0 Superstructure Draft Adopted Spec
into this section.

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.
(Note: The following conventions are used in the term definitions below:

» Theentriesusually begin with alowercase |etter. Aninitial uppercase letter is used when aword is usually capitalized
in standard practice. Acronyms are all capitalized, unless they traditionally appear in al lowercase.

» When one or more words in amulti-word term is enclosed in brackets, it indicates that those words are optional when
referring to the term. For example, use case [class] may be referred to as ssmply use case.

» A phrase of the form “Contrast: <term>" refersto aterm that has an opposed or substantively different meaning.
« A phrase of the form “ See: <term>" refersto arelated term that has a similar, but not synonymous meaning.

» A phrase of the form “ Synonym: <term>" indicates that the term has the same meaning as another term, which is ref-
erenced.

» A phrase of the form “Acronym: <term>" indicates that the term is an acronym. The reader is usually referred to the
spelled-out term for the definition, unless the spelled-out termisrarely used.)

abstract class
A class that cannot be directly instantiated. Contrast: concrete class.

abstraction
The result of empasizing certain features of a thing while de-emphasizing other features that are not relative. An
abstraction is definedrelative to the perspective of the viewer.

action

A fundamental unit of behavior specification that represents some transformation or processing in the modeled
system, be it a computer system or a real-world system. Actions are contained in activities, which provide their
context. See: activity.

UML 2.0: Infrastructure - Final Adopted Specification 3

action sequence
An expression that resolves to a sequence of actions.

action state
A state that represents the execution of an atomic action, typically the invocation of an operation.

activation
The initiation of an action execution.

active class
A class whose instances are active objects. See: active object.

active object

An object that may execute its own behavior without requiring method invocation. This is sometimes referred to as
“the object having its own thread of control.” The points at which an active object responds to communications from
other objects are determined solely by the behavior of the active object and not by the invoking object. This implies
that an active object is both autonomous and interactive to some degree. See: active class, thread.

activity
A specification of parameterized behavior that is expressed as a flow of execution via a sequencing of subordinate
units (whose primitive elements are individual actions). See actions.

activity diagram
A diagram that depicts behavior using a control and data-flow model.

actor

A construct that is employed in use cases that define a role that a user or any other system plays when interacting
with the system under consideration. It is a type of entity that interacts, but which is itself external to the subject.
Actors may represent human users, external hardware, or other subjects. An actor does not necessarily represent
a specific physical entity. For instance, a single physical entity may play the role of several different actors and,
conversely, a given actor may be played by multiple physical entities.

actual parameter
Synonym: argument.

aggregate
A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.

aggregation
A special form of association that specifies a whole-part relationship between the aggregate (whole) and a
component part. See: composition.

analysis

The phase of the system development process whose primary purpose is to formulate a model of the problem
domain that is independent of implementation considerations. Analysis focuses on what to do; design focuses on
how to do it. Contrast: design.

analysis time
Refers to something that occurs during an analysis phase of the software development process. See: design time,
modeling time.

argument
A binding for a parameter that is resolved later. An independent variable.

artifact

A physical piece of information that is used or produced by a development process. Examples of Artifacts include
models, source files, scripts, and binary executable files. An artifact may constitute the implementation of a
deployable component. Synonym: product. Contrast: component.

4 UML 2.0: Infrastructure - Final Adopted Specification

association
A relationship that may occur between instances of classifiers.

association class
A model element that has both association and class properties. An association class can be seen as an
association that also has class properties, or as a class that also has association properties.

association end
The endpoint of an association, which connects the association to a classifier.

attribute
A structural feature of a classifier that characterizes instances of the classifier. An attribute relates an instance of a
classifier to a value or values through a named relationship.

auxiliary class

A stereotyped class that supports another more central or fundamental class, typically by implementing secondary
logic or control flow. Auxiliary classes are typically used together with focus classes, and are particularly useful for
specifying the secondary business logic or control flow of components during design. See also: focus.

behavior

The observable effects of an operation or event, including its results. It specifies the computation that generates
the effects of the behavioral feature. The description of a behavior can take a number of forms: interaction,
statemachine, activity, or procedure (a set of actions).

behavior diagram
A form of diagram that depict behavioral features.

behavioral feature
A dynamic feature of a model element, such as an operation or method.

behavioral model aspect
A model aspect that emphasizes the behavior of the instances in a system, including their methods, collaborations,
and state histories.

binary association

An association between two classes. A special case of an n-ary association.

binding

The creation of a model element from a template by supplying arguments for the parameters of the template.

boolean
An enumeration whose values are true and false.

boolean expression
An expression that evaluates to a boolean value.

cardinality
The number of elements in a set. Contrast: multiplicity.

child
In a generalization relationship, the specialization of another element, the parent. See: subclass, subtype.
Contrast: parent.

call
An action state that invokes an operation on a classifier.

class
A classifier that desctibes of a set of objects that share the same specifications of features, constraints, and
semantics.

UML 2.0: Infrastructure - Final Adopted Specification 5

classifier
A collection of instances that have something in common. A classifier can have features that characterize its
instances. Classifiers include interfaces, classes, datatypes, and components.

classification
The assignment of an instance to a classifier. See dynamic classification, multiple classification and static
classification.

class diagram
A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their contents
and relationships.

client
A classifier that requests a service from another classifier. Contrast: supplier.

collaboration
The specification of how an operation or classifier, such as a use case, is realized by a set of classifiers and
associations playing specific roles used in a specific way. The collaboration defines an interaction. See: interaction.

collaboration occurrence

A particular use of a collaboration to explain the relationships between the parts of a classifier or the properties of
an operation. It may also be used to indicate how a collaboration represents a classifier or an operation. A
collaboration occurrence indicates a set of roles and connectors that cooperate within the classifier or operation
according to a given collaboration, indicated by the type of the collaboration occurrence. There may be multiple
occurrences of a given collaboration within a classifier or operation, each involving a different set of roles and
connectors. A given role or connector may be involved in multiple occurrences of the same or different
collaborations. See: collaboration.

communication diagram

A diagram that focuses on the interaction between lifelines where the architecture of the internal structure and how
this corresponds with the message passing is central. The sequencing of messages is given through a sequence
numberering scheme. Sequence diagrams and communication diagrams express similar information, but show it in
different ways. See: sequence diagram.

compile time
Refers to something that occurs during the compilation of a software module. See: modeling time, run time.

component

A modular part of a system that encapsulates its contents and whose manifestation is replaceable within its
environment. A component defines its behavior in terms of provided and required interfaces. As such, a component
serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics).

component diagram
A diagram that shows the organizations and dependencies among components.

composite
A class that is related to one or more classes by a composition relationship. See: composition.

composite aggregation
Synonym: composition.

composite state
A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates. See: substate.

composite structure diagram
A diagram that depicts the internal structure of a classifier, including the interaction points of the classifier to other

6 UML 2.0: Infrastructure - Final Adopted Specification

parts of the system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.
The architecture diagram specifies a set of instances playing parts (roles), as well as their required relationships
given in a particular context.

composition

A form of aggregation which requires that a part instance be included in at most one composite at a time, and that
the composite object is responsible for the creation and destruction of the parts. Composition may be recursive.
Synonym: composite aggregation.

concrete class
A class that can be directly instantiated. Contrast: abstract class.

concurrency
The occurrence of two or more activities during the same time interval. Concurrency can be achieved by
interleaving or simultaneously executing two or more threads. See: thread.

concurrent substate
A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.

connectable element
An abstract metaclass representing model elements which may be linked via connector. See: connector.

connector
A link that enables communication between two or more instances. The link may be realized by something as
simple as a pointer or by something as complex as a network connection.

constraint
A semantic condition or restriction. It can be expressed in natural language text, mathematically formal notation, or
in a machine-readable language for the purpose of declaring some of the semantics of a model element.

container

1. An instance that exists to contain other instances, and that provides operations to access or iterate over its
contents. (for example, arrays, lists, sets).

2. A component that exists to contain other components.

containment hierarchy
A namespace hierarchy consisting of model elements, and the containment relationships that exist between them.
A containment hierarchy forms a graph.

context
A view of a set of related modeling elements for a particular purpose, such as specifying an operation.

data type
A type whose values have no identity (i.e., they are pure values). Data types include primitive built-in types (such
as integer and string) as well as enumeration types.

delegation
The ability of an object to issue a message to another object in response to a message. Delegation can be used as
an alternative to inheritance. Contrast: inheritance.

dependency
A relationship between two modeling elements, in which a change to one modeling element (the independent
element) will affect the other modeling element (the dependent element).

deployment diagram
A diagram that depicts the execution architecture of systems. It represents system artifacts as nodes, which are
connected through communication paths to create network systems of arbitrary complexity. Nodes are typically

UML 2.0: Infrastructure - Final Adopted Specification 7

defined in a nested manner, and represent either hardware devices or software execution environments. See:
component diagrams.

derived element
A model element that can be computed from another element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic information.

design

The phase of the system development process whose primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions are made to meet the required functional and quality
requirements of a system.

design time
Refers to something that occurs during a design phase of the system development process. See: modeling time.
Contrast: analysis time.

development process
A set of partially ordered steps performed for a given purpose during system development, such as constructing
models or implementing models.

diagram
A graphical presentation of a collection of model elements, most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML supports the diagrams listed in Appendix A.

disjoint substate
A substate that cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.

distribution unit
A set of objects or components that are allocated to a process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.

domain
An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in
that area.

dynamic classification
The assignment of an instance from one classifier to another. Contrast: multiple classification, static classification.

element
A constituent of a model.

entry action
An action that a method executes when an object enters a state in a state machine regardless of the transition
taken to reach that state.

enumeration
A data type whose instances a list of named values. For example, RGBColor = {red, green, blue}. Boolean is a
predefined enumeration with values from the set {false, true}.

event
The specification of a significant occurrence that has a location in time and space and can cause the execution of
an associated behavior. In the context of state diagrams, an event is an occurrence that can trigger a transition.

exception

A special kind of signal, typically used to signal fault situations. The sender of the exception aborts execution and
execution resumes with the receiver of the exception, which may be the sender itself. The receiver of an exception
is determined implicitly by the interaction sequence during execution; it is not explicitly specified.

8 UML 2.0: Infrastructure - Final Adopted Specification

execution occurrence
A unit of behavior within the lifeline as represented on an interaction diagram.

exit action
An action that a method executes when an object exits a state in a state machine regardless of the transition taken
to exit that state.

export
In the context of packages, to make an element visible outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.

expression
A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)” evaluates to a value
of type number.

extend

A relationship from an extension use case to a base use case, specifying how the behavior defined for the
extension use case augments (subject to conditions specified in the extension) the behavior defined for the base
use case. The behavior is inserted at the location defined by the extension point in the base use case. The base
use case does not depend on performing the behavior of the extension use case. See extension point, include.

extension
An aggregation that is used to indicate that the properties of a metaclass are extended through a stereotype, and
that gives the ability to flexibly add and remove stereotypes from classes.

facade
A stereotyped package containing only references to model elements owned by another package. It is used to
provide a ‘public view’ of some of the contents of a package.

feature
A property, such as an operation or attribute, that characterizes the instances of a classifier.

final state
A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.

fire
To execute a state transition. See: transition.

focus class

A stereotyped class that defines the core logic or control flow for one or more auxiliary classes that support it.
Focus classes are typically used together with one or more auxiliary classes, and are particularly useful for
specifying the core business logic or control flow of components during design. See also: auxiliary class.

focus of control
A symbol on a sequence diagram that shows the period of time during which an object is performing an action,
either directly or through a subordinate procedure.

formal parameter
Synonym: parameter.

framework

A stereotyped package that contains model elements which specify a reusable architecture for all or part of a
system. Frameworks typically include classes, patterns or templates. When frameworks are specialized for an
application domain, they are sometimes referred to as application frameworks. See: pattern.

generalizable element
A model element that may participate in a generalization relationship. See: generalization.

UML 2.0: Infrastructure - Final Adopted Specification 9

generalization

A taxonomic relationship between a more general classifier and a more specific classifier. Each instance of the
specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier indirectly has
features of the more general classifier. See: inheritance.

guard condition
A condition that must be satisfied in order to enable an associated transition to fire.

implementation
A definition of how something is constructed or computed. For example, a class is an implementation of a type, a
method is an implementation of an operation.

implementation class

A stereotyped class that specifies the implementation of a class in some programming language (e.g., C++,
Smalltalk, Java) in which an instance may not have more than one class. An Implementation class is said to realize
a type if it provides all of the operations defined for the type with the same behavior as specified for the type's
operations. See also: type.

implementation inheritance
The inheritance of the implementation of a more general element. Includes inheritance of the interface. Contrast:
interface inheritance.

import
In the context of packages, a dependency that shows the packages whose classes may be referenced within a
given package (including packages recursively embedded within it). Contrast: export.

include

A relationship from a base use case to an inclusion use case, specifying how the behavior for the base use case
contains the behavior of the inclusion use case. The behavior is included at the location which is defined in the
base use case. The base use case depends on performing the behavior of the inclusion use case, but not on its
structure (i.e., attributes or operations). See extend.

inheritance
The mechanism by which more specific elements incorporate structure and behavior of more general elements.
See generalization.

initial state
A special kind of state signifying the source for a single transition to the default state of the composite state.

instance
An entity that has unique identity, a set of operations that can be applied to it, and state that stores the effects of the
operations. See: object.

interaction
A specification of how stimuli are sent between instances to perform a specific task. The interaction is defined in
the context of a collaboration. See collaboration.

interaction diagram
A generic term that applies to several types of diagrams that emphasize object interactions. These include
communication diagrams, sequence diagrams, and the interaction overview diagram.

interaction overview diagram

A disgram that depicts interactions through a variant of

activity diagrams in a way that promotes overview of

the control flow. It focuses on the overview of the flow of control where each node can be an interaction diagram.

interface

10 UML 2.0: Infrastructure - Final Adopted Specification

A named set of operations that characterize the behavior of an element.

interface inheritance
The inheritance of the interface of a more general element. Does not include inheritance of the implementation.
Contrast: implementation inheritance.

internal transition
A transition signifying a response to an event without changing the state of an object.

layer
The organization of classifiers or packages at the same level of abstraction. A layer may represent a horizontal
slice through an architecture, whereas a partition represents a vertical slice. Contrast: partition.

lifeline
A modeling element that represents an individual participant in an interaction. A lifeline represents only one
interacting entity.

link
A semantic connection among a tuple of objects. An instance of an association. See: association.

link end
An instance of an association end. See: association end.

message
A specification of the conveyance of information from one instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the call of an operation.

metaclass
A class whose instances are classes. Metaclasses are typically used to construct metamodels.

meta-metamodel
A model that defines the language for expressing a metamodel. The relationship between a meta-metamodel and
a metamodel is analogous to the relationship between a metamodel and a model.

metamodel
A model that defines the language for expressing a model.

metaobject
A generic term for all metaentities in a metamodeling language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.

method
The implementation of an operation. It specifies the algorithm or procedure associated with an operation.

model aspect
A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural model
aspect emphasizes the structural qualities of the metamodel.

model elaboration

The process of generating a repository type from a published model. Includes the generation of interfaces and
implementations which allows repositories to be instantiated and populated based on, and in compliance with, the
model elaborated.

model element
An element that is an abstraction drawn from the system being modeled. Contrast: view element.

model library
A stereotyped package that contains model elements that are intended to be reused by other packages. A model
library differs from a profile in that a model library does not extend the metamodel using stereotypes and tagged

UML 2.0: Infrastructure - Final Adopted Specification 11

definitions. A model library is analogous to a class library in some programming languages.

modeling time

Refers to something that occurs during a modeling phase of the system development process. It includes analysis
time and design time. Usage note: When discussing object systems, it is often important to distinguish between
modeling-time and run-time concerns. See: analysis time, design time. Contrast: run time.

multiple classification
The assignment of an instance directly to more than one classifier at the same time. See: static classification,
dynamic classification.

multiple inheritance
A semantic variation of generalization in which a type may have more than one supertype. Contrast: single
inheritance.

multiplicity

A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifications may be
given for association ends, parts within composites, repetitions, and other purposes. Essentially a multiplicity is a
(possibly infinite) subset of the non-negative integers. Contrast: cardinality.

n-ary association
An association among three or more classes. Each instance of the association is an n-tuple of values from the
respective classes. Contrast: binary association.

name
A string used to identify a model element.

namespace
A part of the model in which the names may be defined and used. Within a namespace, each name has a unique
meaning. See: name.

node
A classifier that represents a run-time computational resource, which generally has at least memory and often
processing capability. Run-time objects and components may reside on nodes.

note
An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.

object
An instance of a class. See: class, instance.

object diagram

A diagram that encompasses objects and their relationships at a point in time. An object diagram may be
considered a special case of a class diagram or a communication diagram. See: class diagram, communication
diagram.

object flow state
A state in an activity diagram that represents the passing of an object from the output of actions in one state to the
input of actions in another state.

object lifeline
A line in a sequence diagram that represents the existence of an object over a period of time. See: sequence
diagram.

operation
A feature which declares a service that can be performed by instances of the classifier of which they are instances.

package

12 UML 2.0: Infrastructure - Final Adopted Specification

A general purpose mechanism for organizing elements into groups. Packages may be nested within other
packages.

package diagram
A diagram that depicts how model elements are organized into packages and the dependencies among them,
including package imports and package extensions.

parameter

An argument of a behavioral feature. A parameter specifies arguments that are passed into or out of an invocation
of a behavioral element like an operation. A parameter’s type restricts what values can be passed. Synonyms:
formal parameter. Contrast: argument.

parameterized element
The descriptor for a class with one or more unbound parameters. Synonym: template.

parent
In a generalization relationship, the generalization of another element, the child. See: subclass, subtype. Contrast:
child.

part

An element representing a set of instances that are owned by a containing classifier instance or role of a classifier.
(See role.) Parts may be joined by attached connectors and specify configurations of linked instances to be created
within an instance of the containing classifier.

participate
The connection of a model element to a relationship or to a reified relationship. For example, a class participates in
an association, an actor participates in a use case.

partition

A grouping of any set of model elements based on a set of criteria.

1. activity diagram: A grouping of activity nodes and edges. Patrtitions divide the nodes and edges to constrain and
show a view of the contained nodes. Partitions can share contents. They often correspond to organizational units
in a business model. They may be used to allocate characteristics or resources among the nodes of an activity.

2. architecture: A set of related classifiers or packages at the same level of abstraction or across layers in a layered
architecture. A partition represents a vertical slice through an architecture, whereas a layer represents a horizontal
slice. Contrast: layer.

pattern

A template collaboration that describes the structure of

a design pattern. UML patterns are more limited than those used by the design pattern community. In general,
design patterns involve many non-structural aspects, such as heuristics for their use and usage trade-offs.

persistent object

An object that exists after the process or thread that created it has ceased to exist.

pin

A model element that represents the data values passed into a behavior upon its invocation as well as the data
values returned from a behavior upon completion of its execution.

port

A feature of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to other ports through
connectors through which requests can be made to invoke the behavioral features of a classifier.

postcondition
A constraint expresses a condition that must be true at the completion of an operation.

UML 2.0: Infrastructure - Final Adopted Specification 13

powertype
A classifier whose instances are also subclasses of another classifier. Power types, then, are metaclasses with an
extra twist: the instances are also subclasses.

precondition
A constraint expresses a condition that must be true when an operation is invoked.

primitive type
A pre-defined data type without any relevant substructure (i.e., is not decomposable) such as an integer or a string.
It may have an algebra and operations defined outside of UML, for example, mathematically.

procedure

A set of actions that may be attached as a unit to other parts of a model, for example, as the body of a method.
Conceptually a procedure, when executed, takes a set of values as arguments and produces a set of values as
results, as specified by the parameters of the procedure.

process
1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which includes
heavyweight and lightweight processes. If necessary, an implementation distinction can be made using
stereotypes.

2. A software development process—the steps and guidelines by which to develop a system.

3. To execute an algorithm or otherwise handle something dynamically.

profile

A stereotyped package that contains model elements that have been customized for a specific domain or purpose
using extension mechanisms, such as stereotypes, tagged definitions and constraints. A profile may also specify
model libraries on which it depends and the metamodel subset that it extends.

projection
A mapping from a set to a subset of it.

property
A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See: tagged value.

pseudo-state
A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states include initial
and history vertices.

physical system

1. The subject of a model.

2. A collection of connected physical units, which can include software, hardware and people, that are organized to
accomplish a specific purpose. A physical system can be described by one or more models, possibly from different
viewpoints. Contrast: system.

qualifier
An association attribute or tuple of attributes whose values partition the set of objects related to an object across an
association.

realization

A specialized abstraction relationship between two sets of model elements, one representing a specification (the
supplier) and the other representing an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

receive [a message]
The handling of a stimulus passed from a sender instance. See: sender, receiver.

14 UML 2.0: Infrastructure - Final Adopted Specification

receiver
The object handling a stimulus passed from a sender object. Contrast: sender.

reception
A declaration that a classifier is prepared to react to the receipt of a signal.

reference
1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.

refinement
A relationship that represents a fuller specification of something that has already been specified at a certain level of
detail. For example, a design class is a refinement of an analysis class.

relationship
An abstract concept that specifies some kind of connection between elements. Examples of relationships include
associations and generalizations.

repository
A facility for storing object models, interfaces, and implementations.

requirement
A desired feature, property, or behavior of a system.

responsibility
A contract or obligation of a classifier.

reuse
The use of a pre-existing artifact.

role

The named set of features defined over a collection of entities participating in a particlar context.

Collaboration: The named set of behaviors possessed by a class or part participating in a particular context.

Part: a subset of a particular class which exhibits a subset of features possessed by the class

Associations: A synonym for association end often referring to a subset of classifier instances that are participating
in the association.

run time
The period of time during which a computer program or a systemexecutes. Contrast: modeling time.

scenario
A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an interaction or the
execution of a use case instance. See: interaction.

semantic variation point
A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

send [a message]
The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.

sender
The object passing a stimulus to a receiver instance. Contrast: receiver.

sequence diagram

A diagram that depicts an interaction by focusing on the sequence of messages that are exchanged, along with
their corresponding event occurrences on the lifelines.

Unlike a communication diagram, a sequence diagram includes time sequences but does not include object

UML 2.0: Infrastructure - Final Adopted Specification 15

relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) and in an instance
form (describes one actual scenario). Sequence diagrams and communication diagrams express similar
information, but show it in different ways. See: communication diagram.

signal

The specification of an asynchronous stimulus that triggers a reaction in the receiver in an asynchronous way and
without a reply. The receiving object handles the signal as specified by its receptions. The data carried by a send
request and passed to it by the occurrence of the send invocation event that caused the request is represented as
attributes of the signal instance. A signal is defined independently of the classifiers handling the signal.

sighature
The name and parameters of a behavioral feature. A signature may include an optional returned parameter.

single inheritance
A semantic variation of generalization in which a type may have only one supertype. Synonym: multiple inheritance
[OMA]. Contrast: multiple inheritance.

slot
A specification that an entity modeled by an instance specification has a value or values for a specific structural
feature.

software module
A unit of software storage and manipulation. Software modules include source code modules, binary code
modules, and executable code modules.

specification
A set of requirements for a system or other classifier. Contrast: implementation.

state
A condition or situation during the life of an object during which it satisfies some condition, performs some activity,
or waits for some event. Contrast: state [OMA].

state machine diagram

A diagram that depicts discrete behavior modeled through finite state-transition systems. In particular, it specifies
the sequences of states that an object or an interaction goes through during its life in response to events, together
with its responses and actions. See: state machine.

state machine
A behavior that specifies the sequences of states that an object or an interaction goes through during its life in
response to events, together with its responses and actions.

static classification
The assignment of an instance to a classifier where the assignment may not change to any other classifier.
Contrast: dynamic classification.

stereotype

A class that defines how an existing metaclass (or stereotype) may be extended, and enables the use of platform
or domain specific terminology or notation in addition to the ones used for the extended metaclass.

Certain stereotypes are predefined in the UML, others may be user defined. Stereotypes are one of the
extensibility mechanisms in UML. See: constraint, tagged value.

stimulus
The passing of information from one instance to another, such as raising a signal or invoking an operation. The
receipt of a signal is normally considered an event. See: message.

string
A sequence of text characters. The details of string representation depend on implementation, and may include

16 UML 2.0: Infrastructure - Final Adopted Specification

character sets that support international characters and graphics.

structural feature
A static feature of a model element, such as an attribute.

structural model aspect
A model aspect that emphasizes the structure of the objects in a system, including their types, classes,
relationships, attributes, and operations.

structure diagram
A form of diagram that depicts the elements in a specification that are irrespective of time. Class diagrams and
component diagrams are examples of structure diagrams.

subactivity state
A state in an activity diagram that represents the execution of a non-atomic sequence of steps that has some
duration.

subclass
In a generalization relationship, the specialization of another class, the superclass. See: generalization. Contrast:
superclass.

submachine state
A state in a state machine that is equivalent to a
composite state but whose contents are described by another state machine.

substate
A state that is part of a composite state. See: concurrent state, disjoint state.

subpackage
A package that is contained in another package.

subsystem

A unit of hierarchical decomposition for large systems. A subsystem is commonly instantiated indirectly. Definitions
of subsystems vary widely among domains and methods, and it is expected that domain and method profiles will
specialize this construct. A subsystem may be defined to have specification and realization elements.

subtype
In a generalization relationship, the specialization of another type, the supertype. See: generalization. Contrast:
supertype.

superclass
In a generalization relationship, the generalization of another class, the subclass. See: generalization. Contrast:
subclass.

supertype
In a generalization relationship, the generalization of another type, the subtype. See: generalization. Contrast:
subtype.

supplier
A classifier that provides services that can be invoked by others. Contrast: client.

synch state
A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.

system
An organized array of elements functioning as a unit
Also, a top-level subsystem in a model.

UML 2.0: Infrastructure - Final Adopted Specification 17

tagged value

The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as the tag. Certain
tags are predefined in the UML; others may be user defined. Tagged values are one of three extensibility
mechanisms in UML. See: constraint, stereotype.

template
Synonym: parameterized element.

thread [of control]
A single path of execution through a program, a dynamic model, or some other representation of control flow. Also,
a stereotype for the implementation of an active object as lightweight process. See process.

time event
An event that denotes the time elapsed since the current state was entered. See: event.

time expression
An expression that resolves to an absolute or relative value of time.

timing diagram

An interaction diagram that shows the change in state or condition of a lifeline (representing a Classifier Instance or
Classifier Role) over linear time. The most common usage is to show the change in state of an object over time in
response to accepted events or stimuli.

top level

A stereotype denoting the top-most package in a containment hierarchy. The topLevel stereotype defines the outer
limit for looking up names, as namespaces “see” outwards. For example, opLevel subsystem represents the top of
the subsystem containment hierarchy.

trace
A dependency that indicates a historical or process relationship between two elements that represent the same
concept without specific rules for deriving one from the other.

transient object
An object that exists only during the execution of the process or thread that created it.

transition

A relationship between two states indicating that an object in the first state will perform certain specified actions
and enter the second state when a specified event occurs and specified conditions are satisfied. On such a change
of state, the transition is said to fire.

type

A stereotyped class that specifies a domain of objects together with the operations applicable to the objects,
without defining the physical implementation of those objects. A type may not contain any methods, maintain its
own thread of control, or be nested. However, it may have attributes and associations. Although an object may
have at most one implementation class, it may conform to multiple different types. See also: implementation class
Contrast: interface.

type expression
An expression that evaluates to a reference to one or more types.

uninterpreted
A placeholder for a type or types whose implementation is not specified by the UML. Every uninterpreted value has
a corresponding string representation. See: any [CORBA].

usage
A dependency in which one element (the client) requires the presence of another element (the supplier) for its
correct functioning or implementation.

18 UML 2.0: Infrastructure - Final Adopted Specification

use case
The specification of a sequence of actions, including variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case instances.

use case diagram
A diagram that shows the relationships among actors and the subject (system), and use cases.

use case instance
The performance of a sequence of actions being specified in a use case. An instance of a use case. See: use case
class.

use case model

A model that describes a system’s functional requirements in terms of use cases.

utility

A stereotype that groups global variables and procedures in the form of a class declaration. The utility attributes

and operations become global variables and global procedures, respectively. A utility is not a fundamental
modeling construct, but a programming convenience.

value
An element of a type domain.

vertex
A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-state. See: state,
pseudo-state.

view
A projection of a model that is seen from a given perspective or vantage point and omits entities that are not
relevant to this perspective.

view element
A textual and/or graphical projection of a collection of model elements.

view projection

A projection of model elements onto view elements. A view projection provides a location and a style for each view
element.

visibility

An enumeration whose value (public, protected, or private) denotes how the model element to which it refers may
be seen outside its enclosing namespace.

5 Symbols

Editorial Comment: The FTF needs to complete this section (or possibly eliminate it)

UML 2.0: Infrastructure - Final Adopted Specification 19

6 Additional information

6.1 Changes to Adopted OMG Specifications

The specification, in conjunction with the specification that complements this, the UML 2.0: Superstructure, completely
replaces the current versions of UML 1.4.1 and UML 1.5 with Action Semantics, except for the “Model Interchange
Using CORBA IDL" (see Chapter 5, Section 5.3 of the OMG UML Specification v1.4, OMG document ad/01-02-17).
“Model Interchange Using CORBA IDL" isretired as an adopted technology because of lack of vendor and user interest.

6.2 Architectural Alignment and MDA Support

Chapter 7, “Language Architecture”, explains how the UML 2.0: Infrastructure is architecturally aligned with the UML
2.0: Superstructure that complements it. It also explains how the InfrastructureLibrary defined in the UML 2.0:
Infrastructure can be strictly reused by MOF 2.0 specifications.

The MOF 2.0: Core Specification is architecturally aligned with this specification.

The OMG’'s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an important approach and a plan to achieve a cohesive set of model-driven
technology specifications. This specification’s support for MDA is discussed in Appendix B.

6.3 How to Read this Specification

The rest of this document contains the technical content of this specification. Readers are encouraged to first read Part
“Part | - Introduction” to familiarize themselves with the structure of the language and the formal approach used for its
specification. Afterwards the reader may choose to either explore the InfrastructureLibrary, described in Part “Part Il -
Infrastructure Library”, or the UML::Classes::Kernel package which reuses it, described in the UML 2.0: Superstructure.
The former specifies the flexible metamodel library that is reused by the latter.

Readers who want to explore the user level constructs that are built upon the infrastructural constructs specified here
should investigate the specification that complements this, the UML 2.0: Superstructure.

Although the chapters are organized in alogical manner and can be read sequentially, this is a reference specification is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.4 Acknowledgments

The following companies submitted and/or supported parts of this specification:
« Adaptive
* Boldsoft
* Borland Software Corporation
* Compuware
« Dresden University of Technology
« International Business Machines Corp.
* IONA

20 UML 2.0: Infrastructure - Final Adopted Specification

 Kabira Technologies, Inc.
« Kings College

« Klasse Objecten

* Oracle

* Project Technology, Inc.
« Rational Software Corporation
* Softeam

« Syntropy Ltd.

» Telelogic

« University of Bremen

* University of Kent

* University of York

The following persons were members of the core team that designed and wrote this specification: Don Baisley, Morgan
Bjorkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dykman, Anders Ek, David Frankel, Eran Gery, @ystein
Haugen, Sridhar lyengar, Cris Kobryn, Birger Mgller-Pedersen, James Odell, Gunnar Overgaard, Karin Palmkvist, Guus
Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert and Larry Williams.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Colin Atkinson, Ken Baclawski, Mariano Belaunde, Steve Brodsky, Roger Burkhart, Bruce
Douglass, Sandy Friedenthal, Sébastien Gerard, Dwayne Hardy, Mario Jeckle, Larry Johnson, Allan Kennedy, Stuart
Kent, Mitch Kokar, Thomas Kuehne, Michael Latta, Dave Mellor, Jeff Mischkinksky, Hiroshi Miyazaki, Jishnu Mukerji,
Ileana Ober, Barbara Price, Tom Rutt, Oliver Sims, Kendall Scott, Cameron Skinner, Jeff Smith, Doug Tolbert, and lan
Wilkie.

