UML™ profileand InterchangeModel's
for Enterprise Application|ntegration
(EAI) Specification

Draft Adopted Specification
January 2002

Copyright 2001 DSTC

Copyright 2001 Hitachi, Ltd.
Copyright 2001 IBM Corporation
Copyright 2001 Oracle Corporation
Copyright 2001 Rational Corporation
Copyright 2001 Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid
up, worldwide license to copy and distribute thisdocument and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to haveinfringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to i mplement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BEACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIESLISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
ORIMPLIED, WITH REGARD TO THISMATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIEDWARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companieslisted
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may bereproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Dataand Computer Software Clause at DFARS 252.227.7013 OM G® and
Object Management are registered trademarks of the Object M anagement Group, Inc. OMG OBJECT MANAGEMENT
GROUPR, CORBA, CORBA ACADEMY, CORBA ACADEMY & DESIGN, THE INFORMATION BROKERAGE,
OBJECT REQUEST BROKER, OMG IDL, CORBAFACILITIES, CORBASERVICES, CORBANET, CORBAMED,
CORBADOMAINS, GIOP, [IOP, OMA, CORBA THE GEEK, UNIFIED MODELING LANGUAGE, UML, and UML
CUBE LOGO areregistered trademarks or trademarks of the Object Management Group, Inc.

X/Open isatrademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuraci es they may find by completing the | ssue Reporting Form listed on
the main web page http://mww.omg.org, under Documents & Specifications, Report a Bug/lssue.

January 2002

Contents

Listof Figures e Vil

Preface XV

Part 1 - Introduction

1. Introductionand Guide 1-1
1.1 Introduction 1-1

12 Attachments...............oiiiiiiin.. 1-2

2. SCOP . e 2-1
2.1 Scenario 1: Connectivityccoiiiiinaa.. 2-1

2.2 Scenario 2: Information Sharing 2-2

2.3 Scenario 3: Process Collaboration. 2-3

3. ModelingApproach. i 31
31 Metamodel 31

32 UMLProfile......coo 3-2

3.3 Four-layered Architecturel 32

34 SEeMANtiCS. 3-2

4. Compliance 4-1
41 OVEIVIEW . ottt e e 4-1

4.2 Compliance with the UML Collaboration Profile. 4-1

421 General Compliance..................... 4-1

422 Visudization...........o 4-2

4.3 Compliance with the UML Activity Profile............ 4-2

UML for EAI Draft Adopted Specification i

Contents

431 General Compliance. 4-2

432 Visudization............... 4-2

4.4 Compliance with the MOF-based EAl Metamodel 4-3
45 Compliance Statement Examples. 4-3
5. Requirementsand Areasfor Discussion 5-1
51 Mandatory Requirements.covuinnn.. 5-1
5.1.1 Event-Based Architecture. 5-1

5.1.2 Heterogeneous Environment............... 5-2

513 XML. ..o 5-2

514 XMl ..o 5-3

515 UML ProfileforEDOC 5-3

516 MOFalignment 5-4

5.1.7 Proof of Concept of Profile................ 5-4

5.1.8 Demonstration that Models are Implementable 5-4

5.2 DISCUSSIONISSUESt vttt it e i 5-5
5.2.1 Development and Management Aid 5-5

522 Tool Support.o, 5-5

5.3 Relationship to Envisioned OMG Technology 5-5
531 Red-time........... 5-5

54 Relationship to Existing Standards. 5-6
541 UML. 5-6

5.4.2 MetaObject Facility (MOF)............... 5-6

5.4.3 Common Warehouse Metamodel (CWM) 5-6

55 Other Related Activities. 5-7

Part 2 - Metamodel

6. EAI Integration Metamodel 6-1
6.1 EAIl Integration SpecializesFCM 6-1
6.2 FCM Derived Associations 6-2

6.2.1 Motivation 6-2
6.22 FCMDiagrams.............c.ouvuinvn... 6-2
6.2.3 CompositeNodes....................... 6-4
6.24 Composite Nodes and Their Contents 6-4
6.2.5 Relationship between the Interface of a Composite
NodeanditsContents. 6-5
6.3 EAI Specidizationsof theFCM 6-6
6.3.1 Mativation 6-6
6.32 EAILINK ... 6-6
6.3.3 EAITerminal........... 6-7

i UML for EAI Draft Adopted Specification January 2002

Contents

6.3.4 EAIMessageContent. 6-7
6.3.5 EAIMessageOperation................... 6-10
6.3.6 EAISourceand EAISINK. 6-11
6.3.7 EAIQueue......... 6-11
6.3.8 EAIQueuedinputTerminal and EAIQueuedOutput
Terminal 6-12
6.3.9 EAIQueuedSource and EAIQueuedSink 6-13
6.3.10 Operators . ..ot 6-14
6.3.11 Adapters.......... ... 6-17
6.4 Kindsof Operator., 6-21
6.41 Operatorsot 6-21
6.4.2 Topic-based publish/subscribe 6-34
6.5 CCA Component Library for EAl 6-36
6.5.1 Operatorsoiiiiiiii 6-36
6.52 Adapters............. . 6-41
6.5.3 CCA and EAI Metamodel Mapping Tables ... 6-44
7. EAlI Common Application Metamodel 7-1
7.1 BusinessRequirementsandValue 7-1
7.2 Common Application Metamodel for Applications Interfaces7-2
7.2.1 End-to-End Connector Usage Using EAl Common
Application Metamodel 7-3
7.3 Common Application Metamodel 7-4
7.3.1 Enterprise Application Interface Metamodels . 7-5
7.3.2 Language Metamodels................... 7-5
7.3.3 Physical Representation Model: Type Descriptor
Metamodel 7-6
7.3.4 Type Descriptor Metamodel Descriptions 7-9
7.3.5 TypeDescriptor Formulas 7-11
7.3.6 Type Descriptor Formula Examples. 7-12
7.3.7 Physical Representation Model: TDLang
Metamodel 7-19
7.3.8 TDLang Metamodel Descriptions. 7-20
7.3.9 Physical Representation Model: Convergent
Metamodel 7-22
7.3.10 Convergent Metamodel Descriptions 7-23
7.3.11 Sample Serialization of Convergent Metamodel 7-23

Part 3 - Profile Definition

8. Coallaboration Modeling

8.1

January 2002

Overview

UML for EAI Draft Adopted Specification iii

Contents

8.1.1 General Approach.t 8-1

8.1.2 Useof UML operations 8-2

8.1.3 Concrete Notation. 8-2

8.1.4 Chapter structure 8-2

82 Teminals........ 8-2
8.3 OPErAOrS 8-4
8.3.1 PrimitiveOperator 8-4

8.3.2 Transformers and Database Transformers 8-4

833 Filters. 8-5

834 Streams............... . 8-6

835 PostDaters..............cciiiiiin. 8-7

8.3.6 SourceAdapters................. ..., 8-8

8.37 TargetAdapters............., 8-9

838 CalAdapters........... 8-10

8.3.9 Request/Reply Adapters. 8-11

8.3.10 Sourcesand Queued Sources 8-12

8.3.11 Sinksand Queued Sinks.................. 8-13

8.3.12 AQQregatorsot 8-13

8313 TiMES. ... 8-14

8314 ROULErS. 8-16

8.3.15 Subscription Operators. 8-17

8.3.16 Publication Operators.................... 8-17

8.3.17 TopicPublishers. 8-19

8.3.18 Compound Operators.................... 8-19

84 RESOUICES.t 8-27
85 MessageFormats. 8-27
8.5.1 MessageContentCore. 8-27

8.5.2 Basic MOM Message Structure 8-30

8.6 Mapping withMetamodel 8-32
861 Terminals............ 8-33

8.6.2 Operatorst 8-33

8.6.3 RESOUMCES..........coiiiiiiiiiinn.. 8-38

8.64 MessageFormats 8-39

9. ActivityModeling 9-1
9.1 Modding Integration Processes. 9-1
9.2 AnIntegration Process Scenario 9-1
9.21 TheExchangeProcess 9-2

9.2.2 Modeling message flow explicitly 9-3

9.2.3 Modeling control flow 9-5

iv UML for EAI Draft Adopted Specification January 2002

Contents

January 2002

9.24 Abstracting detail by decomposition 9-6
9.25 Further fragmentary examples 9-6
9.3 ProfileElementSummary 9-9
9.3.1 Stereotypes.iiiiiiii. 9-9
932 TaggedValues............... ... 9-11
9.3.3 Mappingto EAl Metamodel 9-12

Part 4- Proof of Concept

10. Example: Connectivity and Information Sharing. 10-1
10.1 TheBrokerageBusiness.c..coou... 10-1

10.2 Connection of Enterprises to the Online Brokerage System 10-2

10.3 TheOn-lineBrokerageSystem 10-6

104 International Brokerage Server...................... 10-10

1041 Orders. . ..ot 10-10

10.4.2 Notifications. 10-10

10.5 Investment Manager Servero 10-13

1051 Orders.t 10-13

10.5.2 Notifications. 10-13

10.6 Middleware Server and Back-End Brokerage System 10-14

10.7 Publication. i 10-15

11. ExampleUsingtheEDOCCCA........o ... 11-1
111 EXample. ..o 11-1

Part 5- Implementation M appings

12. Mappingto WebSphereMQ Integrator 12-1
121 WebSphereMQ Messagingovvvvveennn... 12-1
12.1.1 WebSphereMQ Messages 12-2
12.1.2 WebSphere MQ Message Queuing. 12-3
12.2 WebSphere MQ Integrator Message Flows 12-4
1221 SUMMANY ... 12-4
12.22 WMQIMessageFlow. 12-4
12.2.3 WMQICompoundNode 12-5
12.2.4 WMQIPrimitiveNode.................... 12-6
12.2.5 Supplied WMQIPrimitiveNodes. 12-6
12.2.6 TheRole of the WM QI message-broker
topology 12-8
13. JavaMessage Service (JMS). ... 13-1
131 PTPDOMaAIN. ...ttt 13-1
UML for EAI Draft Adopted Specification v

Contents

132 Pub/SubDomain 13-4

14. LanguageMetamodels 14-1
141 COBOL Metamodel 14-1

14.1.1 COBOL Metamodel Descriptions. 14-4

142 PL/I Metamodel 14-7

14.2.1 PL/I Metamodel Descriptions. 14-9

143 CMetamodel 14-14

14.3.1 C Metamodel Descriptions. 14-17

144 C++Metamodel 14-19

14.4.1 C++ Metamodel Descriptions. 14-20

Appendix A - Non-normative Enterprise Application
Interface Metamodels. A-1

vi UML for EAI Draft Adopted Specification January 2002

Listof Figures

FCM Component metamodel diagram (from ad/2001-06-09)cccerermriererneeiieneesie e 6-2
Flow Composition Model main diagram (from ad/2001-06-09)cccoerererenenieeinieeie e 6-3
Flow Composition MOOEl JELBLYPESccvereiiereiie ittt sr et sr e e 6-3
Derived association between FCM Command and FCM COMPOSITIONcccevieeiereenienienesieneennns 6-4
Derived association between a composite node, its content nodes and its composed connections 6-5
Derived association between FCMTermina and FCMParametercocooovveeieneiencnesineenns 6-5
DEfiNitioN OF EATLINKoiviieieiee ettt et ettt este et e st e e ne e s e enseesaesseessen e anneennas 6-6
e N = 10011 RSP 6-7
EAT MESSAJECONTENT ...ttt ettt ettt sr e er e et et es e sr e e en e e e e ennas 6-8
N 1= (= P TRRR 6-9
EATEXCEPLONNOLICE. ...ttt ettt et e bttt e e e s e e et sn e s sreas 6-9
XML MESSAGE ElEIMENTS ...ttt e et e b et ne e se e sr e 6-10
M ESSAGEOPENBLION ...tttk se e se ettt eb et es e e et e s e se et se et eb e et eb e e e enbene e beee e ees 6-10
SOUICES BNA SIMNKSeietieieieieeeeeie et etee st et e st e e s e sseeseeene e s e anseeseesseeseesseesseaneeseenseeneesseessesneanseansas 6-11
BEATQUEUE ...ttt et ettt et eh e e bt et ehbeem bt et e e ee e ehbeanbe e e e e se e eneeanneaanes 6-12
EAIQueuedOutputTerminal and EAIQueuedinputTerminalcoceveriiinieenene e 6-12
QueuedSource and QUEUEATAIGELceovirieeeeie ettt be et sre e e e e e e ennas 6-13
Definitions of PrimitiveOperator and CompoundOPEraOrccoverereereeirneeie e 6-14
EATMESSAgEFTOW ...ttt e et eb e e e e e 6-16
Derived association between aterminal inside a composite node and the corresponding

LC 000117 01 o L= SRS 6-17
SOUMCEATAIDLE ...ttt ettt ettt s e ee et ee et ee bt eh e et e s e e e en e sr e e srenneereas 6-17
EATTANGEIATDRLEN ... e e bttt sr e e e bt e b e er e e 6-18
EATCALAGADLEN ...ttt e et et eb et s et er et e e 6-19
EATREQUESIFOIMELo e e ene e 6-20
EAITREQUESIREPIYATADEIE ...ttt e ettt se e e r e en e 6-21
T OSSR 6-22
B (= TSR PRTPRPRRRPR 6-23

January 2002 UML for EAI Draft Adopted Specification

vii

Figures

N oS D - = ST TSTR 6-24
LI 00 4011 SRRSO PP PRPRORO 6-24
EAIDBTIANSIOMIEL ...ttt ettt e ettt eb et s e e et ne e er s 6-25
A 0o 1< = o PRSPPI 6-26
EATROULEY ...ttt e r e e sr e er e ea e e e e e e e e en e en e e e e s n e nnees 6-27
EAIRouter and EAIROULEIUPAELEoiviiiiieiieiieiee ettt s 6-27
EATROULEIUPABIEFONMEALeieiiiciiee ettt e et eeseese e sn e e 6-28
SUDSCITPHONOPEIBLON ... ccueeueeuteeete sttt ettt se e et sttt ebe b eb et e s e e e b se e b sb e st ese et en e ae e 6-29
EATISUBSCITPEIONFOIMEAL ...ttt e et sn e er s 6-29
EATSUBSCITEION ...ttt ettt ettt et en et en e e 6-30
SUDSCIPHIONFIITES ...t r et bt s e sr e er et se e 6-30
EAISubscriptionRule, EAITopicRule and EAICONENLRUIEccoiviiiiiec e 6-31
EAIPublicationOperator and EAISUDSCIiptiONOPEIELONcoerverierierieeeineeiie e 6-31
Example SubscriptionTable instance diagram ..o s 6-32
RS S (O] 1< = (o TPV R PRSPPI 6-32
EAIMESSAgETIMENCONAITION ...ttt et sn e sr s 6-33
EATEXDITYFOIMNAL ...ttt ettt ettt se e e sttt eb et e e et nn e ee s 6-33
EAITIMECNECKOPEIGLON ...ttt ettt sn et sn e e 6-34
Topicsalowed by an EAITOPICRUIE ..ot e s 6-35
Relationship between aterminal and the topicsfor which it has a subscription ..., 6-35
Relationship between publishers, SUDSCribers and tOPICSccoevererireneneee e 6-36
CCA notation for asample generic EAIPrMItiVEOPEIELOrcceevereeimrieienecie e 6-37
CCA notation for sample EAITIanS OMMEYoiieiiieiereee e e 6-38
CCA notation for asample EATFITEN ..o 6-39
CCA notation for asample EAISIIEAMociiiiiiiieeiereee e e 6-40
CCA notation for sample EAICOMPOUNAOPEIELONc.ervirieriereeieseinie e 6-41
CCA notation for asample EAISOUICEATARLESoociiiiiiierieeee e e 6-41
CCA notation for asample Pull mode EAISOUrCeAdapterccvviiereriiireeieee e 6-42
CCA notation for asample EAITargetAdapLeroooecieiiiereece e e 6-42
CCA notation for sample EATCAl AADRIEScc.oiiiiieee e e 6-44
Multiple Application and Development ENVIFONMENEScccoeriieiine s 7-1
Application Interface MetamOUE! ..o e e 7-3
Type DesCriptor MELAMOUE]ooi it sr e 7-7
TDLANG tO TYPE DESCIIPLONeeveieeiieseeie sttt ettt ea e e se e e b s e en s 7-8
TYPE DESCIPLOr SLEMEOLYPESveieeiieeeete sttt ettt se et r et bt b e e e ne et sr e nee s 7-8
TDLANG MEBMOUE ..o e e ettt e sr et sr e ereas 7-20
Convergent MELAMOTE!c.ooiii ettt sr e sr e en e 7-22
Class diagram for prototypical primitive operator with terminals ..o 8-3
Class diagram for prototypical tranSfOrMEr ..o e e 8-4
Class diagram for prototypical database transSformOrMErcccooeiererereeirieee e 8-5
Class diagram for prototypiCal fIITEN ..o o s 8-6