UML 2.0: Infrastructure - Final Adopted Specification 21

Part | - Introduction

The Unified Modeling Language is a visual language for specifying, constructing and documenting the artifacts of
systems. It is a general-purpose modeling language that can be used with all major object and component methods, and
that can be applied to all application domains (e.g., health, finance, telecom, aerospace) and implementation platforms
(e.g., J2EE, .NET).

The OMG adopted the UML 1.1 specification in November 1997. Since then UML Revision Task Forces have produced
several minor revisions, the most recent being the UML 1.4 specification, which was adopted in May 2001.

Under the stewardship of the OMG, the UML has emerged as the software industry’s dominant modeling language. It has
been successfully applied to a wide range of domains, ranging from health and finance to aerospace to e-commerce. As
should be expected, its extensive use has raised numerous application and implementation issues by modelers and
vendors. As of the time of this writing over 500 formal usage and implementation issues have been submitted to the
OMG for consideration.

Although many of the issues have been resolved in minor revisions by Revision Task Forces, other issues require major
changes to the language that are outside the scope of an RTF. Consequently, the OMG has issued four complementary
and architecturally aligned RFPs to define UML 2.0: UML 2.0 Infrastructure, UML 2.0 Superstructure, UML 2.0 Object
Constraint Language and UML 2.0 Diagram Interchange.

This UML 2.0 specification is organized into two volumes (UML 2.0: Infrastructure and UML 2.0: Superstructure),
consistent with the breakdown of modeling language requirements into two RFPs (UML 2.0 Infrastructure RFP and UML
2.0 Superstructure RFP). Since the two volumes cross-reference each other and the specifications are fully integrated,
these two volumes could easily be combined into a single volume at a later time.

The next two chapters describe the language architecture and the specification approach used to define UML 2.0.

UML 2.0: Infrastructure - Final Adopted Specification 22

7 Language Architecture

The UML specification is defined using a metamodeling approach (i.e., a metamodel is used to specify the model that
comprises UML) that adapts formal specification techniques. While this approach lacks some of the rigor of a formal
specification method, it offers the advantages of being more intuitive and pragmatic for most implementors and
practitioners.? This chapter explains the architecture of the UML metamodel.

The following sections summarize the design principles followed, and show how they are applied to organize UML’s
Infrastructure and Superstructure. The last section explains how the UML metamodel conforms to a 4-layer metamodel
architectural pattern.

7.1 Design Principles

The UML metamodel has been architected with the following design principles in mind:

« Modularity. This principle of strong cohesion and loose coupling is applied to group constructsinto packages and orga-
nize features into metacl asses.

» Layering. Layering is applied in two ways to the UML metamodel. First, the package structure is layered to separate
the metalanguage core constructs from the higher-level constructs that use them. Second, a 4-layer metamodel archi-
tectural pattern is consistently applied to separate concerns (especially regarding instantiation) across layers of abstrac-
tion.

« Partitioning. Partitioning is used to organize conceptual areas within the same layer. In the case of the InfrastructureL.i-
brary, fine-grained partitioning is used to provide the flexibility required by current and future metamodeling stan-
dards. In the case of the UML metamodel, the partitioning is coarser-grained in order to increase the cohesion within
packages and |oosing the coupling across packages.

» Extensibility. The UML can be extended in two ways: 1) anew dialect of UML can be defined by using Profiles to cus-
tomize the language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and domains (e.g., finance, telecommuni-
cations, aerospace); 2) a new language related to UML can be specified by reusing part of the InfrastructureLibrary
package and augmenting with appropriate metacl asses and metarel ationships. The former case defines anew dialect of
UML, while the latter case defines a new member of the UML family of languages.

» Reuse. A fine-grained, flexible metamodel library is provided that is reused to define the UML metamodel, as well as
other architecturally related metamodels, such as the Meta Object Facility (M OF) and the Common Warehouse Model
(CWM).

7.2 Infrastructure Architecture

The Infrastructure of the UML is defined by the InfrastructureLibrary, which satisfies the following design requirements:
- Define ametalanguage core that can be reused to define a variety of metamodels, including UML, MOF and CWM.
» Architecturally align UML, MOF, and XM so that model interchangeis fully supported.

» Allow customization of UML through Profiles and creation of new languages (family of languages) based on the same
metalanguage core as UML.

1. Itisimportant to note that the specification of UML asametamodel does note preclude it from being specified via
amathematically formal language (e.g., Object-Z or VDM) at alater time.

UML 2.0: Infrastructure - Final Adopted Specification 23

Asis shown in Figure 1, Infrastructure is represented by the package InfrastructureLibrary, which consists of the
packages Core and Profiles, where the latter defines the mechanisms that are used to customize metamodels and the
former contains core concepts used when metamodeling.

InfrastructureLibrary

Core

Profiles

Figure 1 - The InfrastructureLibrary packages

7.2.1 Core

In its first capacity, the Core package is a complete metamodel particularly designed for high reusability, where other
metamodels at the same metalevel (see “Superstructure Architecture” on page 26) either import or specialize its specified
metaclasses. This isillustrated in Figure 2, where it is shown how UML, CWM, and MOF each depends on a common
core. Since these metamodels are at the very heart of the Model Driven Architecture (MDA), the common core may also
be considered the architectural kernel of MDA. Theintent isfor UML and other MDA metamodels to reuse all or parts of
the Core package, which allows other metamodels to benefit from the abstract syntax and semantics that have already

been defined.

3
%
\
AN

Profiles

Figure 2 - The role of the common Core

24

UML 2.0: Infrastructure - Final Adopted Specification

In order to facilitate reuse, the Core package is subdivided into a number of packages: PrimitiveTypes, Abstractions,
Basic, and Constructs, as shown in Figure 3. Aswe will see in subsequent chapters, some of these are then further divided
into even more fine-grained packages to make it possible to pick and choose the relevant parts when defining a new
metamodel. Note, however, that choosing a specific package also implies choosing the dependent packages. The package
PrimitiveTypes simply contains a few predefined types that are commonly used when metamodeling, and is designed
specifically with the needs of UML and MOF in mind. Other metamodels may need other or overlapping sets of primitive
types. There are minor differences in the design rationale for the other two packages. The package Abstractions mostly
contains abstract metaclasses that are intended to be further specialized or that are expected to be commonly reused by
many metamodels. Very few assumptions are made about the metamodels that may want to reuse this package; for this
reason, the package Abstractions is also subdivided into several smaller packages. The package Constructs, on the other
hand, mostly contains concrete metaclasses that lend themselves primarily to object-oriented modeling; this package in
particular is reused by both MOF and UML, and represents a significant part of the work that has gone into aligning the
two metamodels. The package Basic represents a few constructs that are used as the basis for the produced XMI for
UML, MOF, and other metamodels based on the InfrastructureLibrary.

Core
]]
PrimitiveTypes Abstractions
Basic Constructs

Figure 3 - The Core packages

In its second capacity, the Core package is used to define the modeling constructs used to create metamodels. Thisis done
through instantiation of metaclasses in the InfrastructureLibrary (see “Metamodel layering” on page 28). While
instantiation of metaclasses is carried out through MOF, the InfrastructureLibrary defines the actual metaclasses that are
used to instantiate the elements of UML, MOF, CWM, and indeed the elements of the InfrastructureLibrary itself. In this
respect, the InfrastructureLibrary is said to be self-describing, or reflective.

7.2.2 Profiles

As was depicted in Figure 1, the Profiles package depends on the Core package, and defines the mechanisms used to
tailor existing metamodels towards specific platforms, such as C++, CORBA, or EJB, or domains, such as real-time,
business objects, or software process modeling. The primary target for profilesis UML, but it is possible to use profiles
together with any metamodel that is based on (i.e., instantiated from) the common core. A profile must be based on a
metamodel such as the UML that it extends, and is not very useful standalone.

Profiles have been aligned with the extension mechanism offered by MOF, but provide a more light-weight approach with
restrictions that are enforced to ensure that the implementation and usage of profiles should be straightforward and more
easily supported by tool vendors.

UML 2.0: Infrastructure - Final Adopted Specification 25

7.2.3 Architectural Alignment between UML and MOF

One of the major goals of the Infrastructure has been to architecturally align UML and MOF. The first approach to
accomplish this has been to define the common core, which is realized as the package Core, in such away that the model
elements are shared between UML and MOF. The second approach has been to make sure that UML is defined as a model
that is based on MOF used as a metamodel, asisillustrated in Figure 4. Note that MOF is used as the metamodel for not
only UML, but also for other languages such as CWM.

M3
«metamodel»
MOF
«instanceOf» “«instanceOf»
M2 — ﬁ
«metamodel» «metamodel»
UML CwWM

Figure 4 - UML and MOF are at different metalevels

How these metalevel hierarchies work is explained in more detail in “Superstructure Architecture” on page 26. An
important aspect that deserves mentioning here is that every model element of UML is an instance of exactly one model
element in MOF. Note that the InfrastructureLibrary is used at both the M2 and M3 metalevels, since it is being reused
by UML and MOF, respectively, as was shown in Figure 2. In the case of MOF, the metaclasses of the
InfrastructureLibrary are used as is, while in the case of UML these model elements are given additional properties. The
reason for these differences is that the requirements when metamodeling differ slightly from the requirements when
modeling applications of a very diverse nature.

MOF defines for example how UML models are interchanged between tools using XML Metadata | nterchange (XM1).
MOF also defines reflective interfaces (MOF::Reflection) for introspection that work for MOF itself, but also for CWM,
UML, and any other metamodel that is an instance of MOF. It further defines an extension mechanism that can be used to
extend metamodels as an alternative to or in conjunction with profiles (as described in Chapter 13, “Core::Profiles’). In
fact, profiles are defined to be a subset of the MOF extension mechanism.

7.2.4 Superstructure Architecture

The UML Superstructure metamodel is specified by the UML package, which is divided into a number of packages that
deal with structural and behavioral modeling, as shown in Figure 5.

Each of these areas is described in a separate chapter of the UML 2.0: Superstructure specification. Note that there are
some packages that are dependent on each other in circular dependencies. This is because the dependencies between the
top-level packages show a summary of all relationships between their subpackages; there are no circular dependencies
between subpackages of those packages.

26 UML 2.0: Infrastructure - Final Adopted Specification

]

UseCases

Actions

Activities

[
CommonBehaviors
é 77777777777
7 N~
NI
/ ~
/ / @Machines h ™~ 1 -
/ Interactions
I /
e
/ s h ~ | /
7 ~ by
“ s A

CompositeStructures

Classes

Profiles
é

AW

AuxliaryConstructs

Figure 5 - The top-level package structure of the UML 2.0 Superstructure

7.2.5 Reusing Infrastructure

One of the primary uses of the UML 2.0 Infrastructure specification is that it should be reused when creating other

metamodels. The UML metamodel reuses the InfrastructureLibrary in two different ways:

« All of the UML metamodel is instantiated from meta-metaclasses that are defined in the InfrastructureLibrary.

« The UML metamodel imports and specializes all metaclasses in the InfrastructureLibrary.

As was discussed earlier, it is possible for a model to be used as a metamodel, and here we make use of this fact. The
InfrastructureLibrary is in one capacity used as a meta-metamodel and in the other aspect as a metamodel, and is thus
reused in two dimensions.

7.2.6 The Kernel Package

The InfrastructureLibrary is primarily reused in the Kernel package of Classes in UML 2.0: Superstructure; this is done
by bringing together the different packages of the Infrastructure using package merge. The Kernel package is at the very
heart of UML, and the metaclasses of every other package are directly or indirectly dependent on it. The Kernel package

is very similar to the Constructs package of the InfrastructureLibrary, but adds more capabilities to the modeling
constructs that were not necessary to include for purposes of reuse or alignment with MOF.

UML 2.0: Infrastructure - Final Adopted Specification

Because the Infrastructure has been designed for reuse, there are metaclasses—particularly in Abstractions—that are
partially defined in several different packages. These different aspects are for the most part brought together into a single
metaclass already in Constructs, but in some cases this is done only in Kernel. In general, if metaclasses with the same
name occurs in multiple packages, they are meant to represent the same metaclass, and each package where it is defined
(specialized) represents a specific factorization. This same pattern of partial definitions also occurs in Superstructure,
where some aspects of for example the metaclass Class are factored out into separate packages to form compliance points
(see below).

7.2.7 Metamodel layering

The architecture that is centered around the Core package is a complementary view of the four-layer metamodel hierarchy
on which the UML metamodel has traditionally been based. When dealing with meta-layers to define languages there are
generally three layers that always has to be taken into account:

« thelanguage specification, or the metamodel,
« the user specification, or the model, and
- objects of the model.

This structure can be applied recursively many times so that we get a possibly infinite number of meta-layers; what is a
metamodel in one case can be a model in another case, and thisis what happens with UML and MOF. UML is alanguage
specification (metamodel) from which users can define their own models. Similarly, MOF is aso a language specification
(metamodel) from which users can define their own models. From the perspective of MOF, however, UML is viewed as
auser (i.e., the members of the OMG that have developed the language) specification that is based on MOF as a language
specification. In the four-layer metamodel hierarchy, MOF is commonly referred to as a meta-metamodel, even though
strictly speaking it is a metamodel.

7.2.8 The four-layer metamodel hierarchy

The meta-metamodeling layer forms the foundation of the metamodeling hierarchy. The primary responsibility of this
layer is to define the language for specifying a metamodel. The layer is often referred to as M3, and MOF is an example
of a meta-metamodel. A meta-metamodel is typically more compact than a metamodel that it describes, and often defines
several metamodels. It is generally desirable that related metamodels and meta-metamodels share common design
philosophies and constructs. However, each layer can be viewed independently of other layers, and needs to maintain its
own design integrity.

A metamodel is an instance of a meta-metamodel, meaning that every element of the metamodel is an instance of an
element in the meta-metamodel. The primary responsibility of the metamodel layer is to define a language for specifying
models. The layer is often referred to as M2; UML and the OMG Common Warehouse Metamodel (CWM) are examples
of metamodels. Metamodels are typically more elaborate than the meta-metamodels that describe them, especially when
they define dynamic semantics. The UML metamodel is an instance of the MOF (in effect, each UML metaclass is an
instance of an element in InfrastructureLibrary).

A model is an instance of a metamodel. The primary responsibility of the model layer is to define languages that describe
semantic domains, i.e., to allow users to model a wide variety of different problem domains, such as software, business
processes, and requirements. The things that are being modeled reside outside the metamodel hierarchy. This layer is
often referred to as M1. A user model is an instance of the UML metamodel. Note that the user model contains both
model elements and snapshots (illustrations) of instances of these model elements.

The metamodel hierarchy bottoms out at MO, which contains the run-time instances of model elements defined in a
model. The snapshots that are modeled at M1 are constrained versions of the MO run-time instances.

28 UML 2.0: Infrastructure - Final Adopted Specification

When dealing with more than three meta-layers, it is usually the case that the ones above M2 gradually get smaller and
more compact the higher up they are in the hierarchy. In the case of MOF, which is at M3, it consequently only shares
some of the metaclasses that are defined in UML. A specific characteristic about metamodeling is the ability to define
languages as being reflective, i.e., languages that can be used to define themselves. The InfrastructureLibrary is an
example of this, since it contains all the metaclasses required to define itself. When a language is reflective, there is no
need to define another language to specify its semantics. MOF is reflective since it is based on the InfrastructureLibrary,
and there is thus no need to have additional meta-layers above MOF.

7.2.9 Metamodeling

When metamodeling, we primarily distinguish between metamodels and models. As already stated, a model that is
instantiated from a metamodel can in turn be used as a metamodel of another model in a recursive manner. A model
typically contains model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel
elements.

The typical role of a metamodel is to define the semantics for how model elements in a model gets instantiated. As an
example, consider Figure 8, where the metaclasses Association and Class are both defined as part of the UML metamodel.
These are instantiated in a user model in such a way that the classes Person and Car are both instances of the metaclass
Class, and the association Person.car between the classes is an instance of the metaclass Association.The semantics of
UML defines what happens when the user defined model elements are instantiated at MO, and we get an instance of
Person, an instance of Car, and alink (i.e,. an instance of the association) between them.

metamodel Class Association
7
. 7
«instanceOf» ! «instanceOf»
/
/
/
;
/
/
/
//
model / *
Person Car

car

Figure 6 - An example of metamodeling; note that not all instance-of relationships are shown

The instances, which are sometimes referred to as “run-time” instances, that are created at MO from for example Person
should not be confused with instances of the metaclass I nstanceSpecification that are also defined as part of the UML
metamodel. An instance of an InstanceSpecification is defined in a model at the same level as the model elements that it
illustrates, asis depicted in Figure 7, where the instance specification Mike is an illustration (or a snapshot) of an instance
of class Person.

UML 2.0: Infrastructure - Final Adopted Specification 29

InstanceSpecification

Class

metamodel

«instanceOf» «instanceOf» |
|

model Person Mike: Person
age: Integer age =11

Figure 7 - Giving an illustration of a class using an instance specification

7.2.10 An example of the four-level metamodel hierarchy

An illustration of how these meta-layers relate to each other is shown in Figure 8. It should be noted that we are by no
means restricted to only these four meta-layers, and it would be possible to define additional ones. As is shown, the meta-
layers are usually numbered from MO and upwards, depending on how many meta-layers are used. In this particular case,

the numbering goes up to M3, which corresponds to MOF.

UML 2.0: Infrastructure - Final Adopted Specification

30

M3 (MOF) Class

// \\ \\\
«instanceOf» / «instanceOf» . «instanceOf»

// \\\\ \\\\\
M2 (UML) Attribute Class classifier Instance
7 K 7
/) // / !
«instanceOf» «instanceOf» «instangeOf» «instanceOf»
‘
// /// // ’!
// /// /// !”
/ / ’ I
/ Video
M1 (User model) —— . «snapshot», . Video
‘+title: String
title = "2001: A Space Odyssey"

. «instanceOf»

N

MO (Run-time instances) aVideo

Figure 8 - An example of the four-layer metamodel hierarchy

UML 2.0: Infrastructure - Final Adopted Specification

8 Language Formalism

The UML specification is defined by using a metamodeling approach that adapts formal specification techniques. The
formal specification techniques are used to increase the precision and correctness of the specification. This chapter
explains the specification techniques used to define UML.

The following are the goals of the specifications techniques used to define UML:

« Correctness. The specification techniques should improve the correctness of the metamodel by helping to validate it.
For exampl e, the well-formedness rules should help validate the abstract syntax and help identify errors.

» Precision. The specification techniques should increase the precision of both the syntax and semantics. The precision
should be sufficient so that there is no syntactic nor semantic ambiguity for either implementors or users.t

» Conciseness. The specification techniques should be parsimonious, so that the precise syntax and semantics are defined
without superfluous detail .

« Consistency. The specification techniques should complement the metamodeling approach by adding essential detail in
aconsistent manner.

» Understandability. While increasing the precision and conciseness, the specification techniques should also improve
the readability of the specification. For this reason aless than strict formalism is applied, since a strict formalism for-
mal techniques

The specification technique used describes the metamodel in three views using both text and graphic presentations.

It is important to note that the current description is not a completely formal specification of the language because to do
so would have added significant complexity without clear benefit.

The structure of the language is nevertheless given a precise specification, which is required for tool interoperability. The
detailed semantics are described using natural language, although in a precise way so they can easily be understood.
Currently, the semantics are not considered essential for the development of tools; however, this will probably change in
the future.

8.1 Levels of Formalism

A common technique for specification of languages is to first define the syntax of the language and then to describe its
static and dynamic semantics. The syntax defines what constructs exist in the language and how the constructs are built
up in terms of other constructs. Sometimes, especially if the language has a graphic syntax, it is important to define the
syntax in a notation independent way (i.e., to define the abstract syntax of the language). The concrete syntax is then
defined by mapping the notation onto the abstract syntax.

The static semantics of a language define how an instance of a construct should be connected to other instances to be
meaningful, and the dynamic semantics define the meaning of a well-formed construct. The meaning of a description

written in the language is defined only if the description is well formed (i.e., if it fulfills the rules defined in the static
semantics).

1. By definition semantic variation points are an exception to this..

32 UML 2.0: Infrastructure - Final Adopted Specification

The specification uses a combination of languages - a subset of UML, an object constraint language, and precise natural
language to describe the abstract syntax and semantics of the full UML. The description is self-contained; no other
sources of information are needed to read the document?. Although thisis a metacircular descri ption3, understanding this
document is practical since only a small subset of UML constructs are needed to describe its semantics.

In constructing the UML metamodel different techniques have been used to specify language constructs, using some of
the capabilities of UML. The main language constructs are reified into metaclasses in the metamodel. Other constructs, in
essence being variants of other ones, are defined as stereotypes of metaclasses in the metamodel. This mechanism allows
the semantics of the variant construct to be significantly different from the base metaclass. Another more “lightweight”
way of defining variants is to use metaattributes. As an example, the aggregation construct is specified by an attribute of
the metaclass AssociationEnd, which is used to indicate if an association is an ordinary aggregate, a composite aggregate,
or a common association.

Package Specification Structure

This section provides information for each package and each class in the UML metamodel. Each package has one or more
of the following subsections:

Class Descriptions

The section contains an enumeration of the classes specifying the constructs defined in the package. It begins with one
diagram or several diagrams depicting the abstract syntax of the constructs (i.e. the classes and their relationships) in the
package, together with some of the well-formedness requirements (multiplicity and ordering). Then follows a
specification of each class in alphabetic order (see below).

8.1.1 Diagrams

If a specific kind of diagram usually presents the constructs that are defined in the package, a section describing this kind
of diagram is included.

8.1.2 Instance Model

An example may be provided to show how an instance model of the contained classes may be populated. The elementsin
the example are instance of the classes contained in the package (or in an imported package).

8.2 Class Specification Structure

The specification of a class starts with a presentation of the general meaning of the concept which sets the context for the
definition.
8.2.1 Description

The section includes an informal definition of the metaclass specifying the construct in UML. The section states if the
metaclass is abstract.

This section together with the following two constitute a description of the abstract syntax of the construct.

2. Although acomprehension of the UML's four-layer metamodel architecture and its underlying meta-metamodel is helpful, itis
not essential to understand the UML semantics.
3. Inorder to understand the description of the UML semantics, you must understand some UML semantics.

UML 2.0: Infrastructure - Final Adopted Specification 33

Attributes

Each of the attributes of the class are enumerated together with a short explanation. The section states if the attribute is
derived, or if it is a specialization of another attribute. If the multiplicity of the attribute is suppressed if it is‘1’ (default
in UML).

8.2.2 Associations

The opposite ends of associations connected to the class are also listed in the same way. The section states if the
association is derived, or if it is a specialization of another association. The multiplicity of an association end is
suppressed if it is‘*’ (default in UML).

When directed associations are specified in lieu of attributes, the multiplicity on the undirected end is assumed to be ‘*’
(default in UML) and the role name should not be used.

8.2.3 Constraints

The well-formedness rules of the metaclass, except for multiplicity and ordering constraints that are defined in the
diagram at the beginning of the package section, are defined as a (possibly empty) set of invariants for the metaclass,
which must be satisfied by all instances of that metaclass for the model to be meaningful. The rules thus specify
constraints over attributes and associations defined in the metamodel. Most invariant is defined by an OCL expression
together with an informal explanation of the expression, but in some cases the invariant is expressed by other means (in
exceptional cases with natural language). The statement ‘No additional constraints’ means that all well-formedness rules
are expressed in the superclasses together with the multiplicity and type information expressed in the diagrams.

8.2.4 Additional Operations (optional)

In many cases, additional operations on the classes are needed for the OCL expressions. These are then defined in a
separate subsection after the constraints for the construct, using the same approach as the Constraints section: an informal
explanation followed by the OCL expression defining the operation.

8.2.5 Semantics

The meaning of a well-formed construct is defined using natural language.

8.2.6 Semantic Variation Points (optional)

The term semantic variation point is used throughout this document to denote a part of the UML specification whose
purpose in the overall specification is known but whose form or semantics may be varied in some way. The objective of
a semantic variation point is to enable speciaization of that part of UML for a particular situation or domain.

There are several forms in which semantic variation points appear in the standard:

Changeable default: in this case, a single default specification for the semantic variation point is provided in the standard
but it may be replaced. For example, the standard provides a default set of rules for specializing state machines, but this
default can be overridden (e.g., in a profile) by a different set of rules (the choice typically depends on which definition
of behavioral compatibility is used).

Multiple choice: in this case, the standard explicitly specifies a number of possible mutually exclusive choices, one of
which may be marked as the default. Language designers may either select one of those alternatives or define a new one.
An example of this type of variation point can be found in the handling of unexpected events in state machines; the
choices include (a) ignoring the event (the default), (b) explicitly rejecting it, or (c) deferring it.

34 UML 2.0: Infrastructure - Final Adopted Specification

Undefined: in this case, the standard does not provide any pre-defined specifications for the semantic variation point. For
instance, the rules for selecting the method to be executed when a polymorphic operation is invoked are not defined in the
standard.

8.2.7 Notation

The notation of the construct is presented in this section.

8.2.8 Presentation Options (optional)

If there are different ways to show of the construct, e.g. it is not necessary to show all parts of the construct in every
occurrence, these possibilities are described in this section.

8.2.9 Style Guidelines (optional)

Often is an informal convention how to show (a part of) a construct, like the name of a class should be centered and in
bold. These conventions are presented in this section.

8.2.10 Examples (optional)

In this section, examples of how the construct is to be depicted are given.

8.2.11 Rationale (optional)

If there is a reason for why a construct is defined like it is, or why its notation is defined as it is, this reason is given in
this section.

8.2.12 Changes from UML 1.4

Here, changes compared with UML 1.4 are described and a migration approach from 1.4 to 2.0 is specified.

8.3 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Chapter 6, “Object Constraint Language
Specification” of the UML 1.4 specification, for expressing well-formedness rules. The following conventions are used to
promote readability:

« Sdf - which can be omitted as areference to the metaclass defining the context of the invariant, has been kept for clar-
ity.

» Inexpressionswhere acollectionisiterated, an iterator is used for clarity, even when formally unnecessary. The type of
the iterator is usually omitted, but included when it adds to understanding.

« The'collect’ operation is left implicit where thisis practical.

» Thecontext part of an OCL constraint is not included explicitly, asit is well-defined in the section where the constraint
appesars.

UML 2.0: Infrastructure - Final Adopted Specification 35

8.4 Use of Natural Language

We strove to be precise in our use of natural language, in this case English. For example, the description of UML
semantics includes phrases such as “ X provides the ability to...” and “X isaY.” In each of these cases, the usual English
meaning is assumed, although a deeply formal description would demand a specification of the semantics of even these
simple phrases.

The following general rules apply:

« When referring to an instance of some metaclass, we often omit the word “instance.” For example, instead of saying “a
Classinstance” or “an Association instance,” we just say “a Class’ or “an Association.” By prefixing it with an “a’ or
“an,” assume that we mean “an instance of.” In the same way, by saying something like “Elements’ we mean “a set (or
the set) of instances of the metaclass Element.”

» Every time aword coinciding with the name of some construct in UML is used, that construct is meant.

« Termsincluding one of the prefixes sub, super, or meta are written as one word (e.g., metamodel, subclass).

8.5 Conventions and Typography

In the description of UML, the following conventions have been used:
» When referring to constructs in UML, not their representation in the metamodel, normal text is used.

» Metaclass namesthat consist of appended nouns/adjectives, initial embedded capitals are used (e.g., ‘ModelElement,’
‘Structural Feature’).

» Names of metaassociations are written in the same manner as metaclasses (e.g., ‘ ElementReference’).

« Initial embedded capital is used for names that consist of appended nounsg/adjectives (e.g., ‘ownedElement,” ‘allCon-
tents').

 Boolean metaattribute names always start with ‘is’ (e.g., ‘isAbstract’).
» Enumeration types always end with “Kind” (e.g., ‘AggregationKind’).

» While referring to metaclasses, metaassoci ations, metaattributes, etc. in the text, the exact names as they appear in the
model are always used.

» Novisibilities are presented in the diagrams, as al elements are public.

« If amandatory section does not apply for a metaclass, the text ‘ No additional XXX’ isused, where ‘XXX’ isthe name
of the heading. If an optional section is not applicable, it is not included.

36 UML 2.0: Infrastructure - Final Adopted Specification

Part Il - Infrastructure Library

This part describes the structure and contents of the Infrastructure Library for the UML metamodel and related
metamodels, such as the Meta Object Facility (MOF) and the Common Warehouse Model (CWM). The
InfrastructureLibrary package defines a reusable metalanguage kernel and a metamodel extension mechanism for UML.
The metalanguage kernel can be used to specify a variety of metamodels, including UML, MOF and CWM. In addition,
the library defines a profiling extension mechanism that can be used to customize UML for different platforms and
domains without supporting a complete metamodeling capability. The top-level packages of the InfrastructureLibrary are
shown in Figure 9.

InfrastructurelLibrary

Core

/

Profiles

Figure 9 - The Metamodel Library package contains the packages Core and Profiles

The Core package is the central reusable part of the InfrastructureLibrary, and is further subdivided as shown in Figure
10.

UML 2.0 Infrastructure - Final Adopted Specification 37

Core

PrimitiveTypes

A R

// \\\

/
// \

\\
\
\\
Abstractions
\\
| N Y
! \ Y
|
|
i
| Basic
I
!
|
i
|
i
|
|
"
Constructs

Figure 10 - The Core package contains the packages PrimitiveTypes, Abstractions, Basic, and Constructs

The package PrimitiveTypes is a simple package that contains a number of predefined types that are commonly used when
metamodeling, and as such they are used both in the infrastructure library itself, but also in metamodels like MOF and
UML. The package Abstractions contains a number of fine-grained packages with only a few metaclasses each, most of
which are abstract. The purpose of this package is to provide a highly reusable set of metaclasses to be specialized when
defining new metamodels. The package Constructs also contains a number of fine-grained packages, and brings together
many of the aspects of the Abstractions. The metaclasses in Constructs tend to be concrete rather than abstract, and are
geared towards an object-oriented modeling paradigm. Looking at metamodels such as MOF and UML, they typicaly
import the Constructs package since the contents of the other packages of Core are then automatically included. The
package Basic contains a subset of Constructs that is used primarily for XMI purposes.

The Profiles package contains the mechanisms used to create profiles of specific metamodels, and in particular of UML.
This extension mechanism subsets the capabilities offered by the more general MOF extension mechanism.

The detailed structure and contents of the PrimitiveTypes, Abstractions, Basic, Constructs, and Profiles packages are
further described in subsequent chapters.

38 UML 2.0 Infrastructure - Final Adopted Specification

9 Core:: Abstractions

The Abstractions package of InfrastructureLibrary::Core is divided into a number of finer-grained packages to facilitate

flexible reuse when creating metamodels.

Core

PrimitiveTypes

i N
// \
v ‘\
\
Abstractions N
\
\\
\\
AN \
| N
Basic
! 7
"
Constructs

Figure 11 - The Core package is owned by the InfrastructureLibrary pack and contains several subpackages

The subpackages of Abstractions are all shown in Figure 12.