viii UML for EAI Draft Adopted Specification January 2002

Class diagram for prototypiCal SITEAIMcceiiriiiieieieeie et e e e 8-7
Class diagram for prototypiCal POSE GALENcceiieeieriiie e e 8-7
Class diagram for prototypiCal SOUICE 8aPLEYcuiiiiiiriirere e e 8-8
Class diagram for prototypical target adaptercooeoirireieree e 8-9
Classdiagram for prototypical Call adapter ... 8-10
Class diagram from prototypical request/reply adaptercooeveiiriiiniecinrece e 8-11
Class diagram for prototyPiCal SOUMCEceiieirieeieieeiere e sr et sr e se e sr e e e 8-12
Class diagram for prototypiCal QUEUEH SOUICTEoiiierierierierieie st 8-12
Class diagram for prototypiCal SINKccoiirieireeieie e s 8-13
Class diagram for prototypiCal @gQregaLOrc.cooeuereeriereire et se e sr e sre e e 8-14
Class diagram for prototypiCal TIMEYooiieeirieie et s 8-15
Class diagram for prototypiCal FOULEYeocieirieeieie et sr e 8-16
Class diagram for prototypical SUDSCIiPtION OPEFEIONcc.ccererieriereerie et 8-17
Class diagram for prototypical publiCation OPEIatorcccceeerieeiereeie e 8-18
Class diagram for prototypical topiC PUDIISNENcooiiiieie e e 8-19
Class diagram for example COmMPOUNT OPENBEOcceeuerrerieriereeie et seesne e 8-20
Class diagram for a compound operator with compound COMPONENESccceeveereerieerereeeseeneens 8-20
Terminals for example of coOMPOUN OPEIELOTcoeeeriieiereereeie et e 8-21
Collaboration diagram for example compound OPEraEOTcccvreeirreeierieie e 8-22
Synchronous and asyNCroNOUS TINKSoiiiiiieircie e s 8-23
Class diagram for example with components of SEMEtYPEccoceviriiiriicinice e 8-23
Collaboration diagram for example with components of SAMe tYPe........ccocvevrveeiereeieseene s 8-24
Configuration of call and request/reply adaptersccoviie i 8-25
Configuration of publication and SUDSCIiPtioN OPEIaOrSccccoereirererenereeee e e 8-26
A simple Message CONENE CIaSS...........oiii e 8-29
A model of amessage contaiNiNg &taDIEccooiiiiiiici s 8-29
Example of the use of the ExceptionNotice and MOMHeader Stereotypescccveeevereeriereene. 8-31
Example of the use of the MOMHeader SIEr€OtYPEcccuerviieieieee et 8-32
Basic way of modeling message based integration with Activities (Exchange example) 9-3
Application of the "messageFlow" stereotype to emphasize data-flow aspectsccccceeevennee 9-4
Application integration example with "messageflow" stereotype (partial)ccccceveeeriierennene 9-4
Optional control flow transitions between activitieswithin asingle system ... 9-5
Decomposition of the integration step " Place Quote" in the context of the Exchange example ... 9-6
Modeling multiple inputs and outputs with join and fork pseudo-states............occcoeveieiinc i 9-7
Modeling internal data flow with Object fIOW SELEScoeiiieriie e 9-7
Example of adecision node to model rule-based routingccoveeeeerenrenieseseseeee e 9-8
Synchronization With FOrkS and JOINScoeiiiiiiieee e e s 9-8
Dynamic concurrent invoCation Of @N 8CHIVITYcceeiieiiereiieie e 9-8
Explicit modeling of an event for an adapter implementation ... 9-9
As-isarchitecture for international and iNVeStMENt MaNagEr'Scccoververererereeerieeee e 10-2
Brokerage company - COmMpPONENt CONNECLIONSccurrreierrerieie e e s e s e e 10-3

January 2002 UML for EAI Draft Adopted Specification

Figures

Brokerage company - COMPONENTSc..oriueiririeriereetiee et s se e e se et st ese e e s e e seesbeseenas 10-4
International brokerage Systems - tErMINAIScoooiiiiiiieice e s 10-5
Investment-manager SyStemsS - tErMINGISc..ooiiiiieie e e 10-5
On-line brokerage SysStem - tEIMINEIScooiieiiii e 10-6
On-line brokerage SyStem - COMPONENTScoeeirieieieeie et e e se e sr e sre e e 10-7
On-line brokerage - COMPONENT CONNECTIONSceueireeiereeie ettt sre e 10-7
International brokerage Server - terminNalS ..o s 10-8
[Investment-manager SEIVEr - TEMINEISooiiiiiiece e e 10-9
Middleware SErver - tEIMINGISc..oo it sn e sr s 10-9
Back-end brokerage System - terMiNalScoceoiiieiiiee et 10-9
PUD/SUD SEIVEr - tEIMINGIS ... e neeas 10-10
IBS = COMPONENLS ...ttt e er ettt er e st e e e nneenn e e nn e e ennas 10-11
IBS - COMPONENT CONNECLIONSeiueieiaieitiie ettt se e sr e sr e see e es e et sn e enesneeneas 10-12
Back-end brokerage System - COMPONENTSccriieirrieiereiiee et eeeas 10-14
Back-end brokerage system - component CONNECLIONSccueueririereeneeeereerie e eeeas 10-15
Back-end processing System - tEMMINAIS ..o e e 10-15
PUD/SUD SErVEr - COMPONENES ..o e e s nreas 10-16
Pub/sub server - component CONNECTIONScceiiieiereee e 10-16
BrokerageCompany COmpoNnent CONNECLIONSceureeiereeieiereeiesreie e s e e e 11-2
Ordering COMPONENESc.eiuietereesereesie et et sr st ere st s reeseese e e eseeaseaaese e besrenseebenaeeseeeenseanene e 11-3
ONliNeBrokerage COMPONENEc.eiieeieieeie sttt esee et e se e e b e sbe e ese e e en e aeenbesee s e 11-3
20001 M SystemOrdering ProtOCOIc.coeiirieiereeieieeie st se e e sr e e 11-4
1999IM SystemOrdering PrOtOCOIc.oiiiiiiii et 11-4
JaPaNOIrdering PrOtOCO!coooiiieiiiiie et sr et e et sn et sr e eneas 11-5
Standardinternational Ordering ProtOCO!ccooiieiirieiieee e e e 11-5
Detail of OnlineBrokerage COMPONENTcoeiiririieierieie st 11-6
Detail of InvestmentManagerServer COMPONENTEooeuererieiereerie e se e srese e 11-6
Detail of 2000IMIBSHaNdler COMPONENTcc.eeeiieieeeie e 11-7
Detail of 1990IMIBSHaNdler COMPONENTccueriiieiieeeie e 11-8
Detail of InternationaBrokerageServer COMPONENTcooerieiereerereereseere e 11-9
Detail of JapanIMIBSHandler COMPONENLcoerieuirieieieeieie e neeas 11-10
Detail of StandardlnternationalIMIBSHandler Componentccoeveemnieeieneenenene s 11-11
WM QRemoteQueue and WM QATIGSQUEUEooeeuieie et s 12-3
Summary of the main usage of OPErator SLErEOLYPESoovirverereerie st 12-4
WMQIMESSAGEFTOW ... e et sr s 12-5
Compound and primitive NodeSin WMQI ..o e e 12-6
WMQINtEgGrator ClasS QIa0IaMcoveeiieeiereiie sttt sr et e e e sr e sre s 12-9
JMS QUEUESENAEYeeeeeeeeeeeie ettt ettt estee st e st e s e e e ereeseeeseesteese e e e e seenseentesseenseeneanneannas 13-2
JM S QUEUERECEIVEScneiiiiieeiie e stee e sttt eaee st e st e st e e es e eseeseesseesee e e e aneenseenteeneeseeeeesneanneennas 13-3
JM'S QUEUEBIOWSES ...ttt et ettt e st sttt e re e st e ea e et e e st e esbeemse e s e e e eseeembeanneaaneeaseeernaans 13-3

X UML for EAI Draft Adopted Specification January 2002

A IM SSubscriberListener expects iNCOMING MESSATEScccverrrrerierrerrerreresesneeseseeseessesseseesnes 13-4
Model for the content of the IMS SUDSCHPtION tabIeooeiiiiii 13-4
JM ST OPICSUDSCITDEICIEAIONeiiiceieeeee e e e 13-5
JM SSUDSCIiPLIONINFIESITUCIUNE ... e s sr e eneas 13-5
A IMS TOPICPUBIISNES ... e et se e er s 13-5
JM SPUBIi CatIONINFTASIIUCTUIE ... et e e eneas 13-6
COBOL MELAMOUEoouiiiiiiiieeiieieeie ettt e et et et b e st es e et ne e ees 14-2
TDLANG L0 COBOL ...ttt sttt e ere e sr e sr et e es e nr e nn e e e e ennas 14-3
COBOL SLEMEOLYPIESvecuveireeirereesieeie et stesas s s eseesee s as e s e s s e e e bees e aheease e s e e e e beennenneeanennens 14-3
PL/T IMELAMOUEL ...ttt e e e et eb et e e et nn e ee s 14-8
TDLANG 10 PL/T .ttt e ettt eb et st e e e sn et sr e neereas 14-9
PLIT SEEIEOLYPES ...ttt ettt ettt sttt se s et e e es e se e e e e bt eb et eb et e s e e s et sn e b e e 14-9
C MELAMOUE ... b re et se et se bbb e e e en e nn e b sr s 14-14
LI I g o I (o PR O TPV PPROPRPRPPRPN 14-15
(O BT 1V (oo TR PSP PP URPR 14-15
(O3 N = 1 0= SRRSO PR PR 14-16
C DatatyPe - MOUE! TYPESeeuiieieieet ettt se et ettt ne e e bt ene e 14-16
U SEY TYPES ittt ettt h et e et eh e e e ee e eE e e e e e e Rt ea e R er e e e e e b enreenee e 14-17
CPP MEAMOAE ...ttt e e e e e bttt b et ee et sn e b e 14-20
CPP MOE TYPES .ottt sttt e e se et e bbb et s e e et sn et ere s 14-20
IMS Transaction Message MetamOde] ... e A-2
IMS Transaction MESSAgE PrEFIXcouiiiiiiieieiece st e e e A-3
OTMA Préefix - DEfINEA TYPES ..ottt ettt sr e et en e A-3
OTMA Prefix - State Data Defined TYPESoovveierierieeiireeeie e st e A-3
OTMA Prefix - Security Data Defined TYPESooeieririeieire et A-4
IMS MeSSages PriMITIVE TYPESccuiiiiieriirieeiire et sr e et ss e e ss et sae e sne e s e A-4
MES INNEITTANCE VIBW ...ttt et r e sr et e e A-17
MES REGTONSNID VIBW ...ttt e et s e sr et e A-18
IMES ATIIDULE VIBW ...t e ettt e e sr et ee e A-19
CICS BMS RE@TONSNIP VIBW ...ttt et e sr e sn e ene s A-40
CICS BMS INNENTANCE VIBW ...ttt sttt A-40
CICS BMS ATIIDULESoveeeceiee ettt sttt et sttt e sn e et eb e ene s A-41

January 2002 UML for EAI Draft Adopted Specification

xi

Figures

Xii UML for EAI Draft Adopted Specification January 2002

Preface

About the Object Management Group

January 2002

The Object Management Group, Inc. (OMG) isan international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OM G promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

UML for EAI Draft Adopted Specification xiii

OMG Documents

The OMG documentation is organized as follows.

OMG Modeling

® Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

® Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

® OMG XML Metadata I nterchange (XM1) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

® Common Warehouse Metamodel (CWM) Specification mainly consists of
definitions of metamodels in the following domains:
¢ Object model (a subset of UML)
« CWM foundation
« Relational data resources
* Record data resources
e Multidimensional data resources
e XML data resources
¢ Data transformations
e OLAP (On-line Analytical Processing)
» Data mining
¢ Information visualization
¢ Business homenclature
« Warehouse process
e Warehouse operation

Object Management Architecture Guide

This document defines the OMG's technical objectives and terminology and describes
the conceptua models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

Xiv UML for EAI Draft Adopted Specification January 2002

January 2002

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer’'s programming language of choice in a style that is natura to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Javato IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for devel oping
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such as Collection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such as Internationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

® CORBA Business: Comprised of specifications that relate to the OM G-compliant
interfaces for business systems.

UML for EAI Draft Adopted Specification XV

® CORBA Finance: Targets a vitally important vertical market: financia services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

® CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

® CORBA Life Science: Comprised of specifications that relate to the OM G-compliant
interfaces for the life science industry.

® CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

® CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

® CORBA Transportation: Comprised of specifications that relate to the OM G-
compliant interfaces for transportation systems.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Structure of this Document
Part 1 - Introduction

Chapter 1 includes the introductory information, scope, modeling approach and
compliance requirements.

XVi UML for EAI Draft Adopted Specification January 2002

January 2002

Part 2 - Metamodel

Comprised of Chapter 2 (EAI Integration Metamodel and Chapter 3 (EAl Common
Application Metamodel).

Part 3 - Profile Definition

The profile presented here focuses on two main modeling approaches, based on
collaborations and based on activities. These are described in Chapters 4 and 5,
respectively.

The collaboration-modeling approach is based on amodeling framework of classes that
provide detailed definitions of the semantics of the collaboration. It is thus useful for
providing the detailed specification of message flows in the design of integration
subsystems.

The activity-modeling approach is based on the use of activity graphs. This approach is
particularly useful for showing the overall control and data flow required for
integration, typically at a higher level than in collaboration modeling.

Casting the metamodel as a UML profile allows EAI architecture models to be notated
using standard UML notation. This means that most UML tools (specifically ones
which support the extension mechanisms of UML, such as stereotypes and tagged
values) can be used to define EAI architecture models.

Standard practice for defining UML profiles has been adopted. A mapping of
metamodel classes to their base UML classes, with accompanying stereotypes, tagged
values and constraints is summarised for each approach. An implementation of this
mapping can be used, for example, to generate metadata conforming to the EAI
metamodel from XMI generated from models notated using the UML profile.
Specialized EAI tools will more likely use the metamodel than the UML profile as a
basis for storing and manipulating models.

The art of defininga UML profileisto provide the best fit possible with UML, so that
the notation is natural for amodeler in the relevant domain (EALI in this case), and fits
with one's general intuitions about the the meaning of the elements of UML that are
used in the profile. The profile described here has been designed with these principles
in mind.

Part 4- Proof of Concept

This section provides a proof of concept for the profile by giving examples of the use
of the profile for actual EAl modeling. An example is provided that isrelevant to both
of the scenarios of the Scope that are covered by this specification and uses
collaboration modeling. In Chapter 7, a variant of part of this example is presented in
the CCA of the UML Profile for EDOC.

UML for EAI Draft Adopted Specification Xvii

Part 5 - Implementation Mappings

The profile presented in this specification is intended to provide the basis for modeling
EAI architectures, largely at alogical level. However, the implementation of such an
architecture requires, of course, the use of various technologies and tools appropriate
to integration, such as message brokers. This section presents a selection of mappings
of the modeling approaches of the profile into such implementation technologies. The
set of technologies discussed here is by no means an exhaustive set of those applicable
to EAI, but is simply intended to demonstration how the profile is usable with such
technologies.