UML 2.0: Infrastructure - Final Adopted Specification

39

Abstractions
Elements
All relationships shown in this 7
figure are package imports. /’ A}
e !
. |
e 11
o Ownerships
s L I SN RN
P . ! AN T
i Ve I AN S~
L 7 ! Y -l
e | AN T
s -] AN N
e // ; N Tl
P e AN \\\\
e e Namespaces o e
e 2 \\\ \\\\\
Multipliciti E i A N M) T
ultiplicities xpressions / RN]
\ J ’r’ [N Comments
\ AN . .
! AN f\\ AN // | \\ o Relationships
\ N
| / 1 Y \ 7 | \ —
! / I \ \ // ! ! i
| / 1 \ \\ / / | . |
B ! N NS N \ Classifiers !
! ! | v Visibilities | !
/ | \ A ' i N S~ |
; oA AR S ;
! | vy \ h \ T |
i ! X . \ | \ ~ |
/ | A Literals | / \ Super |
/ 1 A 1 | ,” \\ |
/ ! SN ! \ AR !
! / | / \ TypedElements | | \ | N\ !
/ | / \ \ N |
1 / b \ SE--e \ : N |
| . \ S T~ |
fe=l s S A, N
/ \ \ SV \ \\\\\\\ 4;‘ |
/ Constraints \ | [N \ Tt :
| AN \ Tkl . .
! 4 i / . \ “=4 Generalizations
! \ \ ! o~ \
/ AN
! / \\ \ ! ~ ‘\\\ !
| / \ |
! \
/ StructuralFeatures ’
/ \\ BehavioralFeatures
! \
/ \ > \
; \ 7 N
// \ /// \\
1/] . 1\]
MultiplicityExpressions Instances Changeabilities Redefinitions

9.1

Figure 12 - The Abstractions package contains several subpackages, all of which are specified in this chapter
The contents of each subpackage of Abstractions is described in a separate section below.

BehavioralFeatures package

The Behavioral Features subpackage of the Abstractions package specifies the basic classes for modeling dynamic features
of model elements.

UML 2.0: Infrastructure - Final Adopted Specification

L

TypedElements Classifiers
N
\\ ///
——

BehavioralFeatures

Figure 13 - The BehavioralFeatures package

Feature Namespace TypedE lement NamedEleme
(from Classifiers) (from Namespaces) (from TypedElements) (from Namespace

BehavioralFeature
Parameter

/parameter

0.1 {ordered, *
subsets member,
union}

Figure 14 - The elements defined in the BehavioralFeatures package

9.1.1 BehavioralFeature

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Description

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances. Behavioral Feature
is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled by subclasses of
Behavioral Feature.

Attributes
No additional attributes.

Associations

e [parameter; Parameter|[*] Specifies the parameters of the Behavioral Feature. Subsets Namespace:: member. Thisisa
derived union and is ordered.

UML 2.0: Infrastructure - Final Adopted Specification 41

Constraints
No additional constraints.

Additional Operations

[1] The query isDistinguishableFrom() determines whether two Behavioral Features may coexist in the same Namespace. It
specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->including(self)->including(n)->isUnique(bf | bf.parameter->collect(type))
else true
endif
else true
endif
Semantics

The list of parameters describes the order and type of arguments that can be given when the Behavioral Feature is invoked.

Notation
No additional notation.

9.1.2 Parameter

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

Description
Parameter is an abstract metaclass specializing TypedElement and NamedElement.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

A parameter specifies arguments that are passed into or out of an invocation of a behavioral element like an operation. A
parameter’s type restricts what values can be passed.

A parameter may be given a name, which then identifies the parameter uniquely within the parameters of the same
behavioral feature. If it is unnamed, it is distinguished only by its position in the ordered list of parameters.

42 UML 2.0: Infrastructure - Final Adopted Specification

Notation
No general notation. Specific subclasses of BehavioralFeature will define the notation for their parameters.

Style Guidelines
A parameter name typically starts with a lowercase letter.

9.2 Changeabilities package
The Changeabilities subpackage of the Abstractions package defines when a structural feature may be modified by a

client.

StructuralFeatures

Changeabilities

Figure 15 - The Changeabilities package

StructuralFeature
(from StructuralFeatures)

StructuralFeature
isReadOnly : Boolean = false

Figure 16 - The elements defined in the Changeabilities package

9.2.1 ChangeabilityKind
ChangeabilityKind is an enumeration type.

Description
ChangeabilityKind is an enumeration of the following literal values:

 unrestricted: Indicates that there is no restriction no adding new values, changing avalue, or removing valuesto an
occurrence of a Structural Feature.

UML 2.0: Infrastructure - Final Adopted Specification

43

» readOnly: Indicates that adding new values, changing values, and removing values or an occurrence of a Structural-
Feature is not permitted.

« addOnly: Indicates that there is no restriction on adding new values to an occurrence of a Structural Feature, but chang-
ing and removing values are restricted.

« removeOnly: Indicates that there is no restriction on removing values from an occurrence of a Structural Feature, but
adding new values and changing valuesis not permitted.

9.2.2 StructuralFeature (as specialized)

Description

Structural Feature is specialized to add an attribute that determines whether a client may modify its value.

Attributes
¢ isReadOnly: Boolean States whether the feature’s value may be modified by aclient. Default is false.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation

A read only structural feature is shown using {readOnly} as part of the notation for the structural feature. A modifiable
structural feature is shown using {unrestricted} as part of the notation for the structural feature. This annotation may be
suppressed, in which case it is not possible to determine its value from the diagram.

Presentation Option

It is possible to only allow suppression of this annotation when isReadOnly=false. In this case it is possible to assume this
value in all cases where {readOnly} is not shown.

44 UML 2.0: Infrastructure - Final Adopted Specification

9.3 Classifiers package

The Classifiers package in the Abstractions package specifies an abstract generalization for the classification of instances

according to their features.
Namespaces

h
|
|

!

Classifiers

Figure 17 - The Classifiers package

Namespace NamedElement
(from Namespaces) (from Namespaces)

Classifier [featuringClas sifier /feature Feature
1.* {union} *
{subsets member,
union}

Figure 18 - The elements defined in the Classifiers package

9.3.1 Classifier
A classifier is a classification of instances — it describes a set of instances that have features in common.

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

Attributes
No additional attributes.

Associations

e [feature: Feature[*] Specifies each feature defined in the classifier. Subsets Namespace:: member. Thisisa
derived union.

Additional Operations

[1] Thequery allFeatures() givesall of the features in the namespace of the classifier. In general, through mechanisms such as
inheritance, thiswill be alarger set than feature.

UML 2.0: Infrastructure - Final Adopted Specification 45

Classifier::allFeatures(): Set(Feature);

allFeatures = member->select(oclisKindOf(Feature))
Constraints
No additional constraints.

Semantics

A classifier is a classification of instances according to their features.

Notation

The default notation for a classifier is a solid-outline rectangle containing the classifier’'s name, and optionally with
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elementsin it. Compartment names can be used
to remove ambiguity, if necessary.

9.3.2 Feature

A feature declares a behavioral or structural characteristic of instances of classifiers.

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Attributes
No additional attributes.

Associations
e /featuringClassifier: Classifier [1..*] The Classifiers that have this Feature as a feature. Thisis a derived union.

Constraints
No additional constraints.

Semantics

A Feature represents some characteristic for its featuring classifiers. A Feature can be a feature of multiple classifiers.

Notation

No general notation. Subclasses define their specific notation.

46 UML 2.0: Infrastructure - Final Adopted Specification

9.4 Comments package

The Comments package of the Abstractions package defines the general capability of attaching comments to any element.

Ownerships

7
7
/
/
/

/
/
/

Comments

Figure 19 - The Comments package

annotatedElement

*

Element
(from Ownerships)

]

0..1
Element -
ownedComment
Comment
body : String » {subsets ownedElement}

Figure 20 - The elements defined in the Comments package

94.1 Comment

A comment is a textual annotation that can be attached to a set of elements.

Description

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain

information that is useful to a modeler.

A comment may be owned by any element.

Attributes

e body: String Specifies a string that is the comment

UML 2.0: Infrastructure - Final Adopted Specification

47

Associations
« annotatedElement: Element[*] References the Element(s) being commented.

Constraints
No additional constraints.

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the
model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not
important in this diagram.

Examples

This class was added

by Alan Wright after

meeting with the -
mission planning team. =l Account

Figure 21 - Comment notation

9.4.2 Element (as specialized)

Description

An element can own comments.

Attributes
No additional attributes.

Associations
¢ ownedComment: Comment[*] The Comments owned by this element. Subsets Element:: ownedElement.

Constraints
No additional constraints.

48 UML 2.0: Infrastructure - Final Adopted Specification

Semantics

The comments for an Element add no semantics but may represent information useful to the reader of the model.

Notation
No additional notation.

9.5 Constraints package

The Constraints subpackage of the Abstractions package specifies the basic building blocks that can be used to add
additional semantic information to an element.

Expressions Namespaces
7
W A
“ /
\\\ //
\ /
— /
Constraints

Figure 22 - The Constraints package

NamecHement
(fromNarrespaces)
Nenmespece [cortext Constraint canstrainedBement Hement
(fromNarrespaces) . Onnershi
0.1 {uio} « {ordered) (from ips)
specification o
narrespace ownecRUe ValueSpecification
Narespece (@ L g (fromBxpressions)
0.1 {absets coted) * 0.1 1
{subsets oanedViamber} {eutsass |

Figure 23 - The elements defined in the Constraints package

UML 2.0: Infrastructure - Final Adopted Specification

49

9.5.1 Constraint

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association “xor” constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be
appropriate for expressing a constraint. In other situations natural language may be used.

Constraint is a condition (a Boolean expression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to the element.

Constraint contains an optional name, although they are commonly unnamed.

Attributes
No additional attributes.

Associations
e congtrainedElement: Element[*] The ordered set of Elements referenced by this Constraint.

e /context: Namespace[0..1] Specifies the Namespace that is the context for evaluating this constraint. Thisisa
derived union.

e gpecification: ValueSpecification[0..1] A condition that must be true when evaluated in order for the constraint to be satis-
fied. Subsets Element:: ownedElement.

Constraints
[1] The value specification for a constraint must evaluate to a boolean value.

Cannot be expressed in OCL.

self.specification.isOclKindOf(Boolean)

[2] Evauating the value specification for a constraint must not have side effects.

Cannot be expressed in OCL.
[3] A constraint cannot be applied to itself.

not constrainedElement->includes(self)

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL ‘self’ is used to refer
to the context element.

Constraints are often expressed as a text string in some language. If a formal language such as OCL is used, then tools
may be able to verify some aspects of the constraints.

50 UML 2.0: Infrastructure - Final Adopted Specification

In general there are many possible kinds of owners for a Constraint. The only restriction is that the owning element must
have access to the constrainedElements.

The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Notation

A Constraint is shown as a text string in braces ({}) according to the following BNF:
constraint ::= ‘{" [<name> ‘:’] <boolean expression>" }’

For an element whose notation is atext string (such as an attribute, etc.), the constraint string may follow the element text
string in braces. Figure 24 shows a constraint string that follows an attribute within a class symbal.

For a Constraint that applies to a single element (such as a class or an association path), the constraint string may be
placed near the symbol for the element, preferably near the name, if any. A tool must make it possible to determine the
constrained element.

For a Constraint that applies to two elements (such as two classes or two associations), the constraint may be shown as a
dashed line between the elements labeled by the constraint string (in braces). Figure 25 shows an {xor} constraint
between two associations.

Presentation Options

The constraint string may be placed in a note symbol and attached to each of the symbols for the constrained elements by
a dashed line. Figure 26 shows an example of a constraint in a note symbol.

If the constraint is shown as a dashed line between two elements, then an arrowhead may be placed on one end. The
direction of the arrow is relevant information within the constraint. The element at the tail of the arrow is mapped to the
first position and the element at the head of the arrow is mapped to the second position in the constrainedElements
collection.

For three or more paths of the same kind (such as generalization paths or association paths), the constraint may be
attached to a dashed line crossing all of the paths.

Examples

Stack

size: Integer {size >= 0}

push()
pop()

Figure 24 - Constraint attached to an attribute.

UML 2.0: Infrastructure - Final Adopted Specification 51

Account

Person

Corporation

Figure 25 - {xor} constraint

0.1, boss

9.5.2 Namespace (as specialized)

Description

Person

employee

employer

*

{self.boss->isEmpty() or
self.employer = self.boss.employer}

Figure 26 - Constraint in a note symbol

0.1

Company

A namespace can own constraints. The constraint does not necessarily apply to the namespace itself, but may also apply

to elements in the namespace.

Attributes
No additional attributes.

Associations
e ownedRule: Constraint[*]

Constraints
No additional constraints.

52

Specifies a set of Constraints owned by this Namespace. Subsets Namespace: : owned-

Member.

UML 2.0: Infrastructure - Final Adopted Specification

Semantics

The ownedRule constraints for a Namespace represent well formedness rules for the constrained elements. These
constraints are evaluated when determining if the model elements are well formed.

Notation
No additional notation.

9.6 Elements package

The Elements subpackage of the Abstractions package specifies the most basic abstract construct, Element.

Elements

Figure 27 - The Elements package

Element

Figure 28 - The elements defined in the Elements package

Element

An element is a constituent of a model.

Description

Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the
infrastructure library.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

Subclasses of Element provide semantics appropriate to the concept they represent.

UML 2.0: Infrastructure - Final Adopted Specification 53

Notation
There is no general notation for an Element. The specific subclasses of Element define their own notation.

9.7 Expressions package

The Expressions package in the Abstractions package specifies the general metaclass supporting the specification of
values, along with specializations for supporting structured expression trees and opaque, or uninterpreted, expressions.
Various UML constructs require or use expressions, which are linguistic formulas that yield values when evaluated in a

context.

Ownerships

Expressions

Figure 29 - The Expressions package

Element
(from Ownerships)

ValueSpecification
operand

» {ordered, subsets ownedElement}

expression

OpaqueExpression Expression @
body : String symbol : String 0..1 {subsets owner}

language : String[0..1]

Figure 30 - The elements defined in the Expressions package

9.7.1 Expression
An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.

54 UML 2.0: Infrastructure - Final Adopted Specification

Description

An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands which are value specifications.

Attributes
e symboal: String [1] The symbol associated with the node in the expression tree.

Associations
e operand: ValueSpecification[*] Specifies a sequence of operands. Subsets Element:: ownedElement.

Constraints
No additional constraints.

Semantics

An expression represents a node in an expression tree. If there are no operands it represents a terminal node. If there are
operands it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Notation

By default an expression with no operands is notated simply by its symbol, with no quotes. An expression with operands
is notated by its symbol, followed by round parentheses containing its operands in order. In particular contexts special
notations may be permitted, including infix operators.

Examples

Xor
else

plus(x,1)
x+1

9.7.2 OpaqueExpression

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

Description
An opague expression contains a language-specific text string used to describe a value or values, and an optional
specification of the language.

One predefined language for specifying expressions is OCL. Natural language or programming languages may also be
used.

Attributes
e body: String [1] The text of the expression.
e language: String [0..1] Specifies the language in which the expression is stated. The interpretation of the expres-

sion body depends on the language. If language is unspecified, it might be implicit from
the expression body or the context.

UML 2.0: Infrastructure - Final Adopted Specification 55

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

The interpretation of the expression body depends on the language. If the language is unspecified, it might be implicit
from the expression body or the context.

It is assumed that a linguistic analyzer for the specified language will evaluate the body. The time at which the body will
be evaluated is not specified.

Notation

An opaque expression is displayed as a text string in a particular language. The syntax of the string is the responsibility
of atool and a linguistic analyzer for the language.

An opaque expression is displayed as a part of the notation for its containing element.

The language of an opagque expression, if specified, is often not shown on a diagram. Some modeling tools may impose a
particular language or assume a particular default language. The language is often implicit under the assumption that the
form of the expression makes its purpose clear. If the language name is shown, it should be displayed in braces ({})
before the expression string.

Style Guidelines

A language name should be spelled and capitalized exactly as it appears in the document defining the language. For
example, use OCL, not ocl.

Examples
a>0
{OCL}i>jandsdfsize> i
average hours worked per week

9.7.3 ValueSpecification

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.

Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

Attributes
No additional attributes.

Associations
e expression: Expression[0..1] If thisvalue specification is an operand, the owning expression. Subsets Element::owner.

56 UML 2.0: Infrastructure - Final Adopted Specification

Constraints
No additional constraints.

Additional Operations
These operations are introduced here. They are expected to be redefined in subclasses. Conforming implementations may
be able to compute values for more expressions that are specified by the constraints that involve these operations.

[1] The query isComputable() determines whether avalue specification can be computed in amodel. This operation cannot be
fully defined in OCL. A conforming implementation is expected to deliver true for this operation for all value specifica-
tionsthat it can compute, and to compute all of those for which the operation istrue. A conforming implementation is
expected to be able to compute the value of all literals.

ValueSpecification::isComputable(): Boolean;
isComputable = false

[2] Thequery integerVaue() gives asingle Integer value when one can be computed.

ValueSpecification::integerValue() : [Integer];
integerValue = Set{}

[3] The query booleanValue() gives asingle Boolean value when one can be computed.

ValueSpecification::booleanValue() : [Boolean];
booleanValue = Set{}

[4] Thequery stringValue() gives a single String value when one can be computed.

ValueSpecification::stringValue() : [String];
stringValue = Set{}

[5] The query unlimitedValue() gives asingle UnlimitedNatural value when one can be computed.

ValueSpecification::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = Set{}

[6] The query isNull() returns true when it can be computed that the value is null.

ValueSpecification::isNull() : Boolean;
isNull = false

Semantics

A value specification yields zero or more values. It is required that the type and number of values is suitable for the
context where the value specification is used.

Notation
No specific notation.

9.8 Generalizations package

The Generalizations package of the Abstractions package provides mechanisms for specifying generalization relationships
between classifiers.

UML 2.0: Infrastructure - Final Adopted Specification 57

TypedHements

1
Sper
Relationships
4;‘ / ,/’/
Generdizations

Figure 31 - The Generalizations package

DirectedRelationship

Type Classifier (from Relationships)
(from TypedElements) (from Su per)
specific generalization
Classifier 1 N Generalization
{subsets source, {subsets ownedElement}

subsets owner}

general

1 {subsets target}

/general

Figure 32 - The elements defined in the Generalizations package

9.8.1 Classifier (as specialized)

Description

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to

other classifiers.

Attributes

No additional attributes.

58

UML 2.0: Infrastructure - Final Adopted Specification

Associations

« generalization: Generalization[*]Specifies the Generalization relationships for this Classifier. These Generalizations navi-
gate to more general classifiersin the generalization hierarchy. Subsets Ele-
ment: : ownedElement.

e /genera : Classifier[*] Specifies the general Classifiersfor this Classifier. Thisis derived.

Constraints
[1] The general classifiers are the classifiers referenced by the generalization rel ationships.

general = self.parents()

Additional Operations
[1] The query parents() givesall of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);
parents = generalization.general

[2] Thequery conformsTo() givestruefor a classifier that defines atype that conforms to another. Thisis used, for example,
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;
conformsTo = (self=other) or (self.allParents()->includes(other))
Semantics

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of the general Classifier. The specific semantics of how generalization affects each concrete
subtype of Classifier varies. A Classifier defines a type. Type conformance between generalizable Classifiersis defined so
that a Classifier conforms to itself and to all of its ancestors in the generalization hierarchy.

Notation
No additional notation.

Examples
See Generalization.
9.8.2 Generalization

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each
instance of the specific classifier is aso an instance of the general classifier. Thus, the specific classifier indirectly has
features of the more general classifier.

Description

A generalization relates a specific classifier to a more general classifier, and is owned by the specific classifier.

Attributes
No additional attributes.

UML 2.0: Infrastructure - Final Adopted Specification 59

Associations
e genera: Classifier [1]

« gpecific: Classifier [1]

Constraints
No additional constraints

Semantics

References the genera classifier in the Generalization relationship.
Subsets DirectedRel ationship::target.

References the specializing classifier in the Generalization rel ationship.
Subsets DirectedRel ationship:: source and Element::owner.

Where a generalization relates a specific classifier to a general classifier, each instance of the specific classifier is also an
instance of the general classifier. Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to instances of the general classifier also applies
to instances of the specific classifier.

Notation

A Generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the
involved classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as
the “separate target style”. See the example section below.

Presentation Options

Multiple Generalization relationships that reference the same general classifier can be connected together in the “shared
target style’. See the example section below.

60

UML 2.0: Infrastructure - Final Adopted Specification

Examples

Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape 9 y
Polygon Ellipse Spline

Figure 33 - Examples of generalizations between classes

9.9 Instances package

The Instances package in the Abstractions package provides for modeling instances of classifiers.

Expressions StructuralFeatures
[N A
\]
\ fi
\]
\ |
\ /
\ /
\ /
\ /
— |

Instances

Figure 34 - The Instances package

UML 2.0: Infrastructure - Final Adopted Specification

Element
NamedElement)
(from Namespaces) (from Ownerships)

T

—— owninglnstance
InstanceSpecification {subsets owner} slot * Slot
1 {subsets ownedElement}
instance |1 0.1 0..1
1..*| classifier 0..1| specification
{subsets ownedElement}

- value
Classifier

ValueSpecification
fromClassifiers)

(from Expressions) * {ordered,
subsets ownedElement}

definingFeature

InstanceValue StructuralFeature
(from StructuralFeatures)

Figure 35 - The elements defined in the Instances package
9.9.1 InstanceSpecification
An instance specification is a model element that represents an instance in a modeled system.

Description

An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description includes:

- Classification of the entity by one or more classifiers of which the entity isan instance. If the only classifier specifiedis
abstract, then the instance specification only partially describes the entity.

» Thekind of instance, based onits classifier or classifiers— for example, an instance specification whose classifier isa

class describes an object of that class, while an instance specification whose classifier is an association describes alink
of that association.

- Specification of values of structural features of the entity. Not all structural features of all classifiers of the instance
specification need be represented by slots, in which case the instance specification is a partial description.

« Specification of how to compute, derive or construct the instance (optional).

InstanceSpecification is a concrete class.

62 UML 2.0: Infrastructure - Final Adopted Specification

Attributes
No additional attributes.

Associations

e classifier : Classifier [1..*] Theclassifier or classifiers of the represented instance. If multiple classifiers are specified,
the instance is classified by all of them.

e dlot: Slot [*] A dlot giving the value or values of a structural feature of the instance. An instance speci-
fication can have one dot per structural feature of its classifiers, including inherited fea-
tures. It is not necessary to model a slot for each structural feature, in which case the
instance specification is a partial description. Subsets Element: : ownedElement.

« gpecification : ValueSpecification [0..1] A specification of how to compute, derive, or construct the instance. Subsets Ele-
ment: :ownedElement.

Constraints
[1] The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance specification.

slot->forAll(s |
classifier->exists(c | c.allFeatures()->includes(s.definingFeature)

)
[2] One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most
one dot in an instance specification.

classifier->forAll(c |
(c.allFeatures()->forAll(f | slot->select(s | s.definingFeature = f)->size() <= 1)

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model.

An instance specification can represent an entity at a point in time (a snapshot). Changes to the entity can be modeled
using multiple instance specifications, one for each snapshot.

When used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does not
depict a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn
about the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled
system, an instance specification represents part of that system. Instance specifications can be modeled incompletely —
required structural features can be omitted, and classifiers of an instance specification can be abstract, even though an
actual entity would have a concrete classification.

Notation

An instance specification is depicted using the same notation as its classifier, but in place of the classifier name appears
an underlined concatenation of the instance name (if any), a colon (*:") and the classifier name or names. If there are
multiple classifiers, the names are all shown separated by commas. Classifier names can be omitted from a diagram.

UML 2.0: Infrastructure - Final Adopted Specification 63

If an instance specification has a value specification as its specification, the value specification is shown either after an
equal sign (“=") following the name, or without an equal sign below the name. If the instance specification is shown using
an enclosing shape (such as a rectangle) that contains the name, the value specification is shown within the enclosing
shape.

streetName: String
"S. Crown Ct."

Figure 36 - Specification of an instance of String

Slots are shown using similar notation to that of the corresponding structural features. Where a feature would be shown
textualy in a compartment, a slot for that feature can be shown textually as a feature name followed by an equal sign
(‘=") and a value specification. Other properties of the feature, such as its type, can optionally be shown.

nmyAddress: Address

streetName ="S, Gonn Q"
streetNuber : Integer =381

Figure 37 - Slots with values

An instance specification whose classifier is an association represents a link and is shown using the same notation as for
an association, but the solid path or paths connect instance specifications rather than classifiers. It is not necessary to
show an underlined name where it is clear from its connection to instance specifications that it represents a link and not
an association. End names can adorn the ends. Navigation arrows can be shown, but if shown, they must agree with the
navigation of the association ends.

Don : Person | father son Josh : Person

Figure 38 - Instance specifications representing two objects connected by a link

Presentation Options

A dlot value for an attribute can be shown using a notation similar to that for alink. A solid path runs from the owning
instance specification to the target instance specification representing the slot value, and the name of the attribute adorns
the target end of the path. Navigability, if shown, must be only in the direction of the target.

9.9.2 InstanceValue

An instance value is a value specification that identifies an instance.

64 UML 2.0: Infrastructure - Final Adopted Specification

Description
An instance value specifies the value modeled by an instance specification.

Attributes
No additional attributes.

Associations
e instance: InstanceSpecification [1] The instance that is the specified value.

Constraints
No additional constraints.

Semantics

The instance specification is the specified value.

Notation

An instance value can appear using textual or graphical notation. When textual, as can appear for the value of an attribute
dlot, the name of the instance is shown. When graphical, a reference value is shown by connecting to the instance. See
“InstanceSpecification”.

9.9.3 Slot

A dot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description

A dot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the slot.

Attributes
No additional attributes.

Associations

e definingFeature : Structural Feature [1] The structural feature that specifies the values that may be held by the slot.

« owninglnstance : InstanceSpecification [1] The instance specification that owns this slot. Subsets Element.owner.

< vaue: InstanceSpecification [*] The value or values corresponding to the defining feature for the owning instance specifi-
cation. Thisis an ordered association. Subsets Element.ownedElement.

Constraints
No additional constraints.

UML 2.0: Infrastructure - Final Adopted Specification 65

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The valuesin a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Notation
See “InstanceSpecification”.

9.10 Literals package

The Literals package in the Abstractions package specifies metaclasses for specifying literal values.

Expressions

Literals

Figure 39 - The Literals package

ValueSpecification
(from Expressions)

Literal Specification

1

Literalinteger Literal String LiteralBoolean LiteralNull LiteralUnlimitedNatural

value : Integer value : String value : Boolean value : UnlimitedNatural

Figure 40 - The elements defined in the Literals package

9.10.1 LiteralBoolean

A literal boolean is a specification of a boolean value.

66 UML 2.0: Infrastructure - Final Adopted Specification

Description
A literal boolean contains a Boolean-valued attribute.

Attributes
e vaue Boolean The specified Boolean value.

Associations

No additional associations.

Constraints
No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralBoolean::isComputable(): Boolean;
isComputable = true

[2] The query booleanValue() gives the value.

LiteralBoolean::booleanValue() : [Boolean];
booleanValue = value

Semantics

A LiteralBoolean specifies a constant Boolean value.

Notation

A LiteralBoolean is shown as either the word ‘true’ or the word ‘false’, corresponding to its value.

9.10.2 Literalinteger

A literal integer is a specification of an integer value.

Description

A literal integer contains an Integer-valued attribute.

Attributes
e vaue: Integer The specified Integer value.

Associations
No additional associations.

Constraints
No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

UML 2.0: Infrastructure - Final Adopted Specification

67

Literallnteger::isComputable(): Boolean;
isComputable = true

[2] Thequery integerValue() givesthe value.

Literallnteger::integerValue() : [Integer];
integerValue = value

Semantics

A Literallnteger specifies a constant Integer value.

Notation
A Literallnteger is typically shown as a sequence of digits.

9.10.3 LiteralNull

A literal null specifies the lack of a value.

Description

A literal null is used to represent null, i.e., the absence of a value.

Attributes
No additional attributes.

Associations
No additional associations.
Constraints

No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralNull::isComputable(): Boolean;
isComputable = true

[2] Thequery isNull() returnstrue.

LiteralNull::isNull() : Boolean;
isNull = true

Semantics
LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word ‘null’. Other notations are
described for specific uses.

68 UML 2.0: Infrastructure - Final Adopted Specification

9.10.4 LiteralSpecification

A literal specification identifies a literal constant being modeled.

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics. Subclasses of Literal Specification are defined to specify literal values of different types.

Notation
No specific notation.
9.10.5 LiteralString

A literal string is a specification of a string value.

Description

A literal string contains a String-valued attribute.

Attributes
e vaue: String The specified String value.

Associations
No additional associations.

Constraints
No additional constraints.

Additional Operations

[1] The query isComputable() is redefined to be true.

LiteralString::isComputable(): Boolean;
isComputable = true

[2] Thequery stringValue() gives the value.

UML 2.0: Infrastructure - Final Adopted Specification

69

LiteralString::stringValue() : [String];
stringValue = value

Semantics
A Literal String specifies a constant String value.

Notation

A LiteralString is shown as a sequence of characters within double quotes.

The character set used is unspecified.

9.10.6 LiteralUnlimitedNatural

A literal unlimited natural is a specification of an unlimited natural number.

Description
A literal unlimited natural contains a UnlimitedNatural-valued attribute.

Attributes
¢ vaue UnlimitedNatural The specified UnlimitedNatural value.

Associations

No additional associations.

Constraints
No additional constraints.

Additional Operations
[1] The query isComputable() is redefined to be true.

LiteralUnlimitedNatural::isComputable(): Boolean;
isComputable = true

[2] The query unlimitedValue() givesthe value.

LiteralUnlimitedNatural::unlimitedValue() : [UnlimitedNatural];
unlimitedValue = value

Semantics
A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation

A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where the asterisk denotes
unlimited (and not infinity).

70 UML 2.0: Infrastructure - Final Adopted Specification

9.11 Multiplicities package

The Multiplicities subpackage of the Abstractions package defines the metamodel classes used to support the specification
of multiplicities for typed elements (such as association ends and attributes), and for specifying whether multivalued
elements are ordered or unique.

Elements

Z
/
/

,

,
;

Multiplicities

Figure 41 - The Multiplicities package

Element
(from Elements)

MultiplicityElement

isOrdered : Boolean = false
isUnique : Boolean = true

lower : Integer = 1[0..1]

upper : UnlimitedNatural = 1[0..1]

Figure 42 - The elements defined in the Multiplicities package

9.11.1 MultiplicityElement

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Description

A MultiplicityElement is an abstract metaclass which includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement a so includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Attributes

e isOrdered: Boolean For a multivalued multiplicity, this attribute specifies whether the values in an instantia-
tion of this element are sequentially ordered. Default isfalse.

UML 2.0: Infrastructure - Final Adopted Specification 71

e isUnique: Boolean For amultivalued multiplicity, this attributes specifies whether the values in an instantia-
tion of this element are unique. Default istrue.

« lower: Integer [0..1] Specifies the lower bound of the multiplicity interval. Default is one.

e upper : UnlimitedNatural [0..1] Specifies the upper bound of the multiplicity interval. Default is one.

Associations

No additional associations.

Constraints

These constraint must handle situations where the upper bound may be specified by an expression not computable in the
model. In this package such situations cannot arise but they can in subclasses.

[1] A multiplicity must define at least one valid cardinality that is greater than zero.
upperBound()->notEmpty() implies upperBound() > 0
[2] Thelower bound must be a non-negative integer literal.

lowerBound()->notEmpty() implies lowerBound() >=0

[3] Theupper bound must be greater than or equal to the lower bound.

(upperBound()->notEmpty() and lowerBound()->notEmpty()) implies upperBound() >= lowerBound()

Additional Operations

[1] The query isMultivalued() checks whether this multiplicity has an upper bound greater than one.

MultiplicityElement::isMultivalued() : Boolean;
pre: upperBound()->notEmpty()
isMultivalued = (upperBound() > 1)

[2] Thequery includesCardinality() checks whether the specified cardinality isvalid for this multiplicity.
MultiplicityElement::includesCardinality(C : Integer) : Boolean;

pre: upperBound()->notEmpty() and lowerBound()->notEmpty()
includesCardinality = (lowerBound() <= C) and (upperBound() >= C)

[3] The query includesMultiplicity() checks whether this multiplicity includes all the cardinalities allowed by the specified
multiplicity.