Typographical Conventions

Acknowl edgments

Xviii

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of this specification:
« CBOP
¢ Charles Schwab & Co.
« Data Access Technologies
« DSTC
« Hitachi, Ltd.
« International Business Machines Corporation
¢ IONA
e Oracle Corporation
« Rational Software Corporation
e Unisys Corporation

UML for EAI Draft Adopted Specification January 2002

Part1-Introduction

Contents

This section contains the following chapters.

Chapter Page
1. Introduction and Guide 1-1
2. Scope 2-1
3. Modeling Approach 31
4. Compliance 4-1
5. Requirements and Areas for Discussion 5-1

1.1 Introduction

January 2002

| ntroductionand Guide 1

As enterprises adapt to business change and new opportunities, they seek to build on

their existing strengths and assets for competitive advantage. Electronic trading with

consumers and other businesses is one of these trends. This frequently entails building
new applications by coupling existing ones, which is known as Enterprise Application
Integration (EAI). Thisis most often done with some form of messaging that provides
loose coupling to make it easy to change, to link heterogeneous systems and operating
environments, and to maximize resilience and robustness in cases of partial failure.

Enterprise Application Integration technology is being promoted to integrate legacy
systems with new packages. But integrating legacy applications with new softwareis a
difficult and expensive task due, in large part, to the necessity of customizing each
connection that ties together two disparate applications. There is no single mechanism
to describe how one application may allow itself to be invoked by another.

We intend to solve this problem by defining and publishing a metadata interchange
standard for information about accessing application interfaces. The goal is to simplify
application integration by standardizing application metadata for invoking and
translating application information. Once these standards exist, tools may be
constructed to facilitate the development, execution, and management of these
integration points.

Such connected systems are inherently complex to define and manage. A well-known
approach to managing complexity isto define levels of concern. Modeling with UML
has been shown to be successful at representing differing levels of detail. The
appropriate level for EAI is application architecture — the treatment of the interfaces
and interactions between applications. UML has been used successfully for modeling
at this level, and this specification presents the authors' view of best practice for using
the existing UML for modeling application architectures, i.e., architectures composed
by enterprises to enable application integration.

UML for EAI Draft Adopted Specification 1-1

1-2

1.2 Attachments

XMI and DTD files for the EAl Metamodels can be found in OMG document number
ad/2001-08-25.

UML for EAI Draft Adopted Specification January 2002

Scope 2

The scope is described with three generic scenarios representing the evolution of the
integration requirements:

® Scenario 1. Application integration through connectivity.
® Scenario 2. Application integration through information sharing.
® Scenario 3. Application integration through process collaboration.

For each scenario major characteristics and requirements are described. Obviously,
scenario 2 requires the functionality described in scenario 1 and scenario 3 requires the
functionality described in scenario 2. However, as we move forward from scenario 1 to
scenario 2 and scenario 3, the underlying functionality becomes less visible and more
and more hidden in the infrastructure.

As the industry moves forward, scenario 3-or an updated version of scenario 3-will
most likely become the dominant scenario.

2.1 Scenario 1. Connectivity

January 2002

A small set of applications has to communicate synchronously or asynchronously with
each other to provide business functions.

It must be possible to model the following abstractions:
® Service requester and provider

® Synchronous and asynchronous service request

® Request, reply and notification

In this scenario, the participating applications share a common architecture. They
share the data model of the communication and they are able to activate the appropriate
applications to obtain a service.

UML for EAI Draft Adopted Specification 2-1

There is aneed for additiona abstractions such asgueues (local or remote) and topics.
At one level, queues and topics should be invisible, but at a lower level of detail they
may well be reguired.

2.2 Scenario 2: Information Sharing

This scenario comes from handling securities.

An investor orders a stock trade, typically by sending a message describing the stock
trade to be carried out. (We discuss the creation of the message in the next scenario.)
This stock trade order triggers a set of autonomous actions: checking the investor's
account, checking the position of the institution, notifying a broker if the trade is large,
and notifying a broker as well as the investor if there are any issues.

If the order is accepted the market place is selected and an institution such as a market
maker executes the trade. After execution, the investor records are updated.
Information about the executed trade is sent to the investor via pager and e-mail and to
internal systems such as bookkeeping that require the information.

The securities firm is not only interested in handling requests properly but aso in
answering questions from investors, regulators and other interested parties, both
internal and external, at any stage during or after a trade.

A key requirement is that it should be easy to add new participants and new
functionality with no or minimal impact to existing participants and services.

A good way to deal with this scenario is to model it as information sharing between
applications and actors, such as investors and brokers. Such information sharing can
be implemented through publishing and subscribing to business events enabling
communication between the participants. We assume that all applications reflect a
shared understanding about the meaning and sequence of the individua business events
and act according to this shared understanding. However, we will assume that
applications and actors participating in these processes are isolated from knowledge
about who will consume their information and in which topic and format the recipients
expect it.

It must be possible to model the following abstractions:

® Messages representing business events. (We are much less interested in messages
that do not represent business events.)

® Publication of messages and business events-the ability to share information.

® Queues and topics-it must be possible to separate output containers of sending
applications from input containers of receiving applications.

® Data transformation-each program must be able to create or consume messages in
its own format. Applications should be able to use data structures suitable to their
own language, e.g., a C++ program should not have to handle SWIFT or XML
formats. Data transformation has to include data verification.

® Propagation-the ability to use any protocol to receive or deliver a message,
including the allocation of arecelved message to a queue.

UML for EAI Draft Adopted Specification January 2002

® Subscriptions to determine the receiving programs, their input containers or
propagation routes, and their transformations. Subscriptions should be able to
represent various cases, including interest of users, data routing, activation of
programs.

® Retention to keep the history of relevant messages from creation through stages of
processing, transformation, and consumption.

® Auditing, tracking, and mining-the ability to find and relate messages, both
consumed and in flight.

In this scenario, the applications share a common business event and process model at
the conceptual level. However, details of the layout of the data may vary, e.g., one
program may use SWIFT structures, while another uses XML.

The term information sharing is used to characterize the interaction between
participants providing information for the right recipients. Where timeis of the essence
and information is communicated with messaging/event technology we refer to zero
latency information sharing.

2.3 Scenario 3: Process Collaboration

January 2002

Company A offersits merchandise through the Internet. While some customers order
goods using a browser interface, the majority of the orders are communicated business-
to-business (B2B) using one of the B2B protocols. In simplified form, a B2B protocol
consists of the following business events:

®* RFQ (Request For Quotation)
® Offer

® Acceptance

® Shipment notice

* Bill

¢ Payment

Other events involved in negotiations, inquiries, changes, cancellation, and other
additional steps (e.g., steps involving communications problems) are not considered in
this simplification.

Company A communicates with business partners over secure Internet channels. Non
repudiation, high reliability (including disaster tolerance), exactly once semantics, fully
automated user-accessible application-independent auditing and tracking are basic
requirements. Outgoing communication will use the requested protocol. Messages
representing business events are carefully checked for process, sequence and data
accuracy. Any error will raise an exception condition. Incoming communication is
checked carefully as well. Some errors may need manual correction, which needs
careful documentation.

Company A offers the flexibility for customers to use their favorite B2B protocols as
long as they can represent a proper order process.

UML for EAI: Scenario 3: Process Collaboration 2-3

2-4

Applications should be independent of the specifics of the business protocols, but it is
assumed that the desired interaction with an application can be achieved using its
interfaces. At least three levels of interface support can be distinguished in
applications:

® Applications that are only able to react through activation of their interfaces.

® Applications that can accept requests and can notify the outside world using events.
At least some of these applications have to be configured to activate the desired
events.

® Applications that additionally provide a process interface. These applications have
to be configured to use the desired process structure.