MultiplicityElement::includesMultiplicity(M : MultiplicityElement) : Boolean;
pre: self.upperBound()->notEmpty() and self.lowerBound()->notEmpty()
and M.upperBound()->notEmpty() and M.lowerBound()->notEmpty()
includesMultiplicity = (self.lowerBound() <= M.lowerBound()) and (self.upperBound() >= M.upperBound())

[4] Thequery lowerBound() returns the lower bound of the multiplicity as an integer.

MultiplicityElement::lowerBound() : [Integer];
lowerBound = if lower->notEmpty() then lower else 1 endif

[5] The query upperBound() returns the upper bound of the multiplicity for a bounded multiplicity as an unlimited natural.

MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound = if upper->notEmpty() then upper else 1 endif

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specificaly, cardinality C isvalid for multiplicity M
if M.includesCardinality(C).

72 UML 2.0: Infrastructure - Final Adopted Specification

A multiplicity is specified as an interval of integers starting with the lower bound and ending with the (possibly infinite)
upper bound.

If a MultiplicityElement specifies a multivalued multiplicity, then an instantiation of this element has a set of values. The
multiplicity is a constraint on the number of values that may validly occur in that set.

If the MultiplicityElement is specified as ordered (i.e. isOrdered is true), then the set of values in an instantiation of this
element is ordered. This ordering implies that there is a mapping from positive integers to the elements of the set of
values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic effect.

If the MultiplicityElement is specified as unordered (i.e. isOrdered is false), then no assumptions can be made about the
order of the values in an instantiation of this element.

If the MultiplicityElement is specified as unique (i.e. isUnique is true), then the set of values in an instantiation of this
element must be unique. If a MultiplicityElement is not multivalued, then the value for isUnique has no semantic effect.

Notation

The specific notation for a MultiplicityElement is defined by the concrete subclasses. In general, the notation will include
a multiplicity specification is shown as a text string containing the bounds of the interval, and a notation for showing the
optional ordering and uniqueness specifications.

The multiplicity bounds are typically shown in the format:
|ower-bound..upper-bound

where lower-bound is an integer and upper-bound is an unlimited natural number. The asterisk (*) is used as part of a
multiplicity specification to represent the unlimited (or infinite) upper bound.

If the Multiplicity is associated with an element whose notation is a text string (such as an attribute, etc.), the multiplicity
string will be placed within square brackets ([]) as part of that text string. Figure 43 shows two multiplicity strings as part
of attribute specifications within a class symbol.

If the Multiplicity is associated with an element that appears as a symbol (such as an association end), the multiplicity
string is displayed without square brackets and may be placed near the symbol for the element. Figure 44 shows two
multiplicity strings as part of the specification of two association ends.

The specific notation for the ordering and uniqueness specifications may vary depending on the specific subclass of
MultiplicityElement. A general notation is to use a property string containing ordered or unordered to define the ordering,
and unigue or nonunique to define the uniqueness.

Presentation Options

If the lower bound is equal to the upper bound, then an alternate notation is to use the string containing just the upper
bound. For example, “1" is semantically equivalent to “1..1".

A multiplicity with zero as the lower bound and an unspecified upper bound may use the alternative notation containing
asingle asterisk “*” instead of “0..*".

The following BNF defines the syntax for a multiplicity string, including support for the presentation options listed
above.

multiplicity ::= <multiplicity_range>

multiplicity range::= [lower ‘.."] upper

lower ::= integer

upper ::= unlimited _natural | **’

UML 2.0: Infrastructure - Final Adopted Specification 73

Examples

Purchase

Customer

purchase :

Purchase [*] {ordered, unique}
account: Account [0..5] {unique}

Figure 43 - Multiplicity within a textual specification

purchase

Customer

Rationale

MultiplicityElement represents a design trade-off to improve some technology mappings (such as XMlI).

9.12 MultiplicityExpressions package

The MultiplicityExpressions subpackage of the Abstractions package extends the multiplicity capabilities to support the

., {ordered
unique}

account

{unique}

0..5

Figure 44 - Multiplicity as an adornment to a symbol

use of value expressions for the bounds.

74

Expressions

4\;‘

MultiplicityExpressions

Multipliciies

Figure 45 - The MultiplicityExpressions package

UML 2.0: Infrastructure - Final Adopted Specification

Account

MultiplicityElement Element

(from Multiplicities) (from Ownerships)
Z} Z} ownerUpper upperValue
{subsets owner} {subsets ownedElement}
MultiplicityElement e 01 ValueSpecification
/ lower : Integer [0..1] 0.1 v (from Expressions)
/ upper : UnlimitedNatural [0..1] ownerLower lowerValue
{subsets owner} {subsets ownedElement} |
0..1 0.1

Figure 46 - The elements defined in the MultiplicityExpressions package

9.12.1 MultiplicityElement (specialized)

Description

MultiplicityElement is specialized to support the use of value specifications to define each bound of the multiplicity.

Attributes

e [lower : Integer [0..1] Specifies the lower bound of the multiplicity interval, if it is expressed as an integer. This
is aredefinition of the corresponding property from Multiplicities.

e [upper : UnlimitedNatural [0..1]Specifies the upper bound of the multiplicity interval, if it is expressed as an unlimited
natural. Thisis aredefinition of the corresponding property from Multiplicities.

Associations

* lowerValue: ValueSpecification [0..1] The specification of the lower bound for this multiplicity. Subsets Ele-
ment: :ownedElement.

e upperValue: ValueSpecification [0..1] The specification of the upper bound for this multiplicity. Subsets Ele-
ment: : ownedElement.

Constraints
[1] If aValueSpecification isused for the lower or upper bound, then evaluating that specification must not have side effects.

Cannot be expressed in OCL.
[2] If aVaueSpecification isused for the lower or upper bound, then that specification must be a constant expression.

Cannot be expressed in OCL.
[3] Thederived lower attribute must equal the lowerBound.

lower = lowerBound()

[4] The derived upper attribute must equal the upperBound.
upper = upperBound()

Additional Operations
[1] The query lowerBound() returns the lower bound of the multiplicity as an integer.

UML 2.0: Infrastructure - Final Adopted Specification 75

MultiplicityElement::lowerBound() : [Integer];
lowerBound =
if lowerValue->isEmpty() then
1
else
lowerValue.integerValue()
endif

[2] Thequery upperBound() returns the upper bound of the multiplicity as an unlimited natural.

MultiplicityElement::upperBound() : [UnlimitedNatural];
upperBound =
if upperValue->isEmpty() then
1
else
upperValue.unlimitedValue()
endif

Semantics

The lower and upper bounds for the multiplicity of a MultiplicityElement may be specified by value specifications, such
as (side-effect free, constant) expressions.

Notation

The notation for Multiplicities::MultiplicityElement (see page 71) is extended to support value specifications for the
bounds.

The following BNF defines the syntax for a multiplicity string, including support for the presentation options.
multiplicity ::= <multiplicity_range> [‘{* <order_designator> ‘}’]
multiplicity range::= [lower ‘.."] upper
lower ::= integer | value specification
upper ::= unlimited_natural | ‘*’ | value_specification
<order_designator> ::= ordered | unordered
<uniqueness_designator> ::= unique | nonunique

9.13 Namespaces package

The Namespaces subpackage of the Abstractions package specifies the concepts used for defining model elements that
have names, and the containment and identification of these named elements within namespaces.

Ownerships

Namespaces

Figure 47 - The Namespaces package

76 UML 2.0: Infrastructure - Final Adopted Specification

Element
(from Ownerships)

NamedElement

name : String [0..1]
/ qualifiedName : String[0..1]

/ownedMember | % /member | *
{subsets ownedElement,
subsets member,
union}

{union}

/namespace
{subsets owner,

union} ‘

0..1

Namespace

Figure 48 - The elements defined in the Namespaces package

9.13.1 NamedElement

A named element is an element in a model that may have a name.

Description

A named element represents elements that may have a name. The name is used for identification of the named element
within the namespace in which it is defined. A named element also has a qualified name that allows it to be
unambiguously identified within a hierarchy of nested namespaces. NamedElement is an abstract metaclass.

Attributes

e name: String [0..1] The name of the NamedElement.

e /quaifiedName: String [0..1] A name which allows the NamedElement to be identified within a hierarchy of nested
Namespaces. It is constructed from the names of the containing namespaces starting at the

root of the hierarchy and ending with the name of the NamedElement itself. Thisisa
derived attribute.

Associations

« |/ namespace: Namespace [0..1] Specifies the namespace that owns the NamedElement. Subsets Element::owner. Thisisa
derived union.

UML 2.0: Infrastructure - Final Adopted Specification 77

Constraints
[1] If thereisno name, or one of the containing namespaces has no name, there is no qualified name.

(self.name->isEmpty() or self.allNamespaces()->select(ns | ns.name->isEmpty())->notEmpty())
implies self.qualifiedName->isEmpty()
[2] When there is a name, and al of the containing namespaces have a name, the qualified name is constructed from the
names of the containing namespaces.

(self.name->notEmpty() and self.allNamespaces()->select(ns | ns.name->isEmpty())->isEmpty()) implies
self.qualifiedName = self.allNamespaces()->iterate(ns : Namespace; result: String = self.name |
ns.name->union(self.separator())->union(result))

Additional Operations
[1] The query allNamespaces() gives the sequence of namespaces in which the NamedElement is nested, working outwards.

NamedElement::allNamespaces(): Sequence(Namespace);
allNamespaces =
if self.namespace->iseEmpty()
then Sequence{}
else self.namespace.allNamespaces()->prepend(self.namespace)
endif
[2] The query isDistinguishableFrom() determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they have related types but dif-
ferent names.

NamedElement::isDistinguishableFrom(n:NamedElement, ns: Namespace): Boolean;
isDistinguishable =
if self.oclisKindOf(n.oclType) or n.ocllsKindOf(self.oclType)
then ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->isEmpty()
else true
endif

[3] Thequery separator() gives the string that is used to separate names when constructing a qualified name.

NamedElement::separator(): String;
separator = "’
Semantics

The name attribute is used for identification of the named element within namespaces where its name is accessible. Note
that the attribute has a multiplicity of [0..1] which provides for the possibility of the absence of a name (which is
different from the empty name).

9.13.2 Namespace

A namespace is an element in a model that contains a set of named elements that can be identified by name.

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means e.g. importing or inheriting. Namespace is an abstract metaclass.

78 UML 2.0: Infrastructure - Final Adopted Specification

Attributes
No additional attributes.

Associations

« / member: NamedElement [*] A collection of NamedElements identifiable within the Namespace, either by being owned
or by being introduced by importing or inheritance. Thisis a derived union.

¢/ ownedMember: NamedElement [*]A collection of NamedElements owned by the Namespace. Subsets Ele-
ment: : ownedElement and Namespace: :member. Thisis a derived union.

Constraints

[1] All the members of a Namespace are distinguishable within it.
membersAreDistinguishable()

Additional Operations

[1] The query getNamesOfMember() gives a set of all of the names that a member would have in a Namespace. In general a
member can have multiple namesin aNamespaceif it isimported more than once with different aliases. Those semantics
are specified by overriding the getNamesOfMember operation. The specification here simply returns a set containing a
single name, or the empty set if no name.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember =
if member->includes(element) then Set{}->including(element.name) else Set{} endif
[2] The Boolean query membersAreDistinguishable() determines whether al of the namespace’s members are distinguisha
blewithinit.

Namespace::membersAreDistinguishable() : Boolean;
membersAreDistinguishable =
self.member->forAll(memb |
self.member->excluding(memb)->forAll(other |
memb.isDistinguishableFrom(other, self)))

Semantics

A namespace provides a container for named elements. It provides a means for resolving composite names, such as
namel::name2::name3. The member association identifies all named elements in a namespace called N that can be
referred to by a composite name of the form N::<x>. Note that this is different from all of the names that can be referred
to unqualified within N, because that set also includes all unhidden members of enclosing namespaces.

Named elements may appear within a namespace according to rules that specify how one named element is
distinguishable from another. The default rule is that two elements are distinguishable if they have unrelated types, or
related types but different names. This rule may be overridden for particular cases, such as operations which are
distinguished by their signature.

Notation
No additional notation. Concrete subclasses will define their own specific notation.

9.14 Ownerships package

The Ownerships subpackage of the Abstractions package extends the basic element to support ownership of other
elements.

UML 2.0: Infrastructure - Final Adopted Specification 79

Elements

Ownerships

Figure 49 - The Ownerships package

Element
(from Elements)

/ownedElement
* {union}

Element

/lowner

g
0..1{union}

Figure 50 - The elements defined in the Ownerships package

9.14.1 Element (as specialized)

An element is a constituent of a model. As such, it has the capability of owning other elements.

Description
Element has a derived composition association to itself to support the general capability for elements to own other
elements.

Attributes
No additional attributes.

Associations
« [/ ownedElement: Element[*] The Elements owned by this element. Thisis aderived union.

e /owner: Element [0..1] The Element that owns this element. Thisis aderived union.

Constraints
[1] Anelement may not directly or indirectly own itself.

not self.allOwnedElements()->includes(self)
[2] Elementsthat must be owned must have an owner.

80 UML 2.0: Infrastructure - Final Adopted Specification

self.mustBeOwned() implies owner->notEmpty()

Additional Operations
[1] The query allOwnedElements() gives al of the direct and indirect owned elements of an element.

Element::allOwnedElements(): Set(Element);
allownedElements = ownedElement->union(ownedElement->collect(e | e.allOwnedElements()))

[2] The query mustBeOwned() indicates whether elements of this type must have an owner. Subclasses of Element that do
not require an owner must override this operation.

Element::mustBeOwned() : Boolean;
mustBeOwned = true

Semantics
Subclasses of Element will provide semantics appropriate to the concept they represent.

The derived ownedElement association is subsetted (directly or indirectly) by all composed association ends in the
metamodel. Thus ownedElement provides a convenient way to access all the elements that are directly owned by an
Element.

Notation
There is no general notation for an Element. The specific subclasses of Element define their own notation.

9.15 Redefinitions package

The Redefinitions package in the Abstractions package specifies the general capability of redefining model elements in
the context of a generalization hierarchy.

Redefinitions

Figure 51 - The Redefinitions package

UML 2.0: Infrastructure - Final Adopted Specification 81

Nam edElement
(from Namespaces)

RedefinableElement

/redefinedElement

* {union}
/redefinitionContext Classifier

(from Super)

{union} =

Figure 52 - The elements defined in the Redefinitions package

9.15.1 RedefinableElement

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically or
differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Description

A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Attributes
No additional attributes.

Associations

e | redefinedElement: RedefinableElement[*] The redefinable element that is being redefined by this element. Thisisa
derived union.

e [/ redefinitionContext: Classifier[*] References the contexts that this element may be redefined from. Thisisa
derived union.

Constraints

[1] Atleast one of the redefinition contexts of the redefining element must be a specialization of at least one of the redefinition
contexts for each redefined element.

self.redefinedElement->forAll(e | self.isRedefinitionContextValid(e))
[2] A redefining element must be consistent with each redefined element.

self.redefinedElement->forAll(re | re.isConsistentWith(self))

82 UML 2.0: Infrastructure - Final Adopted Specification

Additional Operations

[1] The query isConsistentWith() specifies, for any two RedefinableElements in a context in which redefinition is possible,
whether redefinition would be logically consistent. By default, thisis false; this operation must be overridden for sub-
classes of RedefinableElement to define the consistency conditions.

RedefinableElement::isConsistentWith(redefinee: RedefinableElement): Boolean;
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = false

[2] The query isRedefinitionContextValid() specifies whether the redefinition contexts of this RedefinableElement are prop-
erly related to the redefinition contexts of the specified RedefinableElement to allow this element to redefine the other.
By default at least one of the redefinition contexts of this element must be a specialization of at least one of the redefini-
tion contexts of the specified element.

RedefinableElement::isRedefinitionContexValid(redefinable: RedefinableElement): Boolean;

isRedefinitionContextValid = self.redefinitionContext->exists(c |
redefinable.redefinitionContext->exists(c | c.allParents()->includes(r))
)

Semantics
A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement.

A redefinable element is a specification concerning instances of a classifier that is one of the element’s redefinition
contexts. For a classifier that specializes that more general classifier (directly or indirectly), another element can redefine
the element from the general classifier in order to augment, constrain, or override the specification as it applies more
specifically to instances of the specializing classifier.

A redefining element must be consistent with the element it redefines, but it can add specific constraints or other details
that are particular to instances of the specializing redefinition context that do not contradict invariant constraints in the
general context.

A redefinable element may be redefined multiple times. Furthermore, one redefining element may redefine multiple
inherited redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Notation

No general notation. See the subclasses of RedefinableElement for the specific notation used.

9.16 Relationships package

The Relationships subpackage of the Abstractions package adds support for directed relationships.

UML 2.0: Infrastructure - Final Adopted Specification 83

Ownerships

Relationships

Figure 53 - The Relationships package

Element
(from Ownerships)

Relationship

/relatedElement Element
(from Ownerships)

DirectedRelationship

{union} 1..*

/source
{subsets relatedElement, union}

1.*

/target
{subsets relatedElement, union}

1.*

Figure 54 - The elements defined in the Relationships package

9.16.1 DirectedRelationship

A directed relationship represents a relationship between a collection of source model elements and a collection of target

model elements.

Description

A directed relationship references one or more source elements and one or more target elements. DirectedRelationship is
an abstract metaclass.

Attributes

No additional attributes.

84

UML 2.0: Infrastructure - Final Adopted Specification

Associations

e/ source: Element [1..%] Specifies the sources of the DirectedRelationship. Subsets Relationship::relatedElement.
Thisisaderived union.

e /target: Element [1..*] Specifies the targets of the DirectedRelationship. Subsets Relationship: :relatedElement.
Thisis aderived union.

Constraints
No additional constraints.

Semantics

DirectedRelationship has no specific semantics. The various subclasses of DirectedRelationship will add semantics
appropriate to the concept they represent.

Notation

There is no general notation for a DirectedRelationship. The specific subclasses of DirectedRelationship will define their
own notation. In most cases the notation is a variation on a line drawn from the source(s) to the target(s).

9.16.2 Relationship

Relationship is an abstract concept that specifies some kind of relationship between elements.

Description

A relationship references one or more related elements. Relationship is an abstract metaclass.

Attributes
No additional attributes.

Associations
e /relatedElement: Element [1..*] Specifies the elements related by the Relationship. Thisis aderived union.

Constraints
No additional constraints.

Semantics

Relationship has no specific semantics. The various subclasses of Relationship will add semantics appropriate to the
concept they represent.

Notation

There is no general notation for a Relationship. The specific subclasses of Relationship will define their own notation. In
most cases the notation is a variation on a line drawn between the related elements.

UML 2.0: Infrastructure - Final Adopted Specification 85

9.17 StructuralFeatures package

The Structural Features package of the Abstractions package specifies an abstract generalization of structural features of
classifiers.

TypedElements Classifiers
\\ ////
J

StructuralFeatures

Figure 55 - The StructuralFeatures package

TypedElement Feature
(from TypedElements) (from Classifiers)

StructuralFeature

Figure 56 - The elements defined in the StructuralFeatures package
9.17.1 StructuralFeature

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

86 UML 2.0: Infrastructure - Final Adopted Specification

Semantics

A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified

type.

Notation
No additional notation.

9.18 Super package

The Super package of the Abstractions package provides mechanisms for specifying generalization relationships between

classifiers.

Classifiers

2
fi
/
/
/
/

J
Super

Figure 57 - The Super package

Classifier
(from Classifiers)

/inheritedMember

Classifier {subsets member} NamedElement
isAbstract : Boolean = false . (frmNamespaces)
general’|® *

Figure 58 - The elements defined in the Super package

9.18.1 Classifier (as specialized)

Description

A classifier can specify a generalization hierarchy by referencing its general classifiers.

UML 2.0: Infrastructure - Final Adopted Specification

87

Attributes

e isAbstract: Boolean If true, the Classifier does not provide a complete declaration and can typically not be
instantiated. An abstract classifier isintended to be used by other classifiers e.g. asthe tar-
get of general metarelationships or generalization relationships. Default value is false.

Associations
e general: Classifier[*] Specifies the more general classifiersin the generalization hierarchy for this Classifier.

¢ /inheritedMember: NamedElement[*]Specifies all elementsinherited by this classifier from the general classifiers. Sub-
sets Namespace:: member. Thisis derived.

Constraints

[1] Generalization hierarchies must be directed and acyclical. A classifier can not be both atransitively general and transi-
tively specific classifier of the same classifier.
not self.allParents()->includes(self)

[2] A classifier may only specialize classifiers of avalid type.

self.parents()->forAll(c | self.maySpecializeType(c))
[3] TheinheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Additional Operations
[1] The query parents() gives all of the immediate ancestors of a generalized Classifier.
Classifier::parents(): Set(Classifier);
parents = general
[2] Thequery alParents() givesal of the direct and indirect ancestors of a generalized Classifier.
Classifier::allParents(): Set(Classifier);
allParents = self.parents()->union(self.parents()->collect(p | p.allParents())
[3] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants,
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);
pre: c.allParents()->includes(self)
inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[4] Thequery hasVisibilityOf() determines whether a named element isvisiblein the classifier. By default all arevisible. Itis
only called when the argument is something owned by a parent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;
pre: self.allParents()->collect(c | c.member)->includes(n)
hasVisibilityOf =true
[5] Thequery inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It isintended
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);
inherit = inhs

[6] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of
the specified type. By default a classifier may specialize classifiers of the same or amore general type. It isintended to be
redefined by classifiers that have different specialization constraints.

88 UML 2.0: Infrastructure - Final Adopted Specification

Classifier::maySpecializeType(c : Classifier) : Boolean;
maySpecializeType = self.oclisKindOf(c.oclType)
Semantics

The specific semantics of how generalization affects each concrete subtype of Classifier varies.

An instance of a specific Classifier is aso an (indirect) instance of each of the general Classifiers. Therefore, features
specified for instances of the general classifier are implicitly specified for instances of the specific classifier. Any
constraint applying to instances of the general classifier also applies to instances of the specific classifier.

Notation
The name of an abstract Classifier is shown in italics.

Generalization is shown as a line with an hollow triangle as an arrowhead between the symbols representing the involved
classifiers. The arrowhead points to the symbol representing the general classifier. This notation is referred to as “ separate
target style”. See the example section below.

Presentation Options

Multiple Classifiers that have the same general classifier can be shown together in the “shared target style”. See the
example section below.

An abstract Classifier can be shown using the keyword { abstract} after or below the name of the Classifier.

Examples

Shape Separate target style
Polygon Ellipse Spline
Shared target style
Shape
Polygon Ellipse Spline

Figure 59 - Example class generalization hierarchy

UML 2.0: Infrastructure - Final Adopted Specification 89

9.19 TypedElements package

The TypedElements subpackage of the Abstractions package defines typed elements and their types.

Namespaces

TypedElements

Figure 60 - The TypedElements package

NamedElement
(from Namespaces)

T

TypedElement type Type

0.1

Figure 61 - The elements defined in the TypedElements package

9.19.1 Type

A type constrains the values represented by a typed element.

Description

A type serves as a constraint on the range of values represented by a typed element. Type is an abstract metaclass.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

90 UML 2.0: Infrastructure - Final Adopted Specification

Additional Operations

[1] Thequery conformsTo() givestrue for atypethat conformsto another. By default, two types do not conform to each other.
This query isintended to be redefined for specific conformance situations.

conformsTo(other: Type): Boolean;
conformsTo = false

Semantics
A type represents a set of values. A typed element that has this type is constrained to represent values within this set.

Notation

No general notation.

9.19.2 TypedElement
A typed element has a type.

Description

A typed element is an element that has a type that serves as a constraint on the range of values the element can represent.
Typed element is an abstract metaclass.

Attributes
No additional attributes.

Associations
e type Type[0..1] The type of the TypedElement.

Constraints
No additional constraints.

Semantics

Values represented by the element are constrained to be instances of the type. A typed element with no associated type
may represent values of any type.

Notation

No general notation.
9.20 Visibilities package

The Visibility subpackage of the Abstractions package provides basic constructs from which visibility semantics can be
constructed.

UML 2.0: Infrastructure - Final Adopted Specification 91

Namespaces

Visibilities

Figure 62 - The Visibilities package

NamedElement
(from Namespaces)

<<enumeration>>

NamedElement VisibilityKind
e public
visibility : VisibilityKind [0..1] private

Figure 63 - The elements defined in the Visibilities package

9.20.1 NamedElement (as specialized)

Description
NamedElement has a visibility attribute.

Attributes

e visibility: VisibilityKind [0..1] Determines the visibility of the NamedElement within different Namespaces within the
overall model.

Associations

No additional associations.

Constraints
[1] If aNamedElement isnot owned by a Namespace, it does not have avisibility.

namespace->isEmpty() implies visibility->isEmpty()

92 UML 2.0: Infrastructure - Final Adopted Specification

Semantics

The visibility attribute provides the means to constrain the usage of a named element in different namespaces within a
model. It is intended for use in conjunction with import and generalization mechanisms.

9.20.2 VisibilityKind

VisibilityKind is an enumeration type that defines literals to determine the visibility of elementsin a model.

Description
VisibilityKind is an enumeration of the following literal values:

» public
» private
Additional Operations
[1] The query bestVisibility() examines a set of VisibilityKinds, and returns public as the preferred visibility.

VisibilityKind::bestVisibility(vis: Set(VisibilityKind)) : VisibilityKind;
bestVisibility = if vis->includes(#public) then #public else #private endif

Semantics

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations and Packages packages. Detailed semantics are specified with those mechanisms. If the Visibility package
is used without those packages, these literals will have different meanings, or no meanings.

« A public element isvisible to all elements that can access the contents of the namespace that ownsiit.
« A private element is only visible inside the namespace that ownsit.

In circumstances where a named element ends up with multiple visibilities, for example by being imported multiple times,
public visibility overrides private visibility, i.e., if an element is imported twice into the same namespace, once using
public import and once using private import, it will be public.

UML 2.0: Infrastructure - Final Adopted Specification 93

10 Core:Basic

The Basic package of InfrastructureLibrary::Core provides a minimal class-based modeling language on top of which
more complex languages can be built. It is intended for reuse by the Essential layer of the Meta-Object Facility (MOF).
The metaclasses in Basic are specified using four diagrams: Types, Classes, DataTypes and Packages. Basic can be
viewed as an instance of itself. More complex versions of the Basic constructs are defined in Constructs, which is
intended for reuse by the Complete layer of MOF as well as the UML Superstructure.

Core
]
PrimitiveTypes
/ \
Abstractions
A |
Basic
*‘ ‘;(
Constructs

Figure 64 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

94 UML 2.0: Infrastructure - Final Adopted Specification

10.1 Types diagram

The Types diagram defines abstract metaclasses that deal with naming and typing of elements.

Element
(from Elements)

1

NamedE lement

name : String [0..1]

TypedElement

type

Type

Figure 65 - The classes defined in the Types diagram

10.1.1 Type

Description

A typeis a named element that is used as the type for a typed element

Attributes
No additional attributes.

Semantics

0.1

Type is the abstract class that represents the general notion of the type of atyped element and constrains the set of values

that the typed element may refer to.

Notation

As an abstract class, Basic:: Type has no notation.
10.1.2 NamedElement

Description

A named element represents elements with names.

Attributes
e name: String [0..1].

UML 2.0: Infrastructure - Final Adopted Specification

The name of the el ement.

95

Semantics

Elements with names are instances of NamedElement. The name for a named element is optional. If specified, then any valid
string, including the empty string, may be used.

Notation
As an abstract class, Basic::NamedElement has no notation.

10.1.3 TypedElement

Description
A typed element is a kind of named element that represents elements with types.

Attributes
e type Type[0..1]. The type of the element.

Semantics

Elements with types are instances of TypedElement. A typed element may optionally have no type. The type of atyped
element constrains the set of values that the typed element may refer to.

Notation

As an abstract class, Basic:: TypedElement has no notation.

96 UML 2.0: Infrastructure - Final Adopted Specification

10.2 Classes diagram

The Classes diagram defines the constructs for class-based modeling.

Type

Class

class

TypedE lement

i

MultiplicityElement
(from Multiplicities)

1

Property

ownedAttribute |isReadOnly : Boolean = false

isAbstract : Boolean = false

+ Tordered default : String[0..1] opposite
0.1 {ordered}iscomposite : Boolean = false
isDerived : Boolean = false 0.1
TypedElement MultiplicityElement TypedElement | MultiplicityElement
(from Multiplidities) (from Multiplicities)
Operation operation ownedParameter Parameter

class ownedOperation >

P 0.1 + {ordered}
0.1 {ordered} « .)

raise dE xception Type
*

superClass

10.2.1 Class

Description

*

Figure 66 - The classes defined in the Classes diagram

A class is atype that has objects as its instances.

Attributes

¢ iSAbstract : Boolean

« ownedAttribute : Property [*] The attributes owned by a class. These do not include the inherited attributes. Attributes
are represented by instances of Property.

e ownedOperation : Operation [*] The operations owned by aclass. These do not include the inherited operations.
e superClass: Clasy[*]

Semantics

Classes have attributes and operations and participate in inheritance hierarchies. Multiple inheritance is allowed. The
instances of a class are objects. When a class is abstract it cannot have any direct instances. Any direct instance of a
concrete (i.e. non-abstract) class is al'so an indirect instance of its class's superclasses. An object has a slot for each of its
class's direct and inherited attributes. An object permits the invocation of operations defined in its class and its class's

superclasses. The context of such an invocation is the invoked object.

UML 2.0: Infrastructure - Final Adopted Specification

True when aclassis abstract. The default value is false.

The immediate superclasses of a class, from which the class inherits.

Notation

The notation for Basic::Class is the same as that for Constructs:: Class with the omission of those aspects of the notation
that cannot be represented by the Basic model.

10.2.2 Operation

Description

An operation is owned by a class and may be invoked in the context of objects that are instances of that class. It is atyped
element and a multiplicity element.

Attributes
e class: Class[0..1] The class that owns the operation.
« ownedParameter : Parameter [*] { ordered, composite } The parameters to the operation.

e raisedException: Type[*] The exceptions that are declared as possible during an invocation of the operation.

Semantics

An operation belongs to a class. It is possible to invoke an operation on any object that is directly or indirectly an instance
of the class. Within such an invocation the execution context includes this object and the values of the parameters. The
type of the operation, if any, is the type of the result returned by the operation, and the multiplicity is the multiplicity of
the result. An operation can be associated with a set of types that represent possible exceptions that the operation may
raise.

Notation

The notation for Basic::Class is the same as that for Constructs:: Class with the omission of those aspects of the notation
that cannot be represented by the Basic model.

10.2.3 Parameter

Description
A parameter is a typed element that represents a parameter of an operation.

Attributes
e operation: Operation [0..1] The operation that owns the parameter.

Semantics

When an operation is invoked, an argument may be passed to it for each parameter. Each parameter has a type and a
multiplicity. Every Basic::Parameter is associated with an operation, although subclasses of Parameter elsewhere in the
UML model do not have to be associated with an operation, hence the 0..1 multiplicity.

Notation

The notation for Basic::Parameter is the same as that for Constructs::Parameter with the omission of those aspects of the
notation that cannot be represented by the Basic model.

98 UML 2.0: Infrastructure - Final Adopted Specification

10.2.4 Property

Description
A property is a typed element that represents an attribute of a class.

Attributes

e class: Class[0..1] The class that owns the property, and of which the property is an attribute.

e default: String [0..1] A string that is evaluated to give a default value for the attribute when an object of the
owning class isinstantiated.

« isComposite : Boolean If isComposite istrue, the object containing the attribute is a container for the object or
value contained in the attribute. The default valueis false.

e isDerived : Boolean If isDerived is true, the value of the attribute is derived from information elsewhere. The
default value isfalse.

¢ isReadOnly : Boolean If isReadOnly istrue, the attribute may not be written to after initialization. The default
valueisfalse

e opposite : Property [0..1] Two attributes attr1 and attr2 of two objects 01 and 02 (which may be the same object)
may be paired with each other so that ol.attr1 refersto o2 if and only if 02.attr2 refersto
ol. In such acase attrl is the opposite of attr2 and attr2 is the opposite of attrl.

Semantics

A property represents an attribute of a class. A property has a type and a multiplicity. When a property is paired with an
opposite they represent two mutually constrained attributes. The semantics of two properties that are mutual opposites are
the same as for bidirectionally navigable associations in Constructs, with the exception that the association has no explicit
links as instances, and has no name.

Notation

When a Basic::Property has no opposite, its notation is the same for Constructs:: Property when used as an attribute with
the omission of those aspects of the notation that cannot be represented by the Basic model. Normally if the type of the
property is a data type the attribute is shown within the attribute compartment of the class box, and if the type of the
property is a class it is shown using the association-like arrow notation.

When a property has an opposite, the pair of attributes are shown using the same notation as for a Constructs: : Association
with two navigable ends, with the omission of those aspects of the notation that cannot be represented by the Basic model.

UML 2.0: Infrastructure - Final Adopted Specification 99

10.3 DataTypes diagram

The DataTypes diagram defines the metaclasses that define data types.

Type

]

DataType

NamedElement

PrimitiveType

Enumeration

enumeration ownedLiteral| EnumerationLiteral

>
0.1 {ordered} «

Figure 67 - The classes defined in the DataTypes diagram

10.3.1 DataType

Description

DataType is an abstract class that acts as a common superclass for different kinds of data types.

Attributes
No additional attributes.

Semantics

DataType is the abstract class that represents the general notion of being a data type, i.e. a type whose instances are
identified only by their value.

Notation

As an abstract class, Basic::DataType has no notation.

10.3.2 Enumeration

Description

An enumeration defines a set of literals that can be used as its values.

Attributes
ownedL iteral: EnumerationLiteral [*] { ordered, composite} The ordered collection of literals for the enumeration.

100

UML 2.0: Infrastructure - Final Adopted Specification

Semantics

An enumeration defines a finite ordered set of values, such as {red, green, blue}.

The values denoted by typed elements whose type is an enumeration must be taken from this set.

Notation

The notation for Basic::Enumeration is the same as that for Constructs:: Enumeration with the omission of those aspects
of the notation that cannot be represented by the Basic model.

10.3.3 EnumerationLiteral

Description
An enumeration literal is a value of an enumeration.

Attributes
e enumeration: Enumeration [0..1] The enumeration that this literal belongs to.

Semantics
See Enumeration.

Notation
See Enumeration.

10.3.4 PrimitiveType

Description

A primitive type is a data type implemented by the underlying infrastructure and made available for modeling.

Attributes
No additional attributes.

Semantics

Primitive types used in the Basic model itself are Integer, Boolean, String and UnlimitedNatural. Their specific semantics
is given by the tooling context, or in extensions of the metamodel (e.g. OCL).

Notation

The notation for a primitive type is implementation-dependent. Notation for the primitive types used in the UML
metamodel is given in the Core:: PrimitiveTypes chapter.

UML 2.0: Infrastructure - Final Adopted Specification 101

10.4 Packages diagram

The Packages diagram defines the Basic constructs related to Packages and their contents.

NamedElement

Package package ownedType Type
0.1 *

nestingPackage

0.1

nestedPackage

*

Figure 68 - The classes defined in the Packages diagram
10.4.1 Package

Description
A package is a container for types and other packages.

Attributes
* nestedPackage : Package [*] { composite} The set of contained packages.

* nestingPackage : Package [0..1] The containing package.
* ownedType: Type[*] { composite} The set of contained types.

Semantics

Packages provide a way of grouping types and packages together, which can be useful for understanding and managing a
model. A package cannot contain itself.

Notation

Containment of packages and types in packages uses the same notation as for Constructs: : Packages with the omission of
those aspects of the notation that cannot be represented by the Basic model.

10.4.2 Type (additional properties)

Description
A type can be contained in a package.

102 UML 2.0: Infrastructure - Final Adopted Specification

Attributes
e package: Package[0..1] The containing package.

Semantics

No additional semantics.

Notation

Containment of types in packages uses the same notation as for Constructs::Packages with the omission of those aspects
of the notation that cannot be represented by the Basic model.

UML 2.0: Infrastructure - Final Adopted Specification 103

11 Core::Constructs

This chapter describes the Constructs package of InfrastructureLibrary::Core. The Constructs package is intended to be

reused by the Meta-Object Facility.

Core
PrimitiveTypes
7 N
\\
] /
\
Abstractions
\
A : :
| \ \
i
|
! Basic
|
i
|
i
|
i
|
!
Constructs

Figure 69 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

104

UML 2.0: Infrastructure - Final Adopted Specification

The Constructs package is specified by a number of diagrams each of which is described in a separate section below. The
constructs package is dependent on several other other packages, notably Basic and various packages from Abstractions,

as depicted in Figure 70.

— Comments
Classifiers
] N A
Changeabilities / -
\ / Constraints
%\ <<impo rt>> . / i
BehavioralFeatures| <<|m/por1>> J/
<<import>> \ / <<import>> Owneships
\
| N . v /
Basic <<impart>> \ / / P
AN \ / <<import>>
N2 AN e \—
}(”@mp> N \ \ / / s Expressions
~
Super ~ \ \ / / e >
~_ : —
. gmpﬁ1‘t>>
[S<<imporz> . Constructs | — —
[— —_—
:I— <«<impor>— P N «wimpor>> Multiplicities
Visibilities K. "<<import>> _~ / \ N
~ /N ~
/ 0/ <<|mpe:{>>
— v <<|r77 n><><impclrt>><<lmp0n\» \A*\—
TypedElements \ Namespaces
% \
| v
StructuralFeatures ‘
Relationships Redefinitions

Figure 70 - The Constructs package depends on several other packages

11.1 Root diagram

The Root diagram in the Constructs package specifies the Element, Relationship, DirectedRelationship, and Comment

constructs.

UML 2.0: Infrastructure - Final Adopted Specification

105

Element
(from Comments)

1

Ele ment
ownedComment Comment
0.1 {subsets ownedElement} «
lowner
0..1 union}
*
lownedElement
{union}
Relationship Comment
(fromRelations hips) (from Comments)
Relationship Element annotatedElement Comment

IrelatedElement

{union} 1. * *

DirectedRelationship
(fromR elaionships)

Z} /source

Directe dRelationship

{union, 1.4
subsets relatedEle ment}

/target

{union, 1.
subsets relatedElement}

Figure 71 - The Root diagram of the Constructs package

11.1.1 Comment (as specialized)

Description

Constructs::Comment reuses the definition of Comment from Abstractions:: Comments. It adds a specialization to
Constructs: : Element.

Attributes
No additional attributes.

106 UML 2.0: Infrastructure - Final Adopted Specification

Associations
e annotatedElement: Element[*] Redefines the corresponding property in Abstractions.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.1.2 DirectedRelationship (as specialized)

Description

Constructs::DirectedRel ationship reuses the definition of DirectedRelationship from Abstractions::Relationships. It adds a
specialization to Constructs:: Relationship.

Attributes
No additional attributes.

Associations

e /source: Element[1..*] Redefines the corresponding property in Abstractions. Subsets Relationship::relat-
edElement. Thisis aderived union.

e [target: Element[1..*] Redefines the corresponding property in Abstractions. Subsets Relationship::relat-
edElement. Thisis aderived union.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.1.3 Element (as specialized)

Description

Constructs::Element reuses the definition of Element from Abstractions; : Comments.

Attributes
No additional attributes.

UML 2.0: Infrastructure - Final Adopted Specification 107

Associations
¢ /ownedComment: Comment[*] Redefines the corresponding property in Abstractions. Subsets Element: : ownedElement.

* /ownedElement: Element[*] Redefines the corresponding property in Abstractions. Thisis aderived union.

e /owner: Element[0..1] Redefines the corresponding property in Abstractions. Thisis a derived union.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.1.4 Relationship (as specialized)

Description

Constructs::Relationship reuses the definition of Relationship from Abstractions:: Relationships. It adds a specialization to
Constructs::Element.

Attributes
No additional attributes.

Associations
e [relatedElement: Element[1..*] Redefines the corresponding property in Abstractions. Thisis aderived union.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.2 Expressions diagram

The Expressions diagram in the Constructs package specifies the VValueSpecification, Expression and OpaqueExpression
constructs.

108 UML 2.0: Infrastructure - Final Adopted Specification

TypedElement

ValueSpecification
(from Expressions)

7

ValueSpecification operand

* {ordered, subsets ownedElement}

Expression

OpaqueExpression
paq P (fom Expressions

(from Expressions)

T

OpagueEx pression

expression

Expression @

0..1 {subsetsowner}

Figure 72 - The Expressions diagram of the Constructs package

11.2.1 Expression (as specialized)

Description

Constructs::Expression reuses the definition of Expression from Abstractions:: Expressions. It adds a specialization to

Constructs: : ValueSpecification.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

No additional semantics.

UML 2.0: Infrastructure - Final Adopted Specification

109

Notation
No additional notation.

11.2.2 OpaqueExpression (as specialized)

Description

Constructs::OpaqueExpression reuses the definition of OpaqueExpression from Abstractions::Expressions. It adds a
specialization to Constructs:;: ValueSpecification.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.2.3 ValueSpecification (as specialized)

Description

Constructs::ValueSpecification reuses the definition of ValueSpecification from Abstractions:: Expressions. It adds a
specialization to Constructs:: TypedElement.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

No additional semantics.

110 UML 2.0: Infrastructure - Final Adopted Specification

Notation
No additional notation.

11.3 Classes diagram

The Classes diagram of the Constructs package specifies the Association, Class, and Property constructs, and adds

features to the Classifier and Operation constructs.

StructuralFeature Pro perty
(from Basic)
Classifier Z} Z}

lattribute Property

classifier
isReadOnly : Boolean = false

isDerivedUnion : Boolean = false

0..1 {subsetsredefinitionContext} {subsets feature, *

union}
Relationship
association memberEnd
Association
0.1 {ordered, 2..*

isDerived : Boolean = false
subsets member}

redefinedProperty

* {subsetsredefinedElement}

Class
(from Basic)

sub ets featuingClassifier}

le

+owningAssociation ownedEnd

0.1 {ordered, *
{subsets association, sub sets memberEnd,
subsets namespace, subsets feature,

subsets ownedMember]

Class

class

isAbstract : Boolean = false

{subsets relatedElemen

dT:
nevPe I Type
1.

i

ownedAttribute

sub

class

0.1 {subsets namespace,

<ts featuringClassifier,
subets dassifier}

ownedOperation

{ordered, *
subsets attribute,
subsets ownedMe mbe it

subsettedProperty

*

lopposite

0.1 {subsets rede finition Context,

subsets namespace,

{ordered, *
subets feature,

Operation

subsets featuringClassifier} subsets ownedMember}

superClass

» {rdefines general}

Figure 73 - The Classes diagram of the Constructs package

UML 2.0: Infrastructure - Final Adopted Specification

0.1

111

11.3.1 Association

An association describes a set of tuples whose values refers to typed instances. An instance of an association is called a
link.

Description

An association specifies a semantic relationship that can occur between typed instances. It has at least two ends
represented by properties, each of which is connected to the type of the end. More than one end of an association may
have the same type.

When a property is owned by an association it represents a non-navigable end of the association. In this case the property
does not appear in the namespace of any of the associated classifiers. When a property at an end of an association is
owned by one of the associated classifiers it represents a navigable end of the association. In this case the property is also
an attribute of the associated classifier. Only binary associations may have navigable ends.

Attributes

e isDerived: Boolean Specifies whether the association is derived from other model elements such as other asso-
ciations or constraints. The default value isfalse.

Associations

« memberEnd : Property [2..*] Each end represents participation of instances of the classifier connected to the end in
links of the association. Thisis an ordered association. Subsets Namespace: : member.

e ownedEnd : Property [*] The non-navigable ends that are owned by the association itself. Thisis an ordered associ-
ation. Subsets Association::member End, Classifier::feature, and Namespace: : owned-
Member.

e [endType: Type[l..*] References the classifiers that are used as types of the ends of the association.

Constraints
[1] An association specializing another association has the same number of ends as the other association.

self.parents()->forAll(p | p.memberEnd.size() = self.memberEnd.size())

[2] When an association specializes another association, every end of the specific association corresponds to an end of the
general association, and the specific end reaches the same type or a subtype of the more general end.

[3] endTypeisderived from the types of the member ends.
self.endType = self. memberEnd->collect(e | e.type)

Semantics

An association declares that there can be links between instances of the associated types. A link is a tuple with one value
for each end of the association, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible to have several links associating the same
set of instances. In such a case, links carry an additional identifier apart from their end values.

When one or more ends of the association are ordered, links carry ordering information in addition to their end values.

112 UML 2.0: Infrastructure - Final Adopted Specification

For an association with N ends, choose any N-1 ends and associate specific instances with those ends. Then the collection
of links of the association that refer to these specific instances will identify a collection of instances at the other end. The
multiplicity of the association end constrains the size of this collection. If the end is marked as ordered, this collection
will be ordered. If the end is marked as unique, this collection is a set; otherwise it allows duplicate elements.

An end of one association may be marked as a subset of an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the subsetting association conforms to a corresponding type
connected by the subsetted association. In this case, given a set of specific instances for the other ends of both

associations, the collection denoted by the subsetting end is fully included in the collection denoted by the subsetted end.

An end of one association may be marked as redefining an end of another in circumstances where (a) both have the same
number of ends, and (b) each of the set of types connected by the redefing association conforms to a corresponding type
connected by the redefined association. In this case, given a set of specific instances for the other ends of both
associations, the collections denoted by the redefining and redefined ends are the same.

Assaciations may be specialized. The existence of alink of a specializing association implies the existence of a link
relating the same set of instances in a specialized association.

The semantics of navigable association ends are the same as for attributes.

For n-ary associations, the lower multiplicity of an end is typically 0. If the lower multiplicity for an end of an n-ary
association of 1 (or more) implies that one link (or more) must exist for every possible combination of values for the other
ends.

An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at atime. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions define transitive asymmetric relationships—their links form a directed, acyclic graph. Composition is
represented by the isComposite attribute on the part end of the association being set to true.

Semantic Variation Points

The order and way in which part instances in a composite are created is not defined.
The logical relationship between the derivation of an association and the derivation of its ends is not defined.

The interaction of association specialization with association end redefinition and subsetting is not defined.

Notation

Any association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each association end
connecting the diamond to the classifier that is the end’s type. An association with more than two ends can only be drawn
this way.

A binary assocation is normally drawn as a solid line connecting two classifiers, or a solid line connecting a single
classifier to itself (the two ends are distinct). A line may consist of one or more connected segments. The individual
segments of the line itself have no semantic significance, but they may be graphically meaningful to atool in dragging or
resizing an association symbol.

An association symbol may be adorned as follows:
» Theassociation’s name can be shown as a name string near the association symbol, but not near enough to an end to be

confused with the end’s name.

UML 2.0: Infrastructure - Final Adopted Specification 113

» A dlash appearing in front of the name of an association, or in place of the name if no name is shown, marks the associ-
ation as being derived.

« A property string may be placed near the association symbol, but far enough from any end to not be confused with a
property string on an end.

» Onabinary association drawn as a solid line, asolid triangular arrowhead next to or in place of the name of the associ-
ation and pointing along the line in the direction of one end indicates that end to be the last in the order of the ends of
the association. The arrow indicates that the association is to be read as associating the end away from the direction of
the arrow with the end to which the arrow is pointing (see Figure 74).

» Generalizations between associations can be shown using a generalization arrow between the association symbols.

An association end is the connection between the line depicting an association and the icon (often a box) depicting the
connected classifier. A hame string may be placed near the end of the line to show the name of the association end. The
name is optional and suppressible.

Various other notations can be placed near the end of the line as follows:
« A multiplicity.

« A property string enclosed in curly braces. The following property strings can be applied to an association end:
{'subsets <property-name>} to show that the end is a subset of the property called <property-name>.
{redefines <end-name>} to show that the end redefines the one called <end-name>.

{union} to show that the end is derived by being the union of its subsets.

{ordered} to show that the end represents an ordered set.

{bag} to show that the end represents a collection that permits the same element to appear more than once.
{'sequence} or {seq} to show that the end represents a sequence (an ordered bag).

if the end is navigable, any property strings that apply to an attribute.

Note that by default an association end represents a set.

A stick arrowhead on the end of an association indicates the end is navigable. A small x on the end of an association
indicates the end is not navigable. A visibility symbol can be added as an adornment on a navigable end to show the end’'s
visibility as an attribute of the featuring classifier.

If the association end is derived, this may be shown by putting a slash in front of the name, or in place of the name if no
name is shown.

The notation for an attribute can be applied to a navigable assocation end name.

A composite aggregation is shown using the same notation as a binary association, but with a solid, filled diamond at the
aggregate end.

Presentation Options

When two lines cross, the crossing may optionally be shown with a small semicircular jog to indicate that the lines do not
intersect (as in electrical circuit diagrams).

Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress
some of the arrows and crosses and just show exceptional situations:

« Show all arrows and xs. Navigation and its absence are made completely explicit.

» Suppressall arrows and xs. No inference can be drawn about navigation. Thisis similar to any situation in which infor-
mation is suppressed from aview.

114 UML 2.0: Infrastructure - Final Adopted Specification

» Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-
way navigability. In this case, the two-way navigability cannot be distinguished from situations where there is no nav-
igation at all; however, the latter case occursrarely in practice.

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging the aggregation ends
into a single segment. Any adornments on that single segment apply to all of the aggregation ends.

Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and curved segments. The
choice of a particular set of line styles is a user choice.

Generalizations between associations are best drawn using a different color or line width than what is used for the
associations.

Examples

Figure 74 shows a binary association from Player to Year named PlayedinYear. The solid triangle indicates the order of

* « PlayedinYear

Year

year

season | *

Player

Team
team goalie

Figure 74 - Binary and ternary associations

reading: Player PlayedinYear Year. The figure further shows a ternary association between Team, Year, and Player with
ends named team, season, and goalie respectively.

The following example shows association ends with various adornments.

a b
A B
0..1 *
{ordered}
d
C D
1 0..1

{subsets b}

Figure 75 - Association ends with various adornments

UML 2.0: Infrastructure - Final Adopted Specification 115

The following adornments are shown on the four association ends in Figure 75.

« Multiplicities0..1 on a, * on b, 1 on the unnamed end, and 0..1 on d.

Names a, b, and d on three of the ends.

Specification of ordering on b.

» Subsetting on d. For an instance of class C, the collection d is asubset of the collection b. Thisis equivalent to the OCL

constraint:

context C inv: b->includesAll(d)

The following examples show notation for navigable ends.

a b
A B
1.4 2.5
C d
C D
1.4 2.5
e f
E F
1.4 2.5
g h
G H
1.4 2.5
i j
I J
1.4 2.5

Figure 76 - Examples of navigable ends

In Figure 76:

116

» Thetop pair AB shows a binary association with two navigable ends.

The second pair CD shows a binary association with two non-navigable ends.

The third pair EF shows a binary association with unspecified navigability.

The fourth pair GH shows a binary association with one end navigable and the other non-navigable.

The fifth pair 1J shows a binary association with one end navigable and the other having unspecified navigability.

UML 2.0: Infrastructure - Final Adopted Specification

Figure 77 shows a navigable end using attribute notation. A navigable end is an attribute, so it can be shown using
attribute notation. Normally this notation would be used in conjunction with the line-arrow notation to make it perfectly
clear that the navigable ends are also attributes.

b: B[]

Figure 77 - Example of navigable end shown with attribute notation

Figure 78 shows the notation for a derived union. The attribute A::b is derived by being the strict union of al of the

/b {union}
a
A B
0..1 0..*
a bl
Al Bl
0..1 0..*

{subsets b}

Figure 78 - Example of a derived union.

attributes that subset it. In this case there is just one of these, Al::b1. So for an instance of the class A1, bl is a subset of
b, and b is derived from bl.

Figure 79 shows the black diamond notation for composite aggregation.

1 1
1
+scrollbar
2 +title 1 +body 1
Slider
Header Panel

Figure 79 - Composite aggregation is depicted as a black diamond

UML 2.0: Infrastructure - Final Adopted Specification 117

11.3.2 Class (as specialized)

A class describes a set of objects that share the same specifications of features, constraints, and semantics.
Constructs::Class merges the definition of Basic::Class with Constructs::Classifier.

Description

Classisakind of classifier whose features are attributes and operations. Attributes of a class are represented by instances
of Property that are owned by the class. Some of these attributes may represent the navigable ends of binary associations.

Attributes
e isAbstract : Boolean This redefines the corresponding attributes in Basic: : Class and Abstractions:: Classifier.

Associations
« ownedAttribute : Property [*] The attributes (i.e. the properties) owned by the class. Thisis an ordered association. Sub-
sets Classifier:: attribute and Namespace: : ownedMember.

* ownedOperation : Operation [*]The operations owned by the class. Thisis an ordered association. Subsets Classi-
fier::feature and Namespace: : ownedMember.

e superClass: Class[*] This gives the superclasses of a class. It redefines Classifier::general.

Constraints
No additional constraints.

Additional Operations
[1] Theinherit operation is overridden to exclude redefined properties.

Class::inherit(inhs: Set(NamedElement)) : Set(NamedElement);
inherit = inhs->excluding(inh |
ownedMember->select(oclisKindOf(RedefinableElement))->select(redefinedElement->includes(inh)))

Semantics

The purpose of a class is to specify a classification of objects and to specify the features that characterize the structure
and behavior of those objects.

Objects of a class must contain values for each attribute that is a member of that class, in accordance with the
characteristics of the attribute, for example its type and multiplicity.

When an object isinstantiated in a class, for every attribute of the class that has a specified default, if an initial value of
the attribute is not specified explicitly for the instantiation, then the default value specification is evaluated to set the
initial value of the attribute for the object.

Operations of a class can be invoked on an object, given a particular set of substitutions for the parameters of the
operation. An operation invocation may cause changes to the values of the attributes of that object. It may also return a
value as aresult, where a result type for the operation has been defined. Operation invocations may also cause changes in
value to the attributes of other objects that can be navigated to, directly or indirectly, from the object on which the
operation is invoked, to its output parameters, to objects navigable from its parameters, or to other objects in the scope of
the operation’s execution. Operation invocations may also cause the creation and deletion of objects.

118 UML 2.0: Infrastructure - Final Adopted Specification

Notation

A class is shown using the classifier symbol. As class is the most widely used classifier, the word “class’ need not be

shown in guillemets above the name. A classifier symbol without a metaclass shown in guillemets indicates a class.

Presentation Options

A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom

compartment holds a list of operations.

Attributes or operations may be presented grouped by visibility. A visibility keyword or symbol can then be given once
for multiple features with the same visibility.

Additional compartments may be supplied to show other details, such as constraints, or to divide features.

Style Guidelines

Center class name in boldface.

Capitalize the first letter of class names (if the character set supports uppercase).

Left justify attributes and operations in plain face.

Begin attribute and operation names with alowercase | etter.

Put the class name initalicsif the classis abstract.

Show full attributes and operations when needed and suppress them in other contexts or when merely referring to a

class.

Examples

Window

Window

Window

+ size: Area = (100, 100)

visibility: Boolean = true
+ defaultSize: Rectangle

- XWin: XWindow

size: Area
visibility: Boolean

display()
hide()
- attachX(xWin: XWindow)

display()
hide()

Figure 80 -Class notation: details suppressed, analysis-level details, implementation-level details

UML 2.0: Infrastructure - Final Adopted Specification

119

Window

public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
private
XWin: XWindow
public
display()
hide()
private
attachX(xWin: XWindow)

Figure 81 - Class notation: attributes and operations grouped according to visibility.

11.3.3 Classifier (additional properties)

Description

Constructs::Classifier is defined in the Classifiers diagram. A Classifier is a Type. The Classes diagram adds the
association between Classifier and Property that represents the attributes of the classifier.

Attributes
No additional attributes.

Associations

e attribute: Property [*] Refersto all of the Properties that are direct (i.e. not inherited or imported) attributes of
the classifier. Subsets Classifier::feature and is a derived union.

Constraints
No additional constraints.

Semantics
All instances of a classifier have values corresponding to the classifier’s attributes.

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

An attribute can be shown as a text string that can be parsed into the various properties of an attribute. The basic syntax
is (with optional parts shown in braces):
[visibility] [/] name[: type] [multiplicity] [= default] [{ property-string }]

In the following bullets, each of these parts is described:

- Vvisihility isavisibility symbol such as + or -. See Section 9.20.2, “VisibilityKind,” on page 93.

120 UML 2.0: Infrastructure - Final Adopted Specification

« [/ means the attribute is derived.
« nameisthe name of the attribute.
 typeidentifies aclassifier that is the attribute's type.

« multiplicity shows the attribute’s multiplicity in square brackets. The term may be omitted when a multiplicity of 1
(exactly one) isto be assumed. See Section 9.11.1, “MultiplicityElement,” on page 71

« default isan expression for the default value or values of the attribute.

« property-string indicates property values that apply to the attribute. The property string is optional (the braces are omit-
ted if no properties are specified).

The following property strings can be applied to an attribute: {readOnly}, {union}, {subsets <property-name>},
{redefines <property-name>}, {ordered}, { bag}, {seq} or {sequence}, and { composite}.

An attribute with the same name as an attribute that would have been inherited is interpreted to be a redefinition, without
the need for a { redefines <x>} property string. Note that a redefined attribute is not inherited into a namespace where it
is redefined, so its name can be reused in the featuring classifier, either for the redefining attribute, or alternately for some
other attribute.

Presentation Options

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values
in the model.

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

Attribute names typically begin with a lowercase letter. Multiword names are often formed by concatenating the words
and using lowercase for all letter except for upcasing the first letter of each word but the first.

UML 2.0: Infrastructure - Final Adopted Specification 121

Examples

ClassA

name: String

shape: Rectangle

+ size: Integer [0..1]

[area: Integer {readOnly}
height: Integer=5

width: Integer

ClassB

id {redefines name}
shape: Square
height =7

/ width

Figure 82 - Examples of attributes

The attributes in Figure 82 are explained below.

122

ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassA:
ClassB::
ClassB::
ClassB:

‘name is an attribute with type String.

:shapeis an attribute with type Rectangle.

:sizeisapublic attribute with type Integer with multiplicity 0..1.
:areais aderived attribute with type Integer. It is marked as read-only.
:height is an attribute of type Integer with a default initial value of 5.

:width is an attribute of type Integer

id is an attribute that redefines ClassA::name.

shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

:height is an attribute that redefines ClassA::height. It has adefault of 7 for ClassB instances which overrides

the ClassA default of 5.

ClassB:

:width is a derived attribute that redefines ClassA::width, which is not derived.

UML 2.0: Infrastructure - Final Adopted Specification

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure
83.

] size
Window Area

Figure 83 - Association-like notation for attribute
11.3.4 Operation (additional properties)

Description

Constructs::Operation is defined in the Operations diagram. The Classes diagram adds the association between Operation
and Class that represents the ownership of the operation by a class.

Attributes
No additional attributes.

Associations

¢ class: Class[0..1] Redefines the corresponding association in Basic. Subsets Redefinabl eElement:: redefini-
tionContext, NamedEl ement: : namespace and Feature:: featuringClassifier.

Constraints
No additional constraints.

Semantics

An operation may be owned by and in the namespace of a class that provides the context for its possible redefinition.

11.3.5 Property (as specialized)

A property is a structural feature of a classifier that characterizes instances of the classifier. Constructs::Property merges
the definition of Basic::Property with Constructs:: Structural Feature.

When a property is owned by a class it represents an attribute. In this case it relates an instance of the class to a value or
set of values of the type of the attribute.

When a property is owned by an association it represents a non-navigable end of the association. In this case the type of
the property is the type of the end of the association.

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. When a property is an association end, the value or values are related to the instance or instances at
the other end(s) of the association (see semantics of Association).

Property is indirectly a subclass of Constructs:: TypedElement. The range of valid values represented by the property can
be controlled by setting the property’s type.

UML 2.0: Infrastructure - Final Adopted Specification 123

Attributes
e isDerivedUnion : Boolean Specifies whether the property is derived as the union of al of the properties that are con-
strained to subset it. The default valueisfalse.

¢ isReadOnly : Boolean This redefines the corresponding attribute in Basic: : Property and Abstractions:: Sructur-
alFeature. The default valueisfalse.

Associations
e association: Association [0..1] References the association of which this property isamember, if any.

e owningAssociation: Association [0..1]References the owning association of this property, if any. Subsets Property::asso-
ciation, NamedElement: : namespace, and Feature: : featuringClassifier.

« redefinedProperty : Property [*]References the properties that are redefined by this property. Subsets Redefinabl eEl e-
ment: : redefinedElement.

« subsettedProperty : Property [*]References the properties of which this property is constrained to be a subset.

« | opposite: Property [0..1] In the case where the property is one navigable end of a binary association with both ends
navigable, this gives the other end.

Constraints

[1] If thisproperty isowned by aclass, associated with a binary association, and the other end of the association is aso owned
by a class, then opposite gives the other end.

opposite =
if owningAssociation->notEmpty() and association.memberEnd->size() = 2 then
let otherEnd = (association.memberEnd - self)->any() in
if otherEnd.owningAssociation->notEmpty() then otherEnd else Set{} endif
else Set {}
endif

[2] A specialization of a composite aggregation is also a composite aggregation.

[3] A multiplicity of acomposite aggregation must not have an upper bound greater than 1.

isComposite implies (upperBound()->isEmpty() or upperBound() <= 1)
[4] Subsetting may only occur when the context of the subsetting property conforms to the context of the subsetted property.

subsettedProperty->notEmpty() implies
(subsettingContext()->notEmpty() and subsettingContext()->forAll (sc |
subsettedProperty->forAll(sp |
sp.subsettingContext()->exists(c | sc.conformsTo(c)))))

[5] A navigable property (onethat is owned by a class) can only be redefined or subsetted by a navigable property.
(subsettedProperty->exists(sp | sp.class->notEmpty())
implies class->notEmpty())
and
(redefinedProperty->exists(rp | rp.class->notEmpty())
implies class->notEmpty())

[6] A subsetting property may strengthen the type of the subsetted property, and its upper bound may be less.

subsettedProperty->forAll(sp |
type.conformsTo(sp.type) and
((upperBound()->notEmpty() and sp.upperBound()->notEmpty()) implies
upperBound()<=sp.upperBound()))

[7] Only anavigable property can be marked as readOnly.

124 UML 2.0: Infrastructure - Final Adopted Specification

isReadOnly implies class->notEmpty()
[8] A derived unionis derived.

isDerivedUnion implies isDerived

[9] A derived unionisread only
isDerivedUnion implies isReadOnly

Additional Operations

[1] The query isConsistentWith() specifies, for any two Propertiesin a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining property is consistent with aredefined property if the type of the
redefining property conforms to the type of the redefined property, the multiplicity of the redefining property (if.speci-
fied) is contained in the multiplicity of the redefined property, and the redefining property is derived if the redefined prop-
erty isderived.