In any of these cases it can not be assumed that the process as seen by the application
is the process as seen by the selected B2B protocol. Actually it is desirable to hide the
internal processes from business partners, so they can be changed without impact to the
outside world and potential competitive advantages can be hidden. To achieve this, a
mediation service has to be available to transform the process and data semantics
embedded in the B2B protocols to the process and data semantics of an enterprise's
internal processes. This transformation will be called semantic mediation. Semantic
mediation is part of the core functionality required for the integration of autonomous
applications.

Flexibility in B2B communication requires a repository of information that governs
communication with a particular trading partners. This information includes security
(including application security), notifications, subscriptions, B2B protocols and their
extensions and adaptations, and indications for internal routing. It should be possible
to group trading partners according to various criteria. This information comprises
what is often termed a trading community agreement.

To model this level of integration it must be possible to model the following
abstractions in addition to the abstractions defined in the previous scenarios:

® Semantic mediation-the ability to transform process and data structures between
applications and B2B protocols.

® Propagation between enterprises-secure, with non repudiation, exactly once
semantics, and disaster protection.

® B2B-level auditing, tracking, and mining-a business event can be reviewed,
analyzed in its process context, and mined for insight into business behavior.

® B2B protocols-processes based on the communication of business events or
business events in the context of process and customer relations.

® Trading community agreements in arepository containing information about trading
partner and the communications with them.

This specification addresses primarily the first two scenarios. It provides enablement
for scenario 3, but this scenario requires other elements that go beyond its scope.
Scenario 3 isincluded here to clarify the relationship to work going on in ebXML and
elsawhere.

UML for EAI Draft Adopted Specification January 2002

3.1 Metamodel

January 2002

Modeling Approach 3

The EAI specification is delivered as a complete MOF-based metamodel and a UML
profile. This approach facilitates exchange with both UML tools and M OF-based
tools/repositories.

As is the common practice, the M OF-based metamodel is captured as an object-
oriented model expressed using a suitably restricted subset of the UML notation. The
UML elements used in this submssion are:

Classes with attributes and (query) operations.

Binary associations, where composite and navigation adornments are permitted.
Association classes and qualified associations are not permitted.

Packages, including nesting and imports.

The object constraint language, OCL, for expressing well-formedness constraints.

The EAI metamodel is documented using the following conventions:

The overall structure of the metamodel is shown as one or more package diagrams,
depending on the level of nesting required.

Packages are limited in size so that only one class diagram per package is required.

In explaning a package, the important collaborations between classes are identified
and described as one. Individual classes are described separately where this
enhances the overall understanding of the model.

Well-formedness constraints are also grouped with the collaborations to which they
are relevant.

The semantics of each collaboration is described as specified below.

UML for EAI Draft Adopted Specification 31

3-2

3.2 UML Profile

The UML profile allows modelers to use UML as a concrete notation for producing
EAI models using UML modeling tools which support the UML extensions
mechanisms, chiefly stereotypes, tagged values and custom icons. Some tools are
available, e.g., [ref objecteering], which can accept a profile definition and configure a
modeling tool to force modelers to conform to that profile by using only elements of
the UML subset and only the stereotypes, tagged values and icons declared in the
profile.

A mapping between the metamodel and the UML profile is defined as part of the EAI
specification. This is intended as a basis for the development of tools that will
transform models expressed using the UML profile into models conforming to the
metamodel, and vice versa. The details of the mapping are given as part of the
definition of the profile.

3.3 Four-layered Architecture

3.4 Semantics

The relationship of the EAI specification to the four-layered architecture defined by the
OMG isasfollows. MOF is at level 3, so the EAl metamodel is at level 2. The EAI
UML profileis also at this level - it is just a set of additional cosntraints (what
stereotypes, tagged values, etc.) on how UML isto be used when notating EAl models.
The EAI metamodel should be thought of as the definition of the abstract syntax of
EAl models. An EAI model, which is at level 1, is an expression of this abstract
syntax. An EAI model is a specification of the architecture of an event-based system
and the allowable information flows through that system. Level 0, then, represents
actual behaviors of an event-based system, for example a particular instantiation of the
architecture or a particular message flow through that system. These behaviors and
instantiations must conform to the specification of behavior captured by the EAI
model.

There are a number of approaches to semantics. One is to describe how a model (in
this case an EAl model) constrains the set of possible behaviors at MO which satisfy
that model. This can be captured formally by explicitly modeling (in some formal
language) the structure of the abstract syntax, the structure of MO behaviors and the
relationship between the two. However, a formal definition can be somewhat
inaccessible. The approach taken in this specification is to describe the semantics in
English, using a model of MO behaviors to help clarify the explanation where

appropriate.

UML for EAI Draft Adopted Specification January 2002

Compliance 4

4.1 Overview

Compliance with this standard by a vendor can be partial. To facilitate this the
compliance points have been defined separately (Section 4.2, “Compliance with the
UML Collaboration Profile,” on page 4-1, Section 4.3, “Compliance with the UML
Activity Profile,” on page 4-2, and Section 4.4, “Compliance with the MOF-based EAI
Metamodel,” on page 4-3) and examples of plausible compliance statements are
provided (Section 4.5, “Compliance Statement Examples,” on page 4-3).

References to other OMG standards are abbreviated in the compliance point
definitions, but in all cases refer to the specific revisions listed in the table below:

Standard Version Referenced
UML 1.4
XM 12
MOF 1.3

4.2 Compliancewiththe UML Collaboration Profile

January 2002

The UML Caollaboration Profile is defined in Chapter 8.

4.2.1 General Compliance

A compliant implementation supports the UML XMI exchange mechanism for the
UML packages extended by the Collaboration Profile. It also supports the UML
exchange mechanism for the stereotypes and tagged values defined by the Profile.
Furthermore it checks the well-formedness constraints that the Profile defines.

UML for EAI Draft Adopted Specification 4-1

The UML packages that the Profile extends are "Behavioural
Elements::Collaborations" plus the transitive closure of al of the packages upon which
that package depends.

An implementation that satisfies the General Compliance point can be described as one
that "complies with the UML Collaboration Profile for EAL."

4.2.2 Visualization

A compliant implementation supports the UML notation for the packages extended by
the Collaboration Profile and for the EAl extensions to those packages. An
implementation that complies with the Collaboration Profile may or may not satisfy the
Visualization compliance point.

An implementation that complies with the Collaboration Profile and that satisfies the
Visualization compliance point for the Profile can be described as one that "complies
with the UML Collaboration Profile for EAl including UML notation."

4.3 Compliancewiththe UML Activity Profile

4-2

The UML Activity Profile is defined in the Activity Modeling chapter.

4.3.1 General Compliance

A compliant implementation supports the UML XMI exchange mechanism for the
UML packages extended by the Activity Profile. It also supports the UML XMI
exchange mechanism for the stereotypes and tagged values defined by the Profile.
Furthermore it checks the well-formedness constraints that the Profile defines.

The UML packages that the Profile extends are "Behavioural Elements::Activity
Graphs" plus the transitive closure of all of the packages upon which that package
depends.

An implementation that satisfies the General Compliance point can be described as one
that "complies with the UML Activity Profile for EAI."

4.3.2 Visualization

A compliant implementation supports the UML notation for the packages extended by
the Activity Profile and for the EAI extensions to those packages. An implementation
that complies with Activity Profile may or may not satisfy the Visualization
compliance point.

An implementation that complies with the Activity Profile and that satisfies the
Visualization compliance point for the Profile can be described as one that "complies
with the UML Activity Profile for EAI including UML notation."

UML for EAI Draft Adopted Specification January 2002

4.4 Compliancewith the MOF-based EAI Metamodel

There is a separate and independent compliance point for each of the MOF metamodels
defined in this specification.

A compliant implementation of a metamodel supports exchange based on the XM
DTD generated from the metamodel. It also checks the well-formedness constraints
defined by the metamodel.

The metamodels defined by the specification and the corresponding generated XM
DTDs are as follows:

EAl MOF based Chapter in which the XMI DTD
metamodel metamodel is defined

Integration 6 CMA4EAI
COBOL 14 COBOLtdlang
PL/I 14 pliTDLang

C 14 tdlang

C++ 14 cpptdlang

The language metamodels depend on the TDLang and typedescriptorTDLang XMl
DTDs.

There are no specific requirements for visualization of the EAl Metamodel.