Property::isConsistentWith(redefinee : RedefinableElement) : Boolean
pre: redefinee.isRedefinitionContextValid(self)
isConsistentWith = (redefinee.ocllsKindOf(Property) and
let prop: Property = redefinee.oclAsType(Property) in
type.conformsTo(prop.type) and
(lowerBound()->notEmpty and prop.lowerBound()->notEmpty() implies
lowerBound() >= prop.lowerBound()) and
(upperBound()->notEmpty and prop.upperBound()->notEmpty() implies
upperBound() <= prop.upperBound()) and
(prop.isDerived implies isDerived)

[2] The query subsettingContext() gives the context for subsetting a property. It consists, in the case of an attribute, of the
corresponding classifier, and in the case of an association end, all of the classifiers at the other ends.

Property::subsettingContext() : Set(Type)

subsettingContext =
if association->notEmpty()
then association.endType-type
else if classifier->notEmpty() then Set{classifier} else Set{} endif
endif

Semantics

When a property is owned by a class or data type via ownedAttribute, then it represents an attribute of the class or data
type. When owned by an association via ownedEnd, it represents a non-navigable end of the association. In either case,

when instantiated a property represents a value or collection of values associated with an instance of one (or in the case
of aternary or higher-order association, more than one) type. This set of typesis called the context for the property; in the
case of an attribute the context is the owning classifier, and in the case of an association end the context is the set of types
at the other end or ends of the association.

The value or collection of values instantiated for a property in an instance of its context conforms to the property’s type.
Property inherits from MultiplicityElement and thus allows multiplicity bounds to be specified. These bounds constrain
the size of the collection. Typically and by default the maximum bound is 1.

UML 2.0: Infrastructure - Final Adopted Specification 125

Property also inherits the isUnique and isOrdered meta-attributes. When isUnique is true (the default) the collection of
values may not contain duplicates. When isOrdered is true (false being the default) the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

Table 1 - Collection types for properties

isOrdered isUnique Collection type
fase true Set

true true OrderedSet

false false Bag

true false Sequence

If there is a default specified for a property, this default is evaluated when an instance of the property is created in the
absence of a specific setting for the property or a constraint in the model that requires the property to have a specific
value. The evaluated default then becomes the initial value (or values) of the property.

If a property is derived, then its value or values can be computed from other information. Actions involving a derived
property behave the same as for a nonderived property. Derived properties are often specified to be read-only (i.e. clients
cannot directly change values). But where a derived property is changeable, an implementation is expected to
appropriately change the source information of the derivation. The derivation for a derived property may be specified by
a constraint.

The name and visibility of a property are not required to match those of any property it redefines.

A derived property can redefine one which is not derived. An implementation must ensure that the constraints implied by
the derivation are maintained if the property is updated.

If a property has a specified default, and the property redefines another property with a specified default, then the
redefining property’s default is used in place of the more general default from the redefined property.

If a navigable property (attribute) is marked as readOnly then it cannot be updated, once it has been assigned an initial
value.

A property may be marked as a subset of another, as long as every element in the context of the subsetting property
conforms to the corresponding element in the context of the subsetted property. In this case, the collection associated with
an instance of the subsetting property must be included in (or the same as) the collection associated with the
corresponding instance of the subsetted property.

A property may be marked as being a derived union. This means that the collection of values denoted by the property in
some context is derived by being the strict union of all of the values denoted, in the same context, by properties defined
to subset it. If the property has a multiplicity upper bound of 1, then this means that the values of all the subsets must be
null or the same.

Notation

Notation for properties is defined separately for their use as attributes and association ends. Examples of subsetting and
derived union are shown for associations.

126 UML 2.0: Infrastructure - Final Adopted Specification

11.3.6 Classifiers diagram

The Classifiers diagram of the Constructs package specifies the concepts Classifier, TypedElement, MultiplicityElement,
RedefinableElement, Feature and Structural Feature. In each case these concepts are extended and redefined from their
corresponding definitions in Basic and Abstractions.

al § Redefinabl eElement | NamedElement
assifer (ronRecnsos
(fromSuper)
Classifier Ifredefi nition Context RedefinableElement
. Iredefined Element
+ {union}

» {union}

Feature
+general (fromClassifiers)

¢

i i Ife aturg A
/featuringClassifier Feature Element MultiplicityElement
(fromMuliplicities)
1.+ {union} {union,

subsets member} A
TypedElement TypedElement

Type Type Structural Feature TypedElement
(fromBasic) (fromTypedElements) (fromBasic) | (fromTypedElenents) (fromC hangeabilties)

type
TypedElement P Type Structural Feature

0.1

MultiplicityElenent

NamedElement NamedElement

Figure 84 - The Classifiers diagram of the Constructs package

11.3.7 Classifier (as specialized)

Description

Constructs::Classifier merges the definitions of Classifier from Basic and Abstractions. It adds specializations from
Constructs: : Namespace and Constructs:: Type.

Attributes
No additional attributes.

Associations

e feature: Feature[*] Redefines the corresponding association in Abstractions. Subsets Namespace: : member
and is aderived union. Note that there may be members of the Classifier that are of the
type Feature but are not included in this association, e.g. inherited features.

Constraints
No additional constraints.

UML 2.0: Infrastructure - Final Adopted Specification 127

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.3.8 Feature (as specialized)

Description

Constructs::Feature reuses the definition of Feature from Abstractions. It adds a specialization from
Constructs: : Redefinabl eElement.

Attributes
No additional attributes.

Associations
« featuringClassifier : Classifier [1..*]Redefines the corresponding association in Abstractions. Thisis aderived union.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
As defined in Abstractions.

11.3.9 MultiplicityElement (as specialized)

Description

Constructs::MultiplicityElement reuses the definition of MultiplicityElement from Abstractions. It adds a specialization
from Constructs::Element.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

128 UML 2.0: Infrastructure - Final Adopted Specification

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.3.10RedefinableElement (as specialized)

Description

Constructs::Redefineabl eElement reuses the definition of RedefineableElement from Abstractions. It adds a specialization
from Constructs:: NamedElement.

Attributes
No additional attributes.

Associations
e [redefinedElement: RedefinableElement[*]This derived union is redefined from Abstractions

e [redefinitionContext: Classifier[*] This derived union is redefined from Abstractions.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
As defined in Abstractions.

11.3.11StructuralFeature (as specialized)

Description

Constructs:: Structural Feature reuses the definition of SructuralFeature from Abstractions. It adds specializations from
Constructs: : Feature, Constructs:: TypedElement, and Constructs;: MultiplicityElement.

By specializing MultiplicityElement, it supports a multiplicity that specifies valid cardinalities for the set of values
associated with an instantiation of the structural feature.

Attributes
No additional attributes.

Associations

No additional associations.

UML 2.0: Infrastructure - Final Adopted Specification 129

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.3.12Type (as specialized)

Description

Constructs:: Type merges the definitions of Type from Basic and Abstractions. It adds a specialization from
Constructs: : NamedElement.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.3.13TypedElement (as specialized)

Description

Constructs:: TypedElement merges the definitions of TypedElement from Basic and Abstractions. It adds a specialization
from Constructs:: NamedElement.

Attributes
e type: Classifier [1] Redefines the corresponding attributes in both Basic and Abstractions.

Associations

No additional associations.

130 UML 2.0: Infrastructure - Final Adopted Specification

Constraints
No additional constraints.

Semantics
No additional semantics.

Notation
As defined in Abstractions.

11.4 Constraints diagram

The Constraints diagram of the Constructs package specifies the Constraint construct and adds features to the Namespace
construct.

Constraint PackageableElement
(from Constraints)

lcontext
Namespace Constraint constrainedElement Element
0.1 {union
{ } {ordered} «
namespace ownedRule
>
..1 {subsets context} * - specification ValueSpecification
{subsetsownedMembern}
0..1 {subsetsownedElement} 1

Figure 85 - The Classes diagram of the Constructs package

11.4.1 Constraint

Description

Constructs::Constraint reuses the definition of Constraint from Abstractions:: Constraints. It adds a specialization to
Packageabl eElement.

Attributes
No additional attributes.

Associations
« constrainedElement: Element Redefines the corresponding property in Abstractions.

e [context: Namespace [0..1] Redefinesthe corresponding property in Abstractions. Thisis aderived union.

UML 2.0: Infrastructure - Final Adopted Specification 131

e gpecification: ValueSpecificationRedefines the corresponding property in Abstractions. Subsets Element.ownedElement.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.4.2 Namespace (additional properties)

Description

Constructs::Namespace is defined in the Namespaces diagram. The Constraints diagram shows the association between
Namespace and Constraint that represents the ownership of the constraint by a namespace.

Attributes
No additional attributes.

Associations

¢ ownedRule: Constraint [*] Redefines the corresponding property in Abstractions. Subsets Namespace: : ownedMem-
ber.

Constraints
No additional constraints.

Semantics

No additional semantics.

11.5 DataTypes diagram

The DataTypes diagram of the Constructs package specifies the DataType, Enumeration, EnumerationL iteral, and
PrimitiveType constructs, and adds features to the Property and Operation constructs. These constructs that are used for
defining primitive data types (such as Integer and String) and user-defined enumeration data types. The data types are
typically used for declaring the types of the class attributes.

132 UML 2.0: Infrastructure - Final Adopted Specification

Classifier DataType

(from Basic)
%DataTypf datatype ownedAttribute Property
0..1 {subsets namespace, {ordereq *
subsets featuringClassifier, subsets attribute,
subsets classifier} Subsets ownedMember}
datatype ownedOperation Operation
0..1 . *
{subsets redefinitionContext, {ordered

subsets namespace, subsets feature,
subsets featuringClassifier} S ubsets ownedMem ber}

PrimitiveTy pe Enumeration NamedElement EnumerationLiteral
(from Basic) (from Basic) (from Basic)
Primitive Type Enumeration enumeration ownedLiteral| EnumerationLiteral
>
0..1 *
{subsets namespace} {subsets ownedMember,
ordered}

Figure 86 - The classes defined in the DataTypes diagram

11.5.1 DataType (as specialized)

A datatype is atype whose values have no identity (i.e., they are pure values). Data types include primitive built-in types
(such as integer and string) as well as enumeration types.

Description
Constructs::DataType reuses the definition of DataType from Basic. It adds a specialization to Constructs:: Classifier.

DataType defines a kind of classifier in which operations are all pure functions (i.e., they can return data values but they
cannot change data values, because they have no identity). For example, an “add” operation on a number with another
number as an argument yields a third number as a result; the target and argument are unchanged.

A DataType may also contain attributes to support the modeling of structured data types.

Attributes
No additional attributes.

Associations

« ownedAttribute: Attribute[*] The Attributes owned by the DataType. Subsets Classifier::attribute and Ele-
ment: :ownedMember.

UML 2.0: Infrastructure - Final Adopted Specification 133

e ownedOperation: Operation[*] The Operations owned by the DataType. Subsets Classifier::feature and Ele-
ment:: ownedMember.

Constraints
No additional constraints.

Semantics

A data type is a special kind of classifier, similar to a class, whose instances are values (not objects). For example, the
integers and strings are usually treated as values. A value does not have an identity, so two occurrences of the same value
cannot be differentiated. Usually, a data type is used for specification of the type of an attribute. An enumeration type is
a user-definable type comprising a finite number of values.

If a data type has attributes, then instances of that data type will contain attribute values matching the attributes.

Semantic Variation Points

Any restrictions on the capabilities of data types, such as constraining the types of their attributes, is a semantic variation
point.

Notation

A data type is denotated using the rectangle symbol with keyword «dataType» or, when it is referenced by e.g. an
attribute, denoted by a string containing the name of the data type.

Presentation Options

The attribute compartment is often suppressed, especially when a data type does not contain attributes. The operation
compartment may be suppressed. A separator line is not drawn for a missing compartment. If a compartment is
suppressed, no inference can be drawn about the presence or absence of elementsin it. Compartment names can be used
to remove ambiguity, if necessary.

Additional compartments may be supplied to show other predefined or user-defined model properties (for example, to
show business rules, responsibilities, variations, events handled, exceptions raised, and so on). Most compartments are
simply lists of strings, although more complicated formats are also possible. Appearance of each compartment should

preferably be implicit based on its contents. Compartment names may be used, if needed.

A data-type symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with the name of the data
type either inside the rectangle or below the icon. Other contents of the data type are suppressed.

Style Guidelines

 Center the name of the data type in boldface.
» Center keyword (including stereotype names) in plain face within guillemets above data-type name.

« For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them
with an uppercase character).

« Left justify attributes and operationsin plain face.
» Begin attribute and operation names with alowercase | etter.

 Show full attributes and operations when needed and suppress them in other contexts or references

134 UML 2.0: Infrastructure - Final Adopted Specification

Examples

«dataType» size: Integer
Integer

Figure 87 - Notation of data type: to the left is an icon denoting a data type and to the right is a reference to a data type
which is used in an attribute

11.5.2 Enumeration (as specialized)

An enumeration is a data type whose values are enumerated in the model as enumeration literals.

Description

Constructs::Enumeration reuses the definition of Enumeration from Basic. It adds a specialization to
Constructs::DataType.

Enumeration is a kind of data type, whose instances may be any of a number of predefined enumeration literals.

It is possible to extend the set of applicable enumeration literals in other packages or profiles.

Attributes
No additional attributes.

Associations
e ownedLiteral: EnumerationLiteral[*]The ordered set of literals for this Enumeration. Subsets Element::ownedMember.

Constraints
No additional constraints.

Semantics

The run-time instances of an Enumeration are data values. Each such value corresponds to exactly one
EnumerationLiteral.

Notation

An enumeration may be shown using the classifier notation (a rectangle) with the keyword «enumeration». The name of
the enumeration is placed in the upper compartment. A compartment listing the attributes for the enumeration is placed
below the name compartment. A compartment listing the operations for the enumeration is placed below the attribute
compartment. A list of enumeration literals may be placed, one to aline, in the bottom compartment. The attributes and
operations compartments may be suppressed, and typically are suppressed if they would be empty.

UML 2.0: Infrastructure - Final Adopted Specification 135

Examples

«enumeration»
VisibilityKind

public
private

Figure 88 - Example of an enumeration
11.5.3 EnumerationLiteral (as specialized)

An enumeration literal is a user-defined data value for an enumeration.

Description

Constructs::EnumerationL iteral reuses the definition of Enumeration from Basic. It adds a specialization to
Constructs::NamedElement.

Attributes
No additional attributes.

Associations

e enumeration: Enumeration[0..1] The Enumeration that this EnumerationLiteral is a member of. Subsets NamedEle-
ment: : namespace.

Constraints
No additional constraints.

Semantics

An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.

An EnumerationLiteral has a name that can be used to identify it within its enumeration datatype. The enumeration literal
name is scoped within and must be unique within its enumeration. Enumeration literal names are not global and must be
qualified for general use.

The run-time values corresponding to enumeration literals can be compared for equality.

Notation

An EnumerationLiteral is typically shown as a name, one to aline, in the a compartment of the enumeration notation. See
“Enumeration (as specialized)”.

Examples

See “Enumeration (as specialized)”.

136 UML 2.0: Infrastructure - Final Adopted Specification

11.5.4 Operation (additional properties)

Description

Constructs::Operation is defined in the Operations diagram. The DataTypes diagram shows the association between
Operation and DataType that represents the ownership of the operation by a data type.

Attributes
No additional attributes.

Associations

e datatype: DataType[0..1] The DataType that owns this Operation. Subsets NamedEl ement: : namespace, Fea-
ture: :featuringClassifier, and Redefinabl eElement: : redefinitionContext.

Constraints
No additional constraints.

Semantics
An operation may be owned by and in the namespace of a datatype that provides the context for its possible redefinition.

11.5.5 PrimitiveType (as specialized)

A primitive type defines a predefined data type, without any relevant substructure (i.e. it has no parts). A primitive
datatype may have an algebra and operations defined outside of UML, for example, mathematically.

Description

Constructs::PrimitiveType reuses the definition of PrimitiveType from Basic. It adds a specialization to
Constructs: : DataType.

The instances of primitive type used in UML itself include Boolean, Integer, UnlimitedNatural, and String (see Chapter
12, “Core::PrimitiveTypes”).

Attributes
No addtional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

The run-time instances of a primitive type are data values. The values are in many-to-one correspondence to mathematical
elements defined outside of UML (for example, the various integers).

UML 2.0: Infrastructure - Final Adopted Specification 137

Instances of primitive types do not have identity. If two instances have the same representation, then they are
indistinguishable.

Notation
A primitive type has the keyword «primitive» above or before the name of the primitive type.

Instances of the predefined primitive types (see Chapter 12, “Core::PrimitiveTypes’) may be denoted with the same
notation as provided for references to such instances (see the subtypes of “ValueSpecification”).

Examples

See Chapter 12, “Core::PrimitiveTypes’ for examples.
11.5.6 Property (additional properties)

Description

Constructs::Property is defined in the Classes diagram. The DataTypes diagram shows the association between Property
and DataType that represents the ownership of the property by a data type.

Attributes
No additional attributes.

Associations

e datatype: DataType[0..1] The DataType that owns this Property. Subsets NamedElement: : namespace, Feature: : fea-
turingClassifier, and Property::classifier.

Constraints
No additional constraints.

Semantics

A property may be owned by and in the namespace of a datatype.

11.6 Namespaces diagram

The Namespaces diagram of the Constructs package specifies Namespace and related constructs. It specifies how named
elements are defined as members of namespaces, and also specifies the general capability for any namespace to import all
or individual members of packages.

138 UML 2.0: Infrastructure - Final Adopted Specification

Element NamedElement | NamedE lement
(fromVisibilities) (romBasic)

NamedElement

name : Sting

Namespace
(fromConstraints)
nt | jimoc Namespace /member NamedElement
{union} *
* {subsets member}
/namespace lownedMember
0.1 funion, {union,

subsetsowner} subsets member,

ssmon "

A

Elementimport

importingNamespace -
elementimport [iy - Visibiliykin P ement_| PackageableElement
1 {subsets source, , |alias: String
[subsets target]
subsets owner} {subsets ownedElement] i gett 3
DirectedRelationship

importing!

port Packagelmport importedPackage P—
1 {subsets source, * |visibility : VisibilityKind -
subsets owner} {subsets owned Ele me nf}| {subsetstarget} 1

Figure 89 - The Namespaces diagram of the Constructs package

11.6.1 Elementimport

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Attributes

e visibility: VisibilityKind Specifiesthevisibility of theimported Packageabl eElement within the importing Package.
The default visibility isthe same as that of the imported element. If the imported element
does not have avisibility, it is possible to add visibility to the element import.

UML 2.0: Infrastructure - Final Adopted Specification 139

e dias String [0..1] Specifies the name that should be added to the namespace of the importing Packagein lieu
of the name of the imported Packagabl eElement. The aliased name must not clash with
any other member name in the importing Package. By default, no aliasis used.

Associations

« importedElement: PackageableElement [1] Specifies the Packageabl eElement whose name is to be added to a Namespace.
Subsets DirectedRel ationship::target.

« importingNamespace: Namespace [1] Specifies the Namespace that imports a Packageabl eElement from another Package.
Subsets DirectedRel ationship:: source and Element: : owner.

Constraints
[1] Thevisibility of an Elementimport is either public or private.

self.visibility = #public or self.visibility = #private

[2] AnimportedElement has either public visibility or no visibility at all.

self.importedElement.visibility.notEmpty() implies self.importedElement.visibility = #public

Additional Operations

[1] The query getName() returns the name under which the imported PackageableElement will be known in the importing
namespace.

Elementimport::getName(): String;
getName =
if self.alias->notEmpty() then
self.alias
else
self.importedElement.name
endif

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import.

In case of a nameclash with an outer name (an element that is defined in an enclosing namespace is available using its
unqualified name in enclosed namespaces) in the importing namespace, the outer name is hidden by an ele-ment import,
and the unqualified name refers to the imported element. The outer name can be accessed using its qual-ified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the names of the imported elements must be qualified in order to be used and the elements are not added
to the importing namespace. If the name of an imported element is the same as the name of an element owned by the
importing namespace, the name of the imported element must be qualified in order to be used and is not added to the
importing namespace.

An imported element can be further imported by other namespaces using either element or member imports.

The visibility of the Elementimport may be either the same or more restricted than that of the imported element.

140 UML 2.0: Infrastructure - Final Adopted Specification

Notation

An element import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
element. The keyword «import» is shown near the dashed arrow if the visibility is public, otherwise the key-word
«access» is shown.

If an element import has an alias, thisis used in lieu of the name of the imported element. The aliased hame may be
shown after or below the keyword «import».

Presentation Options
If the imported element is a package, the keyword may optionally be preceded by element, i.e., «element import».

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identifies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

{element import <qualifiedName>} or {element access < qualifiedName>}
Optionally, the aliased name may be show as well:

{element import <qualifiedName> as <alias>} or {element access <qualifiedName> as <alias>}

Examples

The element import that is shown in Figure 90 allows elements in the package Program to refer to the type Time in Types
without qualification. However, they still need to refer explicitly to Types::Integer, since this element is not imported.

Types
«datatype»
Integer
——)
«import» «datatype»
Program I Time

Figure 90 - Example of element import

UML 2.0: Infrastructure - Final Adopted Specification 141

In Figure 91, the element import is combined with aliasing, meaning that the type Types::Real will be referred to as
Double in the package Shapes.

Types
Shapes
«import»
«datatype» _ Double
Real [N "7 Tttme———o Circle
radius: Double

Figure 91 - Example of element import with aliasing
11.6.2 NamedElement (as specialized)

Description

Constructs::NamedElement reuses the definition of NamedElement from Abstractions:: Visibilitites. It adds specializations
from Constructs:: Element and Basic:: NamedElement.

Attributes

e name: String [0..1] Redefines the corresponding attributes from Basic::NamedElement and Abstractions::Vis-
ibilities::NamedElement.

Associations

« namespace: NamedElement [0..1] The Namespace that owns this NamedElement. Redefines the corresponding property
from Abstractions; : Namespaces.: NamedEl ement.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.6.3 Namespace (as specialized)

Description

Constructs::Namespace reuses the definition of Abstractions::Constraints:: Namespace.

A namespace has the ability to import either individial members or all members of a package, thereby making it possible
to refer to those named elements without qualification in the importing namespace. In the case of conflicts, it is necessary
to use qualified names or aliases to disambiguate the referenced elements.

142 UML 2.0: Infrastructure - Final Adopted Specification

Attributes
No additional attributes.

Associations

e elementimport: Elementlmport [*] References the Elementl mports owned by the Namespace. Subsets
Element: : ownedElement.

« /importedMember: Packageabl eElement [*] References the Packageabl eElements that are members of this Namespace as
aresult of either Packagel mports or Elementlmports. Subsets
Namespace: : member.

« /member: NamedElement [*] Redefines the corresponding property of Abstractions:: Namespaces.: Namespace.
« /ownedMember: NamedElement [*]Redefines the corresponding property of Abstractions::Namespaces:: Namespace.

« packagelmport: Packagelmport [*] References the Packagel mports owned by the Namespace. Subsets
Element:: ownedElement.

Constraints
[1] TheimportedMember property is derived from the Elementlmports and the Packagel mports.

self.importedMember->includesAll(self.importedMembers(self.elementimport.importedElement.asSet()-
>union(self.packagelmport.importedPackage->collect(p | p.visibleMembers()))))

Additional operations

[1] Thequery getNamesOfMember() is overridden to take account of importing. It gives back the set of names that an element
would have in an importing namespace, either because it is owned, or if not owned then imported individually, or if not
individually then from a package.

Namespace::getNamesOfMember(element: NamedElement): Set(String);
getNamesOfMember=
if self.ownedMember ->includes(element)
then Set{}->include(element.name)
else let elementimports: Elementimport = self.elementimport->select(ei | ei.importedElement = element) in
if elementimports->notEmpty()
then elementimports->collect(el | el.getName())
else
self.packagelmport->select(pi | pi.importedPackage.visibleMembers()->includes(element))->
collect(pi | pi.importedPackage.getNamesOfMember(element))
endif
endif

[2] The query importMembers() defines which of a set of PackageableElements are actually imported into the namespace.
This excludes hidden ones, i.e., those which have names that conflict with names of owned members, and also excludes
elements which would have the same name when imported.

Namespace::importMembers(imps: Set(PackageableElement)): Set(PackageableElement);
importMembers = self.excludeCollisions(imps)->select(imp | self.ownedMember->forAll(mem |
mem.imp.isDistinguishableFrom(mem, self)))

[3] The query excludeCollisions() excludes from a set of PackageableElements any that would not be distinguishable from
each other in this namespace.

Namespace::excludeCollisions(imps: Set(PackageableElements)): Set(PackageableElements);
excludeCollisions = imps->reject(impl | imps.exists(imp2 | not impl.isDistinguishableFrom(imp2, self)))

UML 2.0: Infrastructure - Final Adopted Specification 143

Semantics
No additional semantics.

Notation
No additional notation.

11.6.4 PackageableElement

A packageable element indicates a named element that may be owned directly by a package.

Description
A packageable element indicates a named element that may be owned directly by a package.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

11.6.5 Packagelmport

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Description

A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Attributes

e visibility: VisibilityKind Specifies the visibility of the imported Packageabl eElements within the importing
Namespace, i.e., whether imported elements will in turn be visible to other packages that
use that importingPackage as an importedPackage. If the Packagel mport is public, the
imported elements will be visible outside the package, whileiif it is private they will not.
By default, the value of visibility is public.

144 UML 2.0: Infrastructure - Final Adopted Specification

Associations

« importedPackage: Package [1] Specifies the Package whose members are imported into a Namespace. Subsets
DirectedRel ationship: :target.

« importingNamespace: Namespace [1] Specifies the Namespace that imports the members from a Package. Subsets
DirectedRel ationship::source and Element:: owner.

Constraints
[1] Thevisibility of a Packagelmport is either public or private.

self.visibility = #public or self.visibility = #private

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

Notation
A member import is shown using a dashed arrow with an open arrowhead from the importing namespace to the imported
namespace. The keyword «import» is shown near the dashed arrow.

A package import is shown using a dashed arrow with an open arrowhead from the importing package to the imported
package. A keyword is shown near the dashed arrow to identify which kind of package import that is intended. The
predefined keywords are «import» for a public package import , and «access» for a private package import.

Presentation options

As an alternative to the dashed arrow, it is possible to show an element import by having a text that uniquely identi-fies
the imported element within curly brackets either below or after the name of the namespace. The textual syntax is then:

{import <qualifiedName>} or {access <qualifiedName>}

Examples

In Figure 92, a number of package imports are shown. The elements in Types are imported to ShoppingCart, and then
further imported WebShop. However, the elements of Auxiliary are only accessed from ShoppingCart, and cannot be
referenced using unqualified names from WebShop.

1
Auxiliary
55\\ «access»
\‘\\\ ——
—— ’/: ShoppingCart S —
Types é”?:ir;port» «import> | \WebShop

Figure 92 - Examples of public and private package imports

UML 2.0: Infrastructure - Final Adopted Specification 145

11.7 Operations diagram

The Operations diagram of the Constructs package specifies the Behavioral Feature, Operation, and Parameter constructs.

146

‘ Feature ‘ Nanespace

A

BehavioralFeature
(from BehavioralF eatures)

Behavioral Feature

Parameter

(fromBehavioralFeatures)

Parameter
(from Basic)

TypedElement MultiplicityElement

Parameter

+/parameter

{union, *
subsets member,
ordered}

ownerFormalParam formalParameter

{ordered, *
subsets parameter,
substsownedMembern

0..1 {subsets namespace}

ownerReturnParam returnResult

{ordered, .
subsets parameter,

0..1 {subsets namespace}

default : Sting

subsets ownedMember}

raisedException

redefinedOperation

+ {2ubsets redefinedElement}

Type
*
Operation
(from Basic)
- . formalParameter
Operation operation {redefines ownedParameter}] parameter
iQuely : Boolean = fal®
/iOdered: Boolean 0..1 {wbsets ownerFomalParam} *
/isUnique : Boolean
/ lower : Integer Itype Type
/ upper : UnlimitedNatural 0.1
raisedException
*
preContext precondition -
Constraint
0.1 lsubsetscontext, rqhsets ownedMember} «
subsets namespace}
postContext postcondition
0.1 {sibsets conext, {ubsets ownedM ember} *
Subsets namespace}
bodyContext bodyCondition
. {subsets context, {subsets ownedMember}
ubsets namespace} 0.1

Figure 93 - The Operations diagram of the Constructs package

UML 2.0: Infrastructure - Final Adopted Specification

11.7.1 BehavioralFeature (as specialized)

Description

Constructs::Behavioral Feature reuses the definition of Behavioral Feature from Abstractions:: Behavioral Features. |t adds
specializations to Constructs:: Namespace and Constructs:: Feature.

Attributes
No additional attributes.

Associations

e formalParameter: Parameter[*] Specifies the ordered set of formal parameters of this Behavioral Feature. Subsets
Behavioral Feature: : parameter and Namespace: : ownedMember.

e raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this feature.

e returnResult; Parameter[*] Specifies the ordered set of return results of this Behaviora Feature. Subsets Behavioral-
Feature:: parameter and Namespace: : ownedMember.

Constraints
No additional constraints.

Additional Operations

[1] The query isDistinguishableFrom() determines whether two Behavioral Features may coexist in the same Namespace. It
specifies that they have to have different signatures.

BehavioralFeature::isDistinguishableFrom(n: NamedElement, ns: Namespace): Boolean;
isDistinguishableFrom =
if n.ocllsKindOf(BehavioralFeature)
then
if ns.getNamesOfMember(self)->intersection(ns.getNamesOfMember(n))->notEmpty()
then Set{}->include(self)->include(n)->isUnique(bf | bf.parameter->collect(type))
else true
endif
else true
endif

Semantics

The formal parameters define the type, and number, of arguments that must be provided when invoking the
Behavioral Feature. The return results define the type, and nhumber, of arguments that will be returned from a successful
invocation. A Behavioral Feature may raise an exception during its invocation.

Notation
No additional notation.

11.7.2 Operation (as specialized)

An operation is a behavioral feature of a classfier that specifies the name, type, parameters, and constraints for invoking
an associated behavior.

UML 2.0: Infrastructure - Final Adopted Specification 147

Description

Constructs::Operation reuses the definition of Operation from Basic. It adds a specialization to
Constructs::Behavioral Feature.

The specification of an operation defines what service it provides, not how thisis done, and can include alist of pre- and
postconditions.

Attributes

e [isOrdered : Boolean Redefines the corresponding property from Basic to derive thisinformation from the
return result for this Operation.

e isQuery : Boolean Specifies whether an execution of the Behavioral Feature |eaves the state of the system
unchanged (isQuery=true) or whether side effects may occur (isQuery=false). The default
valueisfalse.

e /isUnique: Boolean Redefines the corresponding property from Basic to derive thisinformation from the
return result for this Operation.

e /lower : Integer[0..1] Redefines the corresponding property from Basic to derive thisinformation from the

return result for this Operation.

e Jupper : UnlimitedNatural[0..1] Redefines the corresponding property from Basic to derive this information from the
return result for this Operation.

Associations
e bodyCondition: Constraint[0..1]An optional Constraint on the result values of an invocation of this Operation. Subsets
Namespace.ownedMember.

« formalParameter: Parameter[*] Specifies the formal parameters for this Operation. Redefines Basic:: Operation.ownedPa-
rameter and Behavioral Feature.formal Parameter.

e postcondition: Constraint[*] An optional set of Constraints specifying the state of the system when the Operation is
completed. Subsets Namespace.ownedMember.

e precondition: Constraint[*] Anoptional set of Constraints on the state of the system when the Operation is invoked.
Subsets Namespace.ownedMember.

e raisedException: Type[*] References the Types representing exceptions that may be raised during an invocation of
this operation. Redefines Basic:: Operation.raisedException and Behavioral Fea-

ture.raisedException.

< redefinedOperation: Operation[*]References the Operations that are redefined by this Operation. Subsets Redefinabl eEle-
ment.redefinedElement.

e [type: Type[0..1] Redefines the corresponding property from Basic to derive thisinformation from the

return result for this Operation.

Constraints

[1] If thisoperation hasasingle return result, isOrdered equals the value of isOrdered for that parameter. Otherwise isOrdered
isfalse.
isOrdered = if returnResult->size() = 1 then returnResult->any().isOrdered else false endif

[2] If thisoperation has asingle return result, isUnique equals the value of isUnique for that parameter. Otherwise isUniqueis
true.

148 UML 2.0: Infrastructure - Final Adopted Specification

isUnique = if returnResult->size() = 1 then returnResult->any().isUnique else true endif

[3] If this operation has a single return result, lower equals the value of lower for that parameter. Otherwise lower is not
defined.

lower = if returnResult->size() = 1 then returnResult->any().lower else Set{} endif

[4] If this operation has a single return result, upper equals the value of upper for that parameter. Otherwise upper is not
defined.

upper = if returnResult->size() = 1 then returnResult->any().upper else Set{} endif
[5] If this operation has a single return result, type equals the value of type for that parameter. Otherwise type is not defined.

type = if returnResult->size() = 1 then returnResult->any().type else Set{} endif
[6] A bodyCondition can only be specified for a query operation.

bodyCondition->notEmpty() implies isQuery

Additional Operations

[1] The query isConsistentWith() specifies, for any two Operations in a context in which redefinition is possible, whether
redefinition would be logically consistent. A redefining operation is consistent with a redefined operation if it has the
same number of formal parameters, the same number of return results, and the type of each formal parameter and return
result conforms to the type of the corresponding redefined parameter or return result.

Operation::isConsistentWith(redefinee: RedefinableElement): Boolean;

pre: redefinee.isRedefinitionContextValid(self)

isConsistentWith = (redefinee.ocllsKindOf(Operation) and
let op: Operation = redefinee.oclAsType(Operation) in
self.formalParameter.size() = op.formalParameter.size() and
self.returnResult.size() = op.returnResult.size() and
forAll(i | op.formalParameter]i].type.conformsTo(self.formalParameter]i].type)) and
forAll(i | op.returnResult[i].type.conformsTo(self.returnResult[i].type))

Semantics

An operation isinvoked on an instance of the classifier for which the operation is a feature. A static operation is invoked
on the classifier owning the operation, hence it can be invoked without an instance.

The preconditions for an operation define conditions that must be true when the operation is invoked. These preconditions
may be assumed by an implementation of this operation.

The postconditions for an operation define conditions that will be true when the invocation of the operation is completes
successfully, assuming the preconditions were satisfied. These postconditions must be satisfied by any implementation of
the operation.

The bodyCondition for an operation constrains the return result. The bodyCondition differs from postconditions in that
the bodyCondition may be overridden when an operation is redefined, whereas postconditions can only be added during
redefinition.

An operation may raise an exception during its invocation. When an exception is raised, it should not be assumed that the
postconditions or bodyCondition of the operation are satisfied.

An operation may be redefined in a speciaization of the featured classifier. This redefinition may specialize the types of
the formal parameters or return results, add new preconditions or postconditions, add new raised exceptions, or otherwise
refine the specification of the operation.

UML 2.0: Infrastructure - Final Adopted Specification 149

Each operation states whether or not its application will modify the state of the instance or any other element in the model

(isQuery).

Semantic Variation Points
The behavior of an invocation of an operation when a precondition is not satisfied is a semantic variation point.

Notation

An operation is shown as a text string of the form:
visibility name (parameter-list) : property-string

« Where visibility is the operation’s visibility -- visibility may be suppressed.
» Where name is the operation’s name.

» Where parameter-list isa comma-separated list of formal parameters, each specified using the syntax:
direction name : type-expression [multiplicity] = default-value [{ property-string }]

« Wheredirection is the parameter’s direction, with the default of in if absent.

» Where name is the parameter’s name.
» Where type-expression identifies the type of the parameter.

« Where multiplicity isthe parameter’s multiplicity in square brackets -- multiplicity may be suppressed in which case[1]
is assumed.

» Where default-value is a value specification for the default value of the parameter. The default value is optiona (the
equal sign isalso omitted if the default value is omitted).

» Where property-string indicates property values that apply to the parameter. The property string is optional (the braces
are omitted if no properties are specified).

» Where property-string optionally shows other properties of the operation enclosed in braces.

Presentation Options
The parameter list can be suppressed.

Style Guidelines

An operation name typically begins with a lowercase letter.

Examples
display ()
-hide ()

+createWindow (location: Coordinates, container: Container [0..1]): Window

+toString (): String_{ query}

150 UML 2.0: Infrastructure - Final Adopted Specification

11.7.3 Parameter (as specialized)

A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral
feature.

Description

Constructs::Parameter merges the definitions of Parameter from Basic and Abstractions::Behavioral Features. It adds
specializations to TypedElement and MultiplicityElement.

A parameter is a kind of typed element in order to allow the specification of an optional multiplicity on parameters. In
addition, it supports the specification of an optional default value.

Attributes

e default: String [0..1] Specifies a String that represents a value to be used when no argument is supplied for the
Parameter.

Associations

e /operation: Operation[0..1] References the Operation for which thisis aformal parameter. Subsets NamedEle-
ment: : namespace and redefines Basic:: Parameter:: operation.

Constraints
No additional constraints.

Semantics

A parameter specifies how arguments are passed into or out of an invocation of a behavioral feature like an operation. The
type and multiplicity of a parameter restrict what values can be passed, how many, and whether the values are ordered.

If adefault is specified for a parameter, then it is evaluated at invocation time and used as the argument for this parameter
if and only if no argument is supplied at invocation of the behavioral feature.

Notation
See Operation.

UML 2.0: Infrastructure - Final Adopted Specification 151

11.8 Packages diagram

The Packages diagram of the Constructs package specifies the Package and PackageM erge constructs.

Namespace Package PackageableElement
(from Basic)

‘ ‘ ‘ owningPackage
{subsets namespace} ownedMember | PackageableElement

Package

0.1 {redefines ownedMember} *

DirectedRel ationship

package
{subsets namespace} /ownedType

Type

0.1 {subsets ownedMember}
. packageMerge
meging Package {=ubsets ownedElement}

1 {subsets source, *
subsets owner}

PackageMerge

mergedPackage

1 {subsetstarget}

nestingPackage

0..1 {subsets namespace}

nestedPackage
{subsets ownedMember}

Figure 94 - The Packages diagram of the Constructs package
11.8.1 Type (additional properties)

Description

Constructs:: Type is defined in the Classifiers diagram. The Packages diagram adds the association between Type and
Package that represents the ownership of the type by a package.

Attributes
No additional attributes.

Associations

e package: Package[0..1] Specifies the owning package of this classifier, if any. Subsets NamedEle-
ment: : namespace and redefines Basic:: Type: : package.

Constraints
No additional constraints.

Semantics

No additional semantics.

152 UML 2.0: Infrastructure - Final Adopted Specification

11.8.2 Package

A package is used to group elements, and provides a namespace for the grouped elements.

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned
members of a package. By virtue of being a namespace, a package can import either individual members of other
packages, or all the members of other packages.

In addition a package can be merged with other packages.

Attributes
No additional attributes.

Associations

¢ nestedPackage: Package[*] Referencesthe owned members that are Packages. Subsets Package: : ownedMember and
redefines Basic: : Package: : nestedPackage.

* ownedMember: PackageableElement [*] Specifies the members that are owned by this Package. Redefines
Namespace: : ownedMember.

e ownedType: Type[*] References the owned members that are Types. Subsets Package: : ownedMember and
redefines Basic: : Package: : ownedType.

* package: Package[0..1] References the owning package of a package. Subsets NamedElement: : namespace and
redefines Basic: : Package: : nestingPackage.

« packageMerge: Package[*] Referencesthe PackageMergesthat are owned by this Package. Subsets Ele-
ment: :ownedElement.

Constraints
[1] If an element that is owned by a package has visibility, it is public or private.

self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.vishility = #public or e.visibility = #private)

Additional Operations
[1] The query mustBeOwned() indicates whether elements of thistype must have an owner.

Package::mustBeOwned() : Boolean
mustBeOwned = false

[1] The query visibleMembers() defines which members of a Package can be accessed outside it.

Package::visibleMembers() : Set(PackageableElement);
visibleMembers = member->select(m | self.makesVisible(m))

[2] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility
and elements with public visibility are made visible.

Package::makesVisible(el: Namespaces::NamedElement) : Boolean;
pre: self.member->includes(el)
makesVisible = el.visibility->isEmpty() or el.visibility = #public

UML 2.0: Infrastructure - Final Adopted Specification 153

Semantics
A package is a namespace and is also a packageable element that can be contained in other packages.
The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,

and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines
whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements
owned by the package.

The public contents of a package is always accessible outside the package through the use of qualified names.

Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members may also be shown by
branching lines to member elements, drawn outside the package. A plus sign (+) within a circle is drawn at the end
attached to the namespace (package).

« If the members of the package are not shown within the large rectangle, then the name of the package should be placed
within the large rectangle.

- If the members of the package are shown within the large rectangle, then the name of the package should be placed
within the tab.

The visibility of a package element may be indicated by preceding the name of the element by avisibility symbol (‘+' for
public and ‘-’ for private).

Presentation Options

A tool may show visibility by a graphic marker, such as color or font. A tool may also show visibility by selectively
displaying those elements that meet a given visibility level, e.g., only public elements. A diagram showing a package with
contents must not necessarily show all its contents; it may show a subset of the contained elements according to some
criterion.

Elements that become available for use in aimporting package through a package import or an element import may have
a distinct color or be dimmed to indicate that they cannot be modified.

154 UML 2.0: Infrastructure - Final Adopted Specification

Examples

There are three representations of the same package Types in Figure 95. The one on the left just shows the package
without revealing any of its members. The middle one shows some of the members within the borders of the package, and
the one to the right shows some of the members using the alternative membership notation.

1
Types
Types Types
Integer Q
+
Time
Shape Point

Figure 95 - Examples of a package with members

11.8.3 PackageMerge

A package merge defines how one package extends another package by merging their contents.

Description
A package merge is a relationship between two packages, where the contents of the target package (the one pointed at) is
merged with the contents of the source package through specialization and redefinition, where applicable.

This is a mechanism that should be used when elements of the same name are intended to represent the same concept,
regardless of the package in which they are defined. A merging package will take elements of the same kind with the
same name from one or more packages and merge them together into a single element using generalization and
redefinitions.

It should be noted that a package merge can be viewed as a short-hand way of explicitly defining those generalizations
and redefinitions. The merged packages are still available, and the elements in those packages can be separately qualified.

From an XMI point of view, it is either possible to exchange a model with all PackageMerges retained or a model where
all PackageM erges have been transformed away (in which case package imports, generalizations, and redefinitions are
used instead).

Attributes
No additional attributes.

Associations

« mergedPackage: Package[1] Referencesthe Package that isto be merged with the source of the PackageM erge. Subsets
DirectedRel ationship: :target.

* mergingPackage: Package [1] References the Package that is being extended with the contents of the target of the Pack-
ageMerge. Subsets Element::owner and DirectedRel ationship:: source.

Constraints
No additional constraints.

UML 2.0: Infrastructure - Final Adopted Specification 155

Semantics

A package merge between two packages implies a set of transformations, where the contents of the merged package is
expanded in the merging package. Each element has its own specific expansion rules. The package merge is transformed
to a package import having the same source and target packages as the package merge.

An element with private visibility in the merged package is not expanded in the merging package. This applies recursively
to all owned elements of the merged package.

A classifier from the target (merged) package is transformed into a classifier with the same name in the source (merging)
package, unless the source package aready contains a classifier of the same kind with the same name. In the former case,
the new classifier gets a generalization to the classifier from the target package. In the latter case, the already existing
classifier gets a generalization to the classifier from the target package. In either case, every feature of the general
classifier is redefined in the specific classifier in such away that all types refer to the transformed classifiers. In addition,
the classifier in the source package gets generalizations to each transformed superclassifier of the classifier from the
target package. This is because the superclassifiers may have merged in additional properties in the source package that
need to be propagated properly to the classifier. Classifiers of the same kind with the same name from multiple target
packages are transformed into a single classifier in the source package, with generalizations to each target classifier.
Nested classifiers are recursively transformed the same way. If features from multiple classifiers are somehow conflicting,
the same rules that apply for multiple inheritance are used to resolve conflicts.

Note that having an explicit generalization from a classifier in a source package to a classifier of the same kind with the
same name in a target package is redundant, since it will be created as part of the transformation.

A subpackage from the target (merged) package is transformed into a subpackage with the same name in the source
(merging) package, unless the source package already contains a subpackage with the same name. In the former case, the
new subpackage gets a package merge to the subpackage from the target package. In the latter case, the aready existing
package gets a package merge to the subpackage from the target package. Subpackages with the same name from multiple
target packages are transformed into a single subpackage in the source package, with package merges to each target
subpackage. Nested subpackages are recursively transformed the same way.

A package import owned by the target package is transformed into a corresponding new package import in the source
package. Elements from imported packages are not merged (unless there is also a package merge to the imported
package). The names of merged elements take precedence over the names of imported elements, meaning that names of
imported elements are hidden in case of name conflicts and need to be referred to using qualifiers. An element import
owned by the target package is transformed into a corresponding new element import in the source package. Imported
elements are not merged (unless there is aso a package merge to the package owning the imported element or its alias).

A non-generalizable packageable element owned by the target package is copied down to the source package. Any
classifiers referenced as part of the packageable element are redirected at transformed classifiers, if any.

156 UML 2.0: Infrastructure - Final Adopted Specification

Notation

A PackageMerge is shown using a dashed line with a stick arrowhead pointing from the merging package (the source) to
the merged package (the target). In addition, the keyword «merge» is shown near the dashed line.

Target

-

~____«merge»

Source

Examples

Figure 96 - Notation for package merge

In Figure 97, packages P and Q are being merged by package R, while package S merges only package Q

P Q
A A C
7 A
/ /
/ «merge» /
B / /
/ /
/ /
/ /
/ l/
) / —‘ /
/
\ S «merge»
«merge» \ / !
\
\\ /I
/
\ /
R |\ / D
1 L
A

A

Figure 97 - Simple example of package merges

UML 2.0: Infrastructure - Final Adopted Specification

157

The transformed packages R and Q are shown in Figure 98. While not shown, the package merges have been transformed
into package imports..

R s |

P::A QA D | P:A |Q:A Q::C

v
il =

B

Figure 98 - Simple example of transformed packages

In Figure 99, additional package merges are introduced by having the package T merge the packages R and S that were
previously defined. Aside from the package merges, the package T is completely empty.

1
R L
\x\\\ «merge»
*\\ 1
— A T

S k2= «merge»

Figure 99 - Introducing additional package merges

158 UML 2.0: Infrastructure - Final Adopted Specification

In Figure 100, the transformed version of the package T is depicted. In this package, the partial definitionsof A, B, C, and

D have al been brought together. Again, the package merges have been transformed to package imports. Note that the
types of the ends of the associations that were originally in the packages Q and S have all been updated to refer to the

appropriate types in package T.

T

D R::Al |S::A R::C |S::C

R::B| |S::B

1T 71

AN

i

Figure 100 - The result of the additional package merges

It is possible to elide all but the most specific of each classifier, which gives a clearer picture of the end result of the

package merge transformations, as is shown in Figure 101.
T
D
VANE
A C

Figure 101 - The result of the additional package merges: elided view

UML 2.0: Infrastructure - Final Adopted Specification

159

12 Core::PrimitiveTypes

The PrimitiveTypes package of InfrastructureLibrary::Core contains a number of predefined types used when defining the
abstract syntax of metamodels.

Core

PrimitiveTypes

Figure 102 - The Core package is owned by the InfrastructureLibrary package, and contains several subpackages

12.1 PrimitiveTypes package

The PrimitiveTypes subpackage within the Core package defines the different types of primitive values that are used to
define the Core metamodel. It is aso intended that every metamodel based on Core will reuse the following primitive

types.

In Core and the UML metamodel, these primitive types are predefined and available to the Core and UML extensions at
all time. These predefined value types are independent of any object model and part of the definition of the Core.

<<primitive>> <<primitive>> <<primitive>> <<primitive>>
Integer Boolean String UnlimitedNatural

Figure 103 - The classes defined in the PrimitiveTypes package

12.1.1 Boolean

A boolean type is used for logical expression, consisting of the predefined values true and false.

Description

Boolean is an instance of PrimitiveType. In the metamodel, Boolean defines an enumeration that denotes a logical
condition. Its enumeration literals are:

e true The Boolean condition is satisfied.
o fdse The Boolean condition is not satisfied.

It is used for boolean attribute and boolean expressions in the metamodel, such as OCL expression.

Attributes
No additional attributes.

160 UML 2.0: Infrastructure - Final Adopted Specification

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

Boolean is an instance of PrimitiveType.

Notation

Boolean will appear as the type of attributes in the metamodel. Boolean instances will be values associated to slots, and

can have literally the following values: true,

Examples

or false.

Car

isAutomatic: Boolean = true

Figure 104 - An example of a boolean attribute

12.1.2 Integer

An integer is a primitive type representing integer values.

Description

An instance of Integer is an element in the (infinite) set of integers (...-2, -1, 0, 1, 2...). It is used for integer attributes

and integer expressions in the metamodel.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

Integer is an instance of PrimitiveType.

UML 2.0: Infrastructure - Final Adopted Specification

161

Notation

Integer will appear as the type of attributes in the metamodel. Integer instances will be values associated to slots such as
1, -5, 2, 34, 26524, etc.

Examples
Magazine
pages: Integer = 64
Figure 105 - An example of an integer attribute
12.1.3 String

A string is a sequence of characters in some suitable character set used to display information about the model. Character
sets may include non-Roman alphabets and characters.

Description

An instance of String defines a piece of text. The semantics of the string itself depends on its purpose, it can be a
comment, computational language expression, OCL expression, etc. It is used for String attributes and String expressions
in the metamodel.

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Semantics

String is an instance of PrimitiveType.

Notation

String appears as the type of attributes in the metamodel. String instances are values associated to slots. The value is a

sequence of characters surrounded by double quotes (). It is assumed that the underlying character set is sufficient for

representing multibyte characters in various human languages; in particular, the traditional 8-bit ASCII character set is

insufficient. It is assumed that tools and computers manipulate and store strings correctly, including escape conventions
for special characters, and this document will assume that arbitrary strings can be used.

A string is displayed as a text string graphic. Normal printable characters should be displayed directly. The display of
nonprintable characters is unspecified and platform-dependent.

162 UML 2.0: Infrastructure - Final Adopted Specification

Examples

Book

author: String = "Joe"

Figure 106 - An example of a string attribute

12.1.4 UnlimitedNatural

An unlimited natural is a primitive type representing unlimited natural values.

Description

An instance of UnlimitedNatural is an element in the (infinite) set of naturals (0, 1, 2...). The value of infinity is shown

using an asterisk (‘*’).

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

Semantics

UnlimitedNatural is an instance of PrimitiveType.

Notation

UnlimitedNatural will appear as the type of upper bounds of multiplicities in the metamodel. UnlimitedNatural instances

will be values associated to slots such as 1, 5, 398475, etc. The value infinity may be shown using an asterisk (‘*’).

Examples

student

Teacher

Figure 107 - An example of an unlimited natural

UML 2.0: Infrastructure - Final Adopted Specification

Student

163

13 Core:Profiles

The Profiles package of the InfrastructureLibrary contains mechanisms that allow metaclasses from existing metamodels
to be extended to adapt them for different purposes. This includes the ability to tailor the UML metamodel for different
platforms (such as J2EE or .NET) or domains (such as real-time or business process modeling). The profiles mechanism
is consistent with the OMG Meta Object Facility (MOF).

Extensibility

The profiles mechanism is not a first-class extension mechanism, i.e., it does not allow for modifying existing
metamodels. Rather, the intention of profiles is to give a straightforward mechanism for adapting an existing metamodel
with constructs that are specific to a particular domain, platform, or method. Each such adaption is grouped in a profile.
It is not possible to take away any of the constraints that apply to a metamodel such as UML using a profile, but it is
possible to add new constraints that are specific to the profile. The only other restrictions are those inherent in the profiles
mechanism; there is nothing else that is intended to limit the way in which a metamodel is customized.

First-class extensibility is handled through MOF, where there are no restrictions on what you are allowed to do with a
metamodel: you can add and remove metaclasses and relationships as you find necessary. Of course, it is then possible to
impose methodology restrictions that you are not allowed to modify existing metamodels, but only extend them. In this
case, the mechanisms for first-class extensibility and profiles start coalescing.

There are several reasons why you may want to customize a metamodel:

« Giveaterminology that is adapted to a particular platform or domain (such as capturing EJB terminology like home
interfaces, enterprise java beans, and archives).

» Give asyntax for constructs that do not have a notation (such asin the case of actions).

» Give adifferent notation for already existing symbols (such as being able to use a picture of a computer instead of the
ordinary node symbol to represent a computer in a network).

» Add semantics that isleft unspecified in the metamodel (such as how to deal with priority when receiving signalsin a
statemachine).

» Add semantics that does not exist in the metamodel (such as defining atimer, clock, or continuous time)

» Add constraints that restrict the way you may use the metamodel and its constructs (such as disallowing actions from
being able to execute in parallel within a single transition).

» Addinformation that can be used when transforming a model to another model or code (such as defining mapping rules
between a model and Java code).

Profiles and Metamodels

There is no simple answer for when you should create a new metamodel and when you instead should create a new
profile.

164 UML 2.0: Infrastructure - Final Adopted Specification

13.1 Profiles package

The Profiles package is dependent on the Constructs package from Core, as is depicted in Figure 108.

InfrastructureLibrary
Core::
Constructs
N
\\
\\
\\
\\
\\
Profiles
Figure 108 - The Profiles package is owned by the InfrastructureLibrary package
The classes of the Profiles package are depicted in Figure 109, and subsequently specified textually.
Package Packagelmport Class Association Property
(from Constructs) (fom Constucts) (from Constructs) (from Constructs) (from Congtuaty
Zﬁ appliedProfile Zﬁ N ZT . % P %
Package {subsets packagelmport ProfileApplication Class /metaclass /extension Extension ownedEnd | ExtensionEnd
/ isRequired : Boolean
1 B 1 ! * 1 1
importedProfile
Profile
1 {subsets importedPackage}
Stereotype type
ownedStereotype
1 {subsets ownedMember} « 1
metaclassReference Elementimport
0.1 {subsets elementimport} » (oM consmetd
metamodelReference Packagelmport
0.1 {subsets packagelmport} «

(from Constructs)

Figure 109 - The classes defined in the Profiles package
13.1.1 Extension (from Profiles)

to flexibly add (and later remove) stereotypes to classes.

An extension is used to indicate that the properties of a metaclass are extended through a stereotype, and gives the ability
UML 2.0: Infrastructure - Final Adopted Specification

165

Description

Extension is a kind of Association. One end of the Extension is an ordinary Property and the other end is an
ExtensionEnd. The former ties the Extension to a Class, while the latter ties the Extension to a Stereotype that extends the
Class.

Attributes
e package: Package[0..1] The containing package.
e /isRequired: Boolean Indicates whether an instance of the extending stereotype must be created when an

instance of the extended class is created. The attribute value is derived from the multiplic-
ity of Extension::ownedEnd; a multiplicity of 1 means that isRequired istrue, but other-
wiseit isfalse. Since the default multiplicity of an ExtensionEnd is 0..1, the default value
of isRequired isfalse.

Associations

« ownedEnd: ExtensionEnd [1] References the end of the extension that is typed by a Stereotype. Redefines Associa-
tion:: ownedEnd.

e [/ metaclass; Class[1] References the Class that is extended through an Extension. The property is derived from
the type of the memberEnd that is not the ownedEnd.

Constraints
[1] The non-owned end of an Extension is typed by a Class.

metaclassEnd()->notEmpty() and metaclass()->oclisKindOf(Class)
[2] AnExtensionishbinary, i.e., it has only two memberEnds.

self. memberEnd->size() = 2

Additional Operations
[1] The query metaclassEnd() returns the Property that is typed by a metaclass (as opposed to a stereotype)

Extension::metaclassEnd(): Property;
metaclassEnd = memberEnd->reject(ownedEnd)

[2] The query metaclass() returns the metaclass that is being extended (as opposed to the extending stereotype).

Extension::metaclass(): Class;
metaclass = metaclassEnd().type

[3] Thequery isRequired() istrueif the owned end has a multiplicity with the lower bound of 1.

Extension::isRequired(): Boolean;
isRequired = (ownedEnd->lowerBound() = 1)

Semantics

A required extension means that an instance of a stereotype must always be linked to an instance of the extended
metaclass. The instance of the stereotype is typically deleted only when either the instance of the extended metaclass is
deleted, or when the profile defining the stereotype is removed from the applied profiles of the package. The model is not
well-formed if an instance of the stereotype is not present when isRequired is true.

166 UML 2.0: Infrastructure - Final Adopted Specification

A non-required extension means that an instance of a stereotype can be linked to an instance of an extended metaclass at
will, and also later deleted at will; however, there is no requirement that each instance of a metaclass be extended. An
instance of a stereotype is further deleted when either the instance of the extended metaclass is deleted, or when the
profile defining the stereotype is removed from the applied profiles of the package.

In order to be able to navigate to the extended metaclass when writing constraints, the end must have a name. If no name
is given, the default name is baseClass.

Notation

The notation for an Extension is an arrow pointing from a Stereotype to the extended Class, where the arrowhead is
shown as a filled triangle. An Extension may have the same adornments as an ordinary association, but navigability
arrows are never shown. If isRequired is true, the property {required} is shown near the ExtensionEnd.

«

Figure 110 - The notation for an Extension

Presentation Option

It is possible to use the multiplicities 0..1 or 1 on the ExtensionEnd as an alternative to the property {required}. Due to
how isRequired is derived, the multiplicity 0..1 corresponds to isRequired being false.

Style Guidelines
Adornments of an Extension are typically elided.

Examples

In Figure 111, a simple example of using an extension is shown, where the stereotype Home extends the metaclass
Interface.

Interface 4 «stereotype»

Home

Figure 111 - An example of using an Extension

An instance of the stereotype Home can be added to and deleted from an instance of the class Interface at will, which
provides for a flexible approach of dynamically adding (and removing) information specific to a profile to a model.

UML 2.0: Infrastructure - Final Adopted Specification 167

In Figure 112, an instance of the stereotype Bean always needs to be linked to an instance of class Component since the
Extension is defined to be required. (Since the stereotype Bean is abstract, this means that an instance of one of its
concrete subclasses always has to be linked to an instance of class Component.) The model is not well-formed unless such
a stereotype is applied. This provides for a way to express extensions that should always be present for all instances of the
base metaclass depending on which profiles are applied. .

{required}l . stereotype»

Component Bean

Figure 112 - An example of a required Extension

Changes from UML 1.4

Extension did not exist as a metaclass in UML 1.x.

Occurrences of Stereotype::baseClass of UML 1.4 is mapped to an instance of Extension, where the ownedEnd is typed
by Stereotype and the other end is typed by the metaclass that is indicated by the baseClass.

13.1.2 ExtensionEnd (from Profiles)

An extension end is used to tie an extension to a stereotype when extending a metaclass.

Description

ExtensionEnd is a kind of Property that is always typed by a Stereotype.

An ExtensionEnd is never navigable. If it was navigable, it would be a property of the extended classifier. Since a profile
is not allowed to changed the referenced metamodel, it is not possible to add properties to the extended classifier. As a
consequence, an ExtensionEnd can only be owned by an Extension.

The aggregation of an ExtensionEnd is always composite.

The default multiplicity of an ExtensionEnd is 0..1.

Attributes
No additional attributes.

Associations

e type: Stereotype[1] References the type of the ExtensionEnd. Note that this association restricts the possible
types of an ExtensionEnd to only be Stereotypes. Redefines Property::type.

Constraints

[1] The multiplicity of ExtensionEnd is0..1 or 1.

(self->lowerBound() = 0 or self->lowerBound() = 1) and self->upperBound() = 1

[2] The aggregation of an ExtensionEnd is composite.

self.aggregation = #composite

168 UML 2.0: Infrastructure - Final Adopted Specification

Additional Operations

[1] The query lowerBound() returns the lower bound of the multiplicity as an Integer. Thisis aredefinition of the default
lower bound, which was 1.

ExtensionEnd::lowerBound() : [Integer];
lowerBound = if lowerValue->isEmpty() then 0 else lowerValue->IntegerValue() endif

Semantics

No additional semantics.

Notation
No additional notation.

Examples

See “Extension (from Profiles)” on page 165.

Changes from UML 1.4
ExtensionEnd did not exist as a metaclass in UML 1.4. See “Extension (from Profiles)” on page 165 for further details.

13.1.3 Class (from Constructs, Profiles)

Description

Class has derived association that indicates how it may be extended through one or more stereotypes.

Because a stereotype is a class, it is possible to apply a stereotype not only to classes, but also to definitions of
stereotypes.

Attributes

No additional attributes.

Associations

e | extension: Extension [*] References the Extensions that specify additional properties of the metaclass. The prop-

erty is derived from the extensions whose memberEnds are typed by the Class.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

Presentation Option
A Class that is extended by a Stereotype may have the optional keyword «metaclass» shown above or before its name.

UML 2.0: Infrastructure - Final Adopted Specification 169

Examples

In Figure 113, an example is given where it is made explicit that the extended class Interface is in fact a metaclass (from
a reference metamodel).

«metaclass» l «stereotype»
Interface Remote

Figure 113 - Showing that the extended class is a metaclass

Changes from UML 1.4
A link typed by UML 1.4 Model Element::stereotype is mapped to a link that is typed by Class::extension.

13.1.4 Package (from Constructs, Profiles)

Description
A Package can have one or more ProfileApplications to indicate which profiles have been applied.

Because a profile is a package, it is possible to apply a profile not only to packages, but also to profiles.

Attributes
No additional attributes.

Associations

« appliedProfile: ProfileApplication [*]References the ProfileApplications that indicate which profiles have been applied to
the Package. Subsets Package: : packagel mport.

Constraints
No additional constraints.

Semantics

No additional semantics.

Notation
No additional notation.

Changes from UML 1.4
In UML 1.4, it was not possible to indicate which profiles were applied to a package.

13.1.5 Profile (from Profiles)

A profile defines limited extensions to a reference metamodel with the purpose of adapting the metamodel to a specific
platform or domain.

170 UML 2.0: Infrastructure - Final Adopted Specification

Description

A Profile is akind of Package that extends a reference metamodel. The primary extension construct is the Stereotype,
which are defined as part of Profiles.

A profile introduces several constraints, or restrictions, on ordinary metamodeling through the use of the metaclasses
defined in this package.

A profile is arestricted form of a metamodel that must always be related to a reference metamodel, such as UML, as
described below. A profile cannot be used without its reference metamodel, and defines a limited capability to extend
metaclasses of the reference metamodel. The extensions are defined as stereotypes that apply to existing metaclasses.

Attributes
No additional attributes.

Associations
« metaclassReference: Elementimport [*] References a metaclass that may be extended. Subsets Package: : el ementlmport.

« metamodel Reference: Packagelmport [*] References a package containing (directly or indirectly) metaclasses that may
be extended. Subsets Package: : packagel mport.

e ownedStereotype: Stereotype [*] References the Stereotypes that are owned by the Profile. Subsets Package: : owned-
Member.

Constraints
[1] Anelement imported as a metaclassReference is not specialized or generalized in a Profile.

self.metaclassReference.importedElement->
select(c | c.ocllsKindOf(Classifier) and
(c.generalization.namespace = self or
(c.specialization.namespace = self))->isEmpty()

[2] All elementsimported either as metaclassReferences or through metamodel References are members of the same base ref-
erence metamodel.

self.metamodelReference.importedPackage.elementimport.importedElement.allOwningPackages())->
union(self.metaclassReference.importedElement.allOwningPackages())->notEmpty()

Additional Operations
[1] The query allOwningPackages() returns all the directly or indirectly owning packages.