A compliant implementation of the Integration metamodel can be described as one that
"complies with the EAI Integration metamodel;" a compliant implementation of the
COBOL metamodel can be described as one that "complies with the EAl COBOL
metamodel;" etc.

4.5 Compliance Satement Examples

January 2002

Any combination of the compliance points can be used. Examples of compliance
statements follow:

® Tool XXX complies with the UML Collaboration Profile for EALI.

® Tool XXX complies with the UML Collaboration Profile for EAl including UML
notation.

® Tool XXX complies with the UML Activity Profile for EAI.

® Tool XXX complies with the UML Activity Profile for EAl including UML
notation.

® Tool XXX complies with the UML Collaboration and Activity Profiles.

® Tool XXX complies with the UML Activity Profile including UML notation and
with the UML Collaboration Profile.

UML for EAI: Compliancewith the MOF-based EAl Metamodel 4-3

4-4

® Tool XXX complies with the UML Collaboration Profile including notation and
with the UML Activity Profile including notation.

® Tool XXX complies with the UML Collaboration and Activity Profiles, including
UML notation for both. (Note: this statement is equivalent to the previous one.)

® Tool XXX complies with the EAl C Metamodel.
® Tool XXX complies with the EAl C++ Metamodel .
® Tool XXX complies with the EAI Integration, C, C++, and PL/1 metamodels.

® Tool XXX complies with the UML Collaboration and Activity Profiles including
notation for both. It also complies with the EAI Integration, COBOL, and PL/1
metamodels.

UML for EAI Draft Adopted Specification January 2002

Requirementsand Areasfor
Discussion)

5.1 Mandatory Requirements

The RFP requirements are quoted in italics, followed by a summary of the
specification’s response.

Responses shall propose a UML profile suitable for modeling at the architectural level,
as distinct from business modeling or application system design. The purpose is to
represent IT systems (existing systems, vendor-supplied packages and newly developed
application systems) at the level appropriate for integration between them.

This UML profileis suitable for modeling at the architectural level becauseit is based
on ametamodel that supports composition and decomposition, and it defines interfaces
to systems, applications and packages, both new and existing.

5.1.1 Event-Based Architecture

Proposals shall provide the means for specifying architectures and processes based on
the flow of business events. They shall provide for:

® |ntegration of applications based on the occurrence of events.
® Description of a process or information flow as a series of business events.

® Architectural decomposition of the defined processes or information flows into their
implementing applications, each the sender or receiver of events.

The principal means used for showing event-based flows is in UML collaboration
diagrams (Collaboration Modeling chapter). An alternative representation using
activity graphs is given (Activity Modeling chapter). The modeling elements defined
are well known in the industry as popular means for constructing event-based flows.
The Integration metamodel (EAI Integration Metamodel chapter) inherits the
composition mechanism of the Flow Composition Model (FCM) in the UML Profile
for EDOC, which models senders and receivers as sources and sinks.

January 2002 UML for EAI Draft Adopted Specification 5-1

5-2

5.1.1.1

Modeling Elements

They shall provide for loose coupling including, but not necessarily restricted to, the
use of messaging and message brokers. At least the following elements shall be
included:

® Publish and Subscribe - distribution of messages based on dynamically varying
subscriptions

® Routing, fanout and filtering of messages - distribution based on rules or attributes
¢ Validation and transformation (mapping) of messages

® Augmentation (enrichment) and correlation (fan-in) - adding data (e.g., from a
database) and accumulating data from related messages

¢ Deadline and post-dating - checking on-time arrival and avoiding early delivery

® Exception processing

All these elements are defined in the metamodel and mapped into the profile. In
addition, the basic semantics of messaging and queueing are defined, as this paradigm
is commonly used for loosely coupling systems. The use of message brokers is

demonstrated in the non-normative mapping to a commercial product (Mapping to
WebSphere MQ Integrator chapter).

5.1.2 Heterogeneous Environment

5.1.3 XML

Proposals shall be generally applicable to heterogeneous networks of programming
systems, operating systems, application sytems, servers and packages. They shall
show how they apply to mixtures that include ORBS, Internet servers and other
subsystems.

The message-based approach adopted in this specification is well known to be
applicable across a wide variety of systems and servers. Heterogeneity of
programming systems is shown in the non-normative language models (Chapter 14).
Interfaces to several subsystems are given in Appendix A. The sample in Example:
Connectivity and Information Sharing chapter illustrates the use of several servers and
protocols (both networking and data interchange protocols) across more than one
enterprise.

Proposals shall show how they are compatible with the use of XML in message
formats for business data.

The model allows messages to be in different formats, including XML. The message
metamodel includes a format specification that acknowledges the distinction between
self-defining and separately defined message formats (see Section 6.3.4,
“EAIMessageContent,” on page 6-7). In the case of XML, generic DTDs or schemas
can be defined as a domain, or a message format may comply with a specific DTD in
another domain.

UML for EAI Draft Adopted Specification January 2002

5.1.4 XMI

Proposals shall show how they are compatible with the rendering of metadatain XMI.
Models shall be interchangeable between different tools through the use of XMI. This
shall include the use of XMI to define message formats and the CWM metamodel for
transformations.

Because we have not extended the OMG MOF, XMI can be used to interchange EAI
models. XMI files for the EAl metamodels are provided as supplementary material to
this specification.

The EAI transformation operator neither prescribes nor proscribes the way in which
transformations can be defined. Rather, the metamodel and profile furnish the means
by which interfaces may be modeled. The architect or designer can simply name the
salient attributes of messages or define interfaces in greater detail using the EAI
Common Application Metamodel (CAM, see Chapter 7). The transformation details
are | eft to the implementation, and this includes the case where a transformation tool is
based on XMI and the CWM.

5.1.5 UML Profile for EDOC

Proposals shall show how they are aligned consistently with the UML Profile for
EDOC.

The joint specification to the EDOC RFP includes a model for composing flow
components (see OMG document ad/01-06-09, UML Profile for Enterprise Distributed
Object Computing). This Flow Composition Model (FCM) unifies component
composition and coordination both for events and for other styles of communication.
This model is at a higher level of abstraction than the message flows, sources, targets,
adapters, and operators in EAl. The model is applicable to EAI, and the EAI
Integration metamodel (see Chapter 6) is a specidization of it. In particular, we use it
to represent:

¢ Simple and compound flow components
® |nput and output data sets

® Data flows, control flows and guard conditions

The EAI Integration metamodel includes publish/subscribe elements, and these are
related to the Events Profile in EDOC as follows:

EAI Integration metamodel EDOC Events Profile
metamodel

EAISubscription Subscription

EAISubscriptionFilter NotificationRule

EAIMessage (in context of PublicationOperator PubSubNotice

and SubscriptionOperator)

January 2002 UML for EAI: Mandatory Requirements 5-3

The UML Profile for EDOC defines a Component Collaboration Architecture (CCA),
part of the Enterprise Collaboration Architecture (ECA). Section 6.5, “CCA
Component Library for EAI,” on page 6-36 presents a mapping between the CCA and
the EAI Integration metamodel.

In the EAl CAM (Chapter 7) the links are as follows:

® Both the Java language metamodel and the FCM metamodel in EDOC require CAM
to tie parameters into the data typing and type composition structure that the
metamodel provides.

® The Java metamodel has associations to the TDLang metamodel. Java typed
elements implement the TDLangElement class, while the associated simple and
complex Java data types inherit from TDLangClassifier class. Java classes will
implement the TDLangComposedType.

® The FCM metamodel contains FCM Parameter class, which associates to
TDLangElement class. FCMParameter represents adata bytestring of the elements.
Contents of the bytestring are mapped to the associated element by
TDLangElement.

5.1.6 MOF alignment
Proposals shall conform to the OMG MOF.

No extensions to the OMG MOF are proposed.

5.1.7 Proof of Concept of Profile
Submissions shall provide sample models expressed in terms of the profile.

Section 4 shows sample models that use class diagrams and collaboration diagrams of
the profile. These come from from the financial servicesindustry. Section 9 shows an
example of activity graph usage with the profile. The presentation in behavioral
diagrams will be considered non-normative.