NamedElement::allOwningPackages(): Set(Package)
allOwningPackages = self.namespace->select(p | p.oclisKindOf(Package))->
union(p.allOwningPackages())

Semantics

A profile by definition extends a reference metamodel or another profile. It is not possible to define a standalone profile
that does not directly or indirectly extend an existing metamodel. The profile mechanism may be used with any
metamodel that is created from MOF, including UML and CWM.

UML 2.0: Infrastructure - Final Adopted Specification 171

A reference metamodel typically consists of metaclasses that are either imported or locally owned. All metaclasses that
are extended by a profile have to be members of the same reference metamodel. A tool can make use of the information
about which metaclasses are extended in different ways, for example to filter or hide elements when a profile is applied,
or to provide specific tool bars that apply to certain profiles. However, elements of a package or model cannot be deleted
simply through the application of a profile. Each profile thus provides a simple viewing mechanism.

As part of a profile, it is not possible to have an association between two stereotypes or between a stereotype and a
metaclass unless they are subsets of existing associations in the reference metamodel. However, it is possible to have
associations between ordinary classes, and from stereotypes to ordinary classes. Likewise, properties of stereotypes may
not be typed by metaclasses or stereotypes.

Notation

A Profile uses the same notation as a Package, with the addition that the keyword «profile» is shown before or above the
name of the Package. Profile:: metaclassReference and Profile:: metamodel Reference uses the same notation as

Package: : elementlmport and Package: : packagel mport, respectively.

Examples
In Figure 114, a simple example of an EJB profile is shown.

«profile» EJB

required
Component M «Steézfz:nype» Artifact P E— «steg(-:fitqype»

| ‘ ‘ «stereotype»
J «stereotype» «stereotype» «metaclass» / Remote
Entity Session Interface \

i
!

i

I . i

| state: StateKind «stereotype»
!

i

Home

A comzonent «enumeration» {A Bean must
;222?;_ Zd o StateKind realize exactly
iz
specialized. } stateless il
. stateful interface.}

Figure 114 - Defining a simple EJB profile

The profile states that the abstract stereotype Bean is required to be applied to metaclass Component, which means that an
instance of either of the concrete subclasses Entity and Session of Bean must be linked to each instance of Component.
The constraints that are part of the profile are evaluated when the profile has been applied to a package, and need to be
satisfied in order for the model to be well formed.

172 UML 2.0: Infrastructure - Final Adopted Specification

Types
«enumeration»
Color Javalnteger
red
green
blue
{
/
) I «import»
«profile» / P
Manufacturer /
«metaclass» < «stereqtype» Factory
Class Device |
_ ((appy))
author: String Y\\\ .
color: Color T «device»
volume: Javalnteger Tl v. T ——-----—_| «device»
) volume=10
channel: Javalnteger

Figure 115 - Importing a package from a profile

In Figure 115, the package Types is imported from the profile Manufacturer. The data type Color is then used as the type
of one of the properties of the stereotype Device, just like the predefined type String is also used. Note that the class

Javalnteger may also be used as the type of a property.

If the profile Manufacturer is later applied to a package, then the types from Types are also available for use in the
package to which the profile is applied (since profile application is a kind of import). This means that for example the
class Javalnteger can be used as both a metaproperty (as part of the stereotype Device) and an ordinary property (as part
of the class TV). Note how the metaproperty is given a value when the stereotype Device is applied to the class TV.

13.1.6 ProfileApplication (from Profiles)
A profile application is used to show which profiles have been applied to a package.

Description
ProfileApplication is a kind of Packagelmport that adds the capability to state that a Profile is applied to a Package.

Attributes
No additional attributes.

Associations
« importedProfile: Profile[1] Referencesthe Profilesthat is applied to a Package through this ProfileApplication.. Sub-
sets Packagel mport: :importedPackage.

UML 2.0: Infrastructure - Final Adopted Specification 173

Constraints
No additional constraints.

Semantics

One or more profiles may be applied at will to a package that is created from the same metamodel that is extended by the
profile. Applying a profile means that it is allowed, but not necessarily required, to apply the stereotypes that are defined
as part of the profile. It is possible to apply multiple profiles to a package as long as they do not have conflicting
constraints. If a profile that is being applied depends on other profiles, then those profiles must be applied first.

When a profile is applied, instances of the appropriate stereotypes should be created for those elements that are instances
of metaclasses with required extensions. The model is not well-formed without these instances.

Once a profile has been applied to a package, it is allowed to remove the applied profile at will. Removing a profile
implies that all elements that are instances of elements defined in a profile are deleted. A profile that has been applied
cannot be removed unless other applied profiles that depend on it are first removed.

The removal of an applied profile leaves the instances of elements from the referenced metamodel intact. It is only the
instances of the elements from the profile that are deleted. This means that for example a profiled UML model can always
be interchanged with another tool that does not support the profile and be interpreted as a pure UML model.

Notation

The names of Profiles are shown using a dashed arrow with an open stick arrowhead from the package to the applied
profile. The keyword «apply» is shown near the arrow.

If multiple applied profiles have stereotypes with the same name, it may be necessary to qualify the name of the
stereotype (with the profile name).

Examples

Given the profiles Java and EJB, Figure 116 shows how these have been applied to the package WebShopping.

«profile»
Java «profile»
EJB
«apply»",
N // «apply»

WebShopping

Figure 116 - Profiles applied to a package

13.1.7 Stereotype (from Profiles)

A stereotype defines how an existing metaclass (or stereotype) may be extended, and enables the use of platform or
domain specific terminology or notation in addition to the ones used for the extended metaclass.

174 UML 2.0: Infrastructure - Final Adopted Specification

Description
Stereotype is a kind of Class that extends Classes through Extensions.

Just like a class, a stereotype may have properties, which may be referred to as tag definitions. When a stereotype is
applied to a model element, the values of the properties may be referred to as tagged values.

Attributes
No additional attributes.

Associations

No additional associations.

Constraints
[1] A Stereotype may only generalize or specialize another Stereotype.

self.generalization.general->forAll(e | e.oclisKindOf(Stereotype)) and
self.specialization.specific->forAll(e | e.ocllsKindOf(Stereotype))

[2] A concrete Stereotype must directly or indirectly extend a Class.

not self.isAbstract implies self.extensionEnd->union(self.parents.extensionEnd)->notEmpty()

Semantics

A stereotype is alimited kind of metaclass that cannot be used by itself, but must always be used in conjunction with one
of the metaclasses it extends. Each stereotype may extend one or more classes through extensions as part of a profile.
Similarly, a class may be extended by one or more stereotypes.

An instance of a stereotype is linked to an instance of an extended metaclass (or stereotype) by virtue of the extension
between their types.

Notation
A Stereotype uses the same notation as a Class, with the addition that the keyword «stereotype» is shown before or above
the name of the Class.

When a stereotype is applied to a model element (an instance of a stereotype is linked to an instance of a metaclass), the
name of the stereotype is shown within a pair of guillemets above or before the name of the Stereotype. If multiple
stereotypes are applied, the names of the applied stereotypes is shown as a comma-separated list with a pair of guillemets.

Presentation Options
If multiple stereotypes are applied to an element, it is possible to show this by enclosing each stereotype name within a
pair of guillemets and list them after each other.

The values of a stereotype that has been applied to a model element can be shown as part of a comment symbol tied to
the model element. The values from a specific stereotype are optionally preceded with the name of the applied stereotype
within a pair of guillemets, which is useful if values of more than one applied stereotype should be shown.

If the extension end is given a name, this name can be used in lieu of the stereotype name within the pair of guillemets
when the stereotype is applied to a model element.

UML 2.0: Infrastructure - Final Adopted Specification 175

It is possible to attach a specific notation to a stereotype that can be used in lieu of the notation of a model element to
which the stereotype is applied.

Style Guidelines

The first letter of an applied stereotype should not be capitalized. The values of an applied stereotype are normally not
shown.

Examples

In Figure 117, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class.

«metaclass» I «stereotype»
Clock

Class

resolution: Integer

Figure 117 - Defining a stereotype

Note that in order to be able to write constraints on the stereotype Clock that should be applied to the metaclass Class or
any of its relationships, it is necessary to give the end typed by the metaclass a name for navigation purposes. A typical
such name would be for example base.

In Figure 118, an instance specification of the example in Figure 117 is shown. Note that the extension must be
composite, and that the the derived required attribute in this case is false.

metaclass
:Class :Stereotype :Property
ownedAttribute
name="Class" name="Clock" name="resolution"
type type
extension

ownedAttribute

type

:Property :Extension :ExtensionEnd
memberEnd ownedEnd, o
memberEnd :PrimitiveType
isRequired = false
isComposite = false isComposite = true

name="Integer"

Figure 118 - An instance specification when defining a stereotype

176 UML 2.0: Infrastructure - Final Adopted Specification

In Figure 119, it is shown how the same stereotype Clock can extend either the metaclass Component or the metaclass
Class. It is aso shown how different stereotypes can extend the same metaclass.

«metaclass» ¢ «stereotype»
Clock

Component

resolution: Integer

«metaclass» «stereotype»
Class < {required} Creator
author: String
date: String

Figure 119 - Defining multiple stereotypes on multiple stereotypes

Figure 120 shows how the stereotype Clock, as defined in Figure 119, is applied to a class called SopWatch.

«clock»
StopWatch

Figure 120 - Using a stereotype

Figure 121 shows an example instance model for when the stereotype Clock is applied to a class called StopWatch. The
extension between the stereotype and the metaclass results in a link between the instance of stereotype Clock and the
(user-defined) class StopWatch.

«clock» lock
«clock»
StopWatch resolution = 2

:Class :Clock

name="StopWatch" resolution = 2

Figure 121 - Showing values of stereotypes and a simple instance specificiation

UML 2.0: Infrastructure - Final Adopted Specification 177

Next, two stereotypes, Clock and Creator, are applied to the same model element, asis shown in Figure 122. Note that the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

178

«creator, clock»
StopWatch

«clock»
resolution = 2

«creator»
author = "Jones"
date = "02-04-15"

Figure 122 - Using stereotypes and showing values

UML 2.0: Infrastructure - Final Adopted Specification

Part Ill - Appendices

UML 2.0: Infrastructure - Final Adopted Specification 179

A XMI Seridlization and Schema

UML 2.0 models are serialized in XM1 according to the rules specified by the MOF 2.0: XMI Mapping Specification. The

XML schema for MOF 2.0 models that support the MOF 2.0: XMI Mapping specification is available in OMG document
ad/2002-12-09.

The XMI for serializing the UML 2.0: Infrastructure as an instance of MOF 2.0 according to the rules specified by the
MOF 2.0: XMI Mapping Specification is available in OMG document ad/2003-04-04. It is expected that the normative

XMI for this specification will be generated by a Finalization Task Force, which will architecturally align and finalize the
relevant specifications.

180 UML 2.0: Infrastructure - Final Adopted Specification

B Support for Model Driven Architecture

The OMG’s Model Driven Architecture (MDA) initiative is an evolving conceptual architecture for a set of industry-wide
technology specifications that will support a model-driven approach to software development. Although MDA is not itself
a technology specification, it represents an approach and a plan to achieve a set of cohesive set of model-driven
technology specifications.

The MDA initiative was initiated relatively recently, after the UML 2.0 RFPs were issued. However, as noted in the
OMG's Executive Overview of MDA (www.omg.org/mda/executive_overview.htm): “[MDA] is built on the solid
foundation of well-established OMG standards, including: Unified Modeling Language™ (UML ™), the ubiquitous
modeling notation used and supported by every major company in the software industry; XML Metadata Interchange
(XMI1™), the standard for storing and exchanging models using XML ; and CORBA™, the most popular open middleware
standard.” Consequently, it is expected that this proposed major revision to UML will play an important role in furthering
the goals of MDA.

At the time of this writing, there appears to be no official, nor commonly agreed upon definition of MDA or its
requirements. However, the OMG provides an executive summary for the initiative, along with a collection of white
papers and presentations at www.omg.org/mda. In addition, the OMG Object Reference Model Subcommittee has
produced a “Text for an MDA Guide” draft (ormsc/02-10-01) that is intended to be used in a future MDA Guide. This
MDA Guide draft characterizes MDA as follows:

“ MDA provides an approach and tools for:

- specifying a system independently of the platform that supportsiit,

- specifying platforms,

- choosing a particular platform for the system, and

- transforming the system specification into one for a particular platform.”

In addition, this MDA Guide draft and many other MDA documents commonly refer to a“UML family of languages,”
which is described in the MDA Guide draft as: “Extensions to the UML language [that] will be standardized for specific
purposes. Many of these will be designed specifically for use in MDA.”

Given the nascent and evolving state of MDA, and the lack of common and precise definitions and requirements, it is
problematic to show strict architectural alignment with it. However, the following sections explain how UML 2.0
supports the most prominent concepts in the evolving MDA vision.

« Family of languages: UML isageneral purpose language, that is expected to be customized for a wide variety of
domains, platforms and methods. Towards that end, this UML 2.0 proposal refines UML 1.x’s Profile mechanism so
that it is more robust and flexible, and significantly easier to implement and apply. Consequently, it can be used to
customize UML dialects for various domains (e.g., finance, telecommunications, aerospace), platforms (e.g., J2EE,
.NET), and methods (e.g., Unified Process, Agile methods). For those whose customization requirements exceed these
common anticipated usages, and who want to define their new languages via metamodels, the proposed
InfrastructureLibrary isintended to be reused by MOF 2.0. Tools that implement MOF 2.0 will allow users to define
entirely new languages via metamodels.

« Specifying a system independently of the platform that supportsit: Aswas the case with its predecessor, the
general purpose UML 2.0 specification is intended to be used with awide range of software methods. Consequently, it
includes support for software methods that distinguish between analysis or logical models, and design or physical
models. Since analysis or logical models are typically independent of implementation and platform specifics, they can
be considered “ Platform Independent Models’ (PIMs), consistent with the evolving MDA terminology. Some of the
proposed improvements to UML 2.0 that will make it easier for modelers to specify Platform Independent Modelers
include the ability to model logical aswell as physical Classes and Components, consistent with either a class-based or
component-based approach.

UML 2.0: Infrastructure - Final Adopted Specification 181

182

« Specifying platforms: Although UML 1.x provided extremely limited support for modeling Platform Specific Models

(PSMs, the complement of PIMSs), this proposal offers two significant improvements. First, the revised Profile
mechanism allows model ers to more efficiently customize UML for target platforms, such as J2EE or .NET. (Examples
of J2EE/EJB or .NET/COM micro-profiles can be found in the Superstructure part of this proposal.) Secondly, the
constructs for specifying component architectures, component containers (execution runtime environments), and
computational nodes are significantly enhanced, allowing modelers to fully specify target implementation
environments.

¢ Choosing a particular platform for the system: Thisis considered a method or approach requirement, rather than a

modeling requirement. Consequently, we will not address it here.

e Transforming the system specification into one for a particular platform: Thisrefers to the transformation of a

Platform Independent Model into a Platform Specific Model. The Superstructure part of this proposal specifies various
relationships that can be used to specify the transformation of a PIM to a PSM, including Realization, Refine and
Trace. However, the specific manner in which these transformations are used will depend upon the profiles used for the
PSMsinvolved, aswell as the method or approach applied to guide the transformation process Consequently, we will
not address it further here.

UML 2.0: Infrastructure - Final Adopted Specification

Symbols
- 161

(" 172

* 79,172

+ 161

. 79

/ 128
/importedMember 149
/member 149
/lownedMember 149
= 70, 127

{} 57,62

“xor” constraint 56

A
abstract 94, 95, 104
access 152
acyclic graph 120
acyclical 94
addOnly 50
adorn 70
adorned 120
aggregation 120
alias 85, 146, 149
alFeatures 51
allNamespaces 84
alOwnedElements 87
alOwningPackages 182
adlParents 94
ancestor 65
annotatedElement 54, 114
appliedProfile 181
argument 105, 154
arrow 178

solid

for navigation 121

arrow notation 106
arrowhead 57, 66, 95, 121, 147, 151, 152, 164, 178
association 118, 131
association ends 77
association notation 130
association specialization 120
asterisk 76, 79, 172
attribute 106, 125, 132, 133
attribute compartment 106, 141
attributes 77

B

bag 121, 128, 133

baseClass 178

behavioral compatibility 89
Behavioral Feature (as specialized) 154
Behavioral Features 46, 47
bestVisibility 99

bidirectionally navigable associations 106
binary association 131

UML 2.0: Infrastructure - Final Adopted Specification

binary associations 120
BNF 79

body 53, 61
bodyCondition 155
boldface 126, 141
Boolean 73, 169
booleanValue 63, 73
bound 77, 132

braces 57, 62

Cc

cardinality 77
Changeabilities 49
ChangeabilityKind 49
character set 76, 171
class 104, 105, 106, 130

Class (as specialized) 125, 180
Classifer (as specialized) 134

classifier 51, 69, 108

Classifier (additional properties) 109, 127
Classifier (as specialized) 64, 93

Classifiers 51
colon 69
color 122, 161
comma 69

Comment (as specialized) 113

Comments 53
common superclass 59

compartment 52, 126, 141
Compartment name 52, 141

composite 120, 128, 131
composite name 85
concrete 95

conform 97
Conformance 5
conformsTo 65, 97
constant 75

constrainedElement 56, 138

Constraint 56, 138

constraint 79, 95, 97, 133, 154

constraint language 40
constraints 55, 126
context 56, 132, 138
Core 28, 111, 169
Abstractions 45
Basic 101
Profiles 175

D
dashed arrow 147, 151, 152

dashed line 54, 57, 164
DataType 107
datatype 144, 145

DataType (as specialized) 140
default 106, 125, 133, 158

definingFeature 71

Index

183

Index

derived 106, 133
derived union 133
diamond 120

digit 74, 76

dimmed 161

direct instance 104
directed 94
DirectedRelationship 90
DirectedRelationship (as specialized) 114
distinguishable 84
double quotes 76, 172

E

Element (as specialized) 54, 86, 114
element import 147
ElementImport 146
elementimport 149

Elements 59

empty name 84

endType 119

enumeration 107, 142, 143
Enumeration (as specialized) 142
enumeration type 141
EnumerationLiteral 108
EnumerationLiteral (as specialized) 143
equal sign 70

exception 154

exceptions 105
excludeCollisions 150
expansion rule 163

expression 60, 62

Expression (as specialized) 116
Expressions 60

extension 176, 180
ExtensionEnd 179

F

fase 73

feature 51, 52, 134

Feature (as specialized) 135
featuringClassifier 52, 135
formal parameter 154
formalism 37
formalParameter 154, 155

G

general 65, 66, 94

generalization 65, 99, 163
generalization arrow 121
generalization hierarchy 65, 87, 93
Generalizations 63

getName 147
getNamesOfMember 85, 150
guillemets 52, 141, 186

H
hasVisibilityOf 94

184

hidden 150
hierarchy 83
hollow triangle 66, 95

|

identity 140, 145
implementationClass (Class) 22
import 99, 147, 151, 152
importedElement 146
importedPackage 151
importedProfile 184
importingNamespace 147, 151
importMembers 150
includesCardinality 78
infinite 77

infinity 172

inherit 94, 125
inheritableMembers 94
inheritedMember 94

initial 125, 133

initialization 106

Instance 68

instance 71

Instances 67
InstanceSpecification 68
InstanceVaue 70

instantiated 94, 106, 125, 132
instantiation 77

Integer 73, 170

integerValue 63, 74
isAbstract 94, 104
isComposite 106
isComputable 63, 73, 74, 75, 76
isConsistentWith 89, 132, 156
isDerived 106, 119, 125, 131
isDistinguishableFrom 48, 84, 154
isMultivalued 78

isNull 63,74

isOrdered 77, 155

isQuery 155

isReadOnly 50, 106, 131
isRedefinitionContextValid 89
isRequired 177

isUnique 78, 119, 155

italics 126

J
Java 56

L

language 61

Language Architecture 27
link 118

literal 63, 107
LiteraBoolean 72
LiteralInteger 62, 73

UML 2.0: Infrastructure - Final Adopted Specification

LiteraNull 62, 74
Literals 72

Literal Specification 62, 75
LiteralString 62, 75
LiteraUnlimitedNatural 76
lower 78, 81, 155
lowerBound 78, 81, 180
lowerVaue 81

M

MO 35

M3 35

makesVisible 160

may SpecializeType 94
member 85

member import 151
memberEnd 119
membersAreDistinguishable 85
merge 164

metaclass 177, 180
metaclassReference 182
metamodel Reference 182
MOF 28, 101, 175, 182, 191
Multiple inheritance 104
Multiplicities 77
multiplicity 105, 120, 136
MultiplicityElement 77
MultiplicityElement (as specialized) 81, 135
MultiplicityExpressions 80
multivalued 77
mustBeOwned 87, 160
mutually constrained 106

N

name 83, 102, 103, 133, 149, 163
name compatibility 89
NamedElement 83, 102
NamedElement (as specialized) 98, 148
namespace 83, 84, 149

Namespace (additional properties) 139
Namespace (as specialized) 58, 149
Namespaces 82

natural language 41

navigability arrow 178

navigable 120, 179

navigation arrow 121

Navigation arrows 70

nested namespaces 83
nestedPackage 109, 160
nestingPackage 109

non-navigable 119
non-navigableend 132
nonprintable characters 172
nonunique 79

note symbol 54, 57

null 74

UML 2.0: Infrastructure - Final Adopted Specification

Index

0]

OCL 39,56, 61, 62, 169, 171
OpaqueExpression 61
OpaqueExpression (as specialized) 117
operand 61

Operation 105

operation 105, 158

Operation (additional properties) 130, 144
Operation (as speciaized) 154
operation compartment 141
opposite 106, 131

ordered 77,79, 119, 121, 128
OrderedSet 133

overriding 85

ownedAttribute 104, 125, 140
ownedClassifier 109, 160
ownedComment 54, 115
ownedElement 86, 115
ownedEnd 119, 177
ownedLiteral 107, 142
ownedMember 85, 160
ownedOperation 104, 125, 141
ownedParameter 105
ownedRule 58, 139
ownedStereotype 182

owner 86, 115

Ownerships 85
owninglnstance 71

P

package 109, 110, 159, 160, 177
Package (as specialized) 181
package import 147, 151
package merge 162
PackageableElement 150
packagelmport 149, 151
packageMerge 160, 162
parameter 47, 48, 105
Parameter (as speciaized) 158
parameters 125

parents 65, 94

plussign 161

postcondition 155

precondition 155

predefined 56, 169

primitive 140, 145
PrimitiveType 108
PrimitiveType (as specialized) 144
PrimitiveTypes 169

printable characters 172

private 99

Profile 181

ProfileApplication 184

Profiles 29, 176

Property 106, 125

Property (additional properties) 145

185

Index

Property (as specialized) 130
property string 79, 120
public 99

pure function 140

Q

qualified 147

qualified name 83, 149, 161
qualifiedName 83

R

raisedException 105, 154, 155
readOnly 50, 128, 133
rectangle 54, 70, 142, 161
RedefinableElement 88
RedefinableElement (as specialized) 136
redefine 133
redefinedElement 88, 136
redefinedOperation 155
redefinedProperty 131
redefines 121, 128

redefining 120
redefinitionContext 88, 136
Redefinitions 87

reference metamodel 182
relatedElement 91, 115
Relationship 91

Relationship (as specialized) 115
Relationships 89

removeOnly 50

return result 154

returnResult 154

root 83

round parentheses 61
run-time extension 143

S

segments 120, 122

self 56

semicircular jog 121
separate target style 66, 95
Separator 84

seq 121, 128

Sequence 133

sequence 121, 128

Set 133

shared target style 66, 95
side effect 81

slash 120

Slot 71

slot 69, 93, 104

snapshot 69

solid line 120

solid path 70
solid-outline rectangle 52
source 91, 114

186

specialized 120
specific 66
specification 56, 69, 139
square brackets 79
static operation 156
stereotype 176, 185
String 75, 171
stringValue 63, 75
structural compatibility 89
Structural Feature 92
Structural Feature (as specialized) 50, 136
structured datatype 140
subpackage 163

subset 120, 133

subsets 121, 128
subsettedProperty 131
subsetting 131
subsettingContext 132
Super 93

superClass 104, 125
Superstructure 101
symbol 61

T
tab 161

target 91, 114

ternary association 122

true 73

tuples 118, 119

Type 96, 102, 109, 159

type 96, 97, 103, 137, 155, 179
Type (as speciaized) 137

type (Class) 9, 13

Type conformance 65
TypedElement 96, 97, 103
TypedElement (as specialized) 137
TypedElements 96

U
underlined name 70

union 121, 128
unique 77,79, 119
unlimited 76, 172
UnlimitedNatural 172
unlimitedValue 63, 76
unordered 79
unrestricted 49, 50
upper 78, 81, 155
upperBound 78, 82
upperVaue 81

\%

vaue 71, 73,75, 76
ValueSpecification 62
ValueSpecification (as specialized) 117
Visibilities 97

UML 2.0: Infrastructure - Final Adopted Specification

Index

visibility 97, 98, 133, 146, 151, 160
visibility keyword 126

visibility symbol 121
VisibilityKind 99

visibleMembers 160

X
XMI 162, 191

UML 2.0: Infrastructure - Final Adopted Specification 187

	Table of Contents
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional information
	6.1 Changes to Adopted OMG Specifications
	6.2 Architectural Alignment and MDA Support
	6.3 How to Read this Specification
	6.4 Acknowledgments

	Part I - Introduction
	7 Language Architecture
	7.1 Design Principles
	7.2 Infrastructure Architecture
	7.2.1 Core
	7.2.2 Profiles
	7.2.3 Architectural Alignment between UML and MOF
	7.2.4 Superstructure Architecture
	7.2.5 Reusing Infrastructure
	7.2.6 The Kernel Package
	7.2.7 Metamodel layering
	7.2.8 The four-layer metamodel hierarchy
	7.2.9 Metamodeling
	7.2.10 An example of the four-level metamodel hierarchy

	8 Language Formalism
	8.1 Levels of Formalism
	8.1.1 Diagrams
	8.1.2 Instance Model

	8.2 Class Specification Structure
	8.2.1 Description
	8.2.2 Associations
	8.2.3 Constraints
	8.2.4 Additional Operations (optional)
	8.2.5 Semantics
	8.2.6 Semantic Variation Points (optional)
	8.2.7 Notation
	8.2.8 Presentation Options (optional)
	8.2.9 Style Guidelines (optional)
	8.2.10 Examples (optional)
	8.2.11 Rationale (optional)
	8.2.12 Changes from UML 1.4

	8.3 Use of a Constraint Language
	8.4 Use of Natural Language
	8.5 Conventions and Typography

	Part II - Infrastructure Library
	9 Core::Abstractions
	9.1 BehavioralFeatures package
	9.1.1 BehavioralFeature
	9.1.2 Parameter

	9.2 Changeabilities package
	9.2.1 ChangeabilityKind
	9.2.2 StructuralFeature (as specialized)

	9.3 Classifiers package
	9.3.1 Classifier
	9.3.2 Feature

	9.4 Comments package
	9.4.1 Comment
	9.4.2 Element (as specialized)

	9.5 Constraints package
	9.5.1 Constraint
	9.5.2 Namespace (as specialized)

	9.6 Elements package
	9.7 Expressions package
	9.7.1 Expression
	9.7.2 OpaqueExpression
	9.7.3 ValueSpecification

	9.8 Generalizations package
	9.8.1 Classifier (as specialized)
	9.8.2 Generalization

	9.9 Instances package
	9.9.1 InstanceSpecification
	9.9.2 InstanceValue
	9.9.3 Slot

	9.10 Literals package
	9.10.1 LiteralBoolean
	9.10.2 LiteralInteger
	9.10.3 LiteralNull
	9.10.4 LiteralSpecification
	9.10.5 LiteralString
	9.10.6 LiteralUnlimitedNatural

	9.11 Multiplicities package
	9.11.1 MultiplicityElement

	9.12 MultiplicityExpressions package
	9.12.1 MultiplicityElement (specialized)

	9.13 Namespaces package
	9.13.1 NamedElement
	9.13.2 Namespace

	9.14 Ownerships package
	9.14.1 Element (as specialized)

	9.15 Redefinitions package
	9.15.1 RedefinableElement

	9.16 Relationships package
	9.16.1 DirectedRelationship
	9.16.2 Relationship

	9.17 StructuralFeatures package
	9.17.1 StructuralFeature

	9.18 Super package
	9.18.1 Classifier (as specialized)

	9.19 TypedElements package
	9.19.1 Type
	9.19.2 TypedElement

	9.20 Visibilities package
	9.20.1 NamedElement (as specialized)
	9.20.2 VisibilityKind

	10 Core::Basic
	10.1 Types diagram
	10.1.1 Type
	10.1.2 NamedElement
	10.1.3 TypedElement

	10.2 Classes diagram
	10.2.1 Class
	10.2.2 Operation
	10.2.3 Parameter
	10.2.4 Property

	10.3 DataTypes diagram
	10.3.1 DataType
	10.3.2 Enumeration
	10.3.3 EnumerationLiteral
	10.3.4 PrimitiveType

	10.4 Packages diagram
	10.4.1 Package
	10.4.2 Type (additional properties)

	11 Core::Constructs
	11.1 Root diagram
	11.1.1 Comment (as specialized)
	11.1.2 DirectedRelationship (as specialized)
	11.1.3 Element (as specialized)
	11.1.4 Relationship (as specialized)

	11.2 Expressions diagram
	11.2.1 Expression (as specialized)
	11.2.2 OpaqueExpression (as specialized)
	11.2.3 ValueSpecification (as specialized)

	11.3 Classes diagram
	11.3.1 Association
	11.3.2 Class (as specialized)
	11.3.3 Classifier (additional properties)
	11.3.4 Operation (additional properties)
	11.3.5 Property (as specialized)
	11.3.6 Classifiers diagram
	11.3.7 Classifier (as specialized)
	11.3.8 Feature (as specialized)
	11.3.9 MultiplicityElement (as specialized)
	11.3.10 RedefinableElement (as specialized)
	11.3.11 StructuralFeature (as specialized)
	11.3.12 Type (as specialized)
	11.3.13 TypedElement (as specialized)

	11.4 Constraints diagram
	11.4.1 Constraint
	11.4.2 Namespace (additional properties)

	11.5 DataTypes diagram
	11.5.1 DataType (as specialized)
	11.5.2 Enumeration (as specialized)
	11.5.3 EnumerationLiteral (as specialized)
	11.5.4 Operation (additional properties)
	11.5.5 PrimitiveType (as specialized)
	11.5.6 Property (additional properties)

	11.6 Namespaces diagram
	11.6.1 ElementImport
	11.6.2 NamedElement (as specialized)
	11.6.3 Namespace (as specialized)
	11.6.4 PackageableElement
	11.6.5 PackageImport

	11.7 Operations diagram
	11.7.1 BehavioralFeature (as specialized)
	11.7.2 Operation (as specialized)
	11.7.3 Parameter (as specialized)

	11.8 Packages diagram
	11.8.1 Type (additional properties)
	11.8.2 Package
	11.8.3 PackageMerge

	12 Core::PrimitiveTypes
	12.1 PrimitiveTypes package
	12.1.1 Boolean
	12.1.2 Integer
	12.1.3 String
	12.1.4 UnlimitedNatural

	13 Core::Profiles
	13.1 Profiles package
	13.1.1 Extension (from Profiles)
	13.1.2 ExtensionEnd (from Profiles)
	13.1.3 Class (from Constructs, Profiles)
	13.1.4 Package (from Constructs, Profiles)
	13.1.5 Profile (from Profiles)
	13.1.6 ProfileApplication (from Profiles)
	13.1.7 Stereotype (from Profiles)

	Part III - Appendices
	A XMI Serialization and Schema
	B Support for Model Driven Architecture
	Index