5.1.8 Demonstration that Models are |mplementable

Submissions shall show that models built using the profile will map to practical
implementations using generally available products and services. An acceptable
example of such a demonstration for the publish/subscribe elements of the profile
would be consistency with one or more of the CORBA Notification Service, IMS or
OAMAS. For other elements, an example would be a mapping to a commercialy
available class of products, e.g., message brokers or mail routers.

A non-normative mapping to an implementation in IMSis given in Chapter 13 - “ Java
Message Service (JMS)”. This demonstrates not only the publish/subscribe elements
but also those that support direct messaging. A non-normative mapping to IBM's
WebSphere MQ (formerly MQSeries) and WebSphere MQ Integator (formerly

UML for EAI Draft Adopted Specification January 2002

MQSeries Integrator) is given in Chapter 12 - “Mapping to WebSphere MQ
Integrator”, which is, in fact, a specialization of the metamodel on which the UML
Profile for EAI is based.

5.2 Discussionissues

5.2.1 Development and Management Aid

Submissions should discuss how the submitted profile aids or simplifies the
architecture, development and management of EAI systems and solutions.

The profile defines the principal modeling elements needed for an IT architect or
designer to take a business-level model or view and create an event-based architecture
for EAI. Tools can be built to enable a designer take such a model to the next level of
refinement (see below). With suitable instrumentation of run-time infrastructure,
middleware and applications, monitoring and reporting of the behavior of executing
systems is possible in a way that highlights bottlenecks, inconsistencies and other
management problems by relating and comparing to the original or revised models.
Such a feedback loop enables continuous process improvement.

5.2.2 Tool Support

Submissions should discuss how the submitted profile enables tool support for EAI
definition and management and how such tools can be judged more or less compatible
with the profile.

Tool compliance is discussed in Chapter 5 - “Compliance”. By providing a metamodel
as the underpinning to the profile, the specification enables UM L-based modeling and
design tools to be coupled with implementation and configuration tools. A model
developed with this profile can be converted to a high-level implementation model.
For example, as aresult of the mapping from the Integration metamodel to WebSphere
MQ Integrator (WMQI) in Chapter 12, a UML tool can be written that exports an
architectural model defined with this profile to an outline model in WMQI. A designer
could then use the WMQI tool to complete the lower-level and implementation details
of the model prior to testing and deployment.

5.3 Relationship to Envisioned OMG Technol ogy

January 2002

This section describes the relationship, in terms of alignment, reuse or overlap with
OMG standards for which RFPs have been issued but which have not yet been adopted.

5.3.1 Real-time

The UML Profile for Scheduling, Performance and Time (from the Real-time PSIG,
OMG document number ad/01-06-14) emphasizes the definition of quality of service
(Qo0S). The UML Profile for EAI makes provision for QoS specifications in the
provision of streams (Section 6.4.1.2, “EAIStream,” on page 6-22) and resources

UML for EAI: Discussion issues 5-5

(Section 6.3.7, “EAIQueue,” on page 6-11). These are left non-specific in this
specification and can be augmented with specifications from the UML Profile for
Scheduling, Performance, and Time.

5.4 Relationshipto Existing Sandards

54.1 UML

As a UML profile, this specification defines uses of UML 1.4 for the purposes of
application integration. This includes classes and stereotypes.

5.4.2 Meta Object Facility (MOF)

UML is MOF compliant. This specification defines UML elements and adds
additional semantics appropriate to the context of event-based architectures in EAI.
Chapter 2 presents a metamodel in which each class is a MOF Class instance at the M2
level.

5.4.3 Common Warehouse Metamodel (CWM)

The Common Warehouse Metamodel (CWM) defines and publishes a metadata
interchange standard for data warehousing and business intelligence tools and
resources, e.g., relational databases, IMS DL/I databases and OLAP systems.

CWM gives metamodels for generic data structures that include XML documents,
COBOL records, C structures and SQL schemas. These are aimed at data stores but
are generic. They could be applied to message content descriptions. Thislevel of
refinement is a natural progression from the architectural designs supported by the
UML Profile for Event-based Architecturesin EAI.

CWAM is highly reusable and is independent of any particular tool or data resource. It
reduces the work required to integrate data warehousing and business intelligence
tools. DB2 Data Warehouse Center/Warehouse Manager (V7) now supports CWM.
DB2 Information Catalog Manager plans to support CWM in V8.

CWM is needed for data transformation in a data warehousing and business
intelligence environment. It provides data type mapping between a mix of different
data resources, facilitates data translations from one data resource into another, allows
data driven impact analysis for data lineage and allows data resource schemas to be
viewed by developers.

The EAI Common Application Metamodel (CAM), which is described in Chapter 3,
defines and publishes a metadata interchange standard for information about accessing
enterprise applications such as CICS and IMS. CAM is reusable and is independent of
any particular tool or middleware. It is likely to provide an incentive to connector
suppliers by reducing the work required to create and develop connectors and/or
connector builder tools.

UML for EAI Draft Adopted Specification January 2002

CAM is needed for data transformation in an enterprise application integration
environment. It provides data type mapping between mixed languages and facilitates
data translations from one language and platform domain into another, it will allow
data driven impact analysis for application productivity and quality assurance, and it
will allow programming language data declarations to be viewed by developers.

In CAM alanguage metamodel, such as the COBOL metamodel, is used by enterprise
application programs to define data structures which represent connector interfaces. It
isimportant for connector tools to show a connector developer the source language, the
target language and the mapping between the two. The CAM language metamodel
also includes the declaration text in the model. This permits the connector/adapter
devel oper to see the entire COBOL data declaration, including comments and any other
documentation that would help him/her understand the business role played by each
field in the declaration.

While CWM focus on data resources, CAM is for applications. CWM and CAM
complement each other; both are needed in an enterprise I T environment.

5.5 Other Related Activities

The RFP states that submissions may deal with business-to-business (B-to-B) models
as well as intra-enterprise models. However, there are other significant standards
activities in B-to-B, and this specification does not address the area directly. EAl isa
valuable underpinning to B-to-B along with other facets such as process modeling,
which is addressed to a certain extent in the UML Profile for EDOC Business
Processes Profile. To offer public services and interfaces to trading partners, an
enterprise has to ensure that it has well-defined interfaces and well-architected
systems. Much trading is inherently event based, and so streams, messages,
publications, sources, targets, filters, transformations and other operations are natural
modeling elements for the intra-enterprise systems that are needed to support both
internal and public electronic trading.

B-to-B modeling is dealt with in ebXML, which is based on a particular approach to
B-to-B implementation. However, there are other approaches, including web services
(SOAP, WSDL, UDDI, the draft web services flow language - WSFL - and XLANG) at
W3C and OASIS, RosettaNet, OBI, EDI, OAG BODs and several industry-specific
formats and protocols. There continues to be a high volume of activity and arapid rate
of change.

January 2002 UML for EAI: Other Related Activities 5-7

5-8

UML for EAI Draft Adopted Specification

January 2002

Part 2- Metamodel

Contents

This section contains the following chapters.

Chapter Page
6. EAIl Integration Metamodel 6-1
7. EAl Common Application Metamodel 7-1

This section describes the EAl metamodel, which, as explained in Chapter 6, is MOF
compliant. The metamodel captures the essential EAl concepts. It may also be viewed
as the abstract syntax of a language for specifying architectures for enterprise
application integration. The metamodel is in two sections:
* The Integration Metamodel dealing with connectivity, composition and behavior
* The Common Application Metamodel dealing with interfaces and formats

Chapter 7 describes a UML profile for the language of the Integration Metamodel. It
defines how UML (and therefore UML modeling tools) can be used as a concrete

notation for this language.

EAI Integration Metamodel 6

6.1 EAI Integration SpecializesFCM

January 2002

The EAI Integration metamodel is a specialization of the Flow Composition Model
from the UML Profile for EDOC (OMG Document Number: ad/2001-06-09, Part I,
Chapter 5 Section 2). The following sections make extensive use of terms described in
the FCM, and consequently it is assumed that the reader is familiar with it.

The UML Profile for EDOC also presents the Component Collaboration Architecture
(CCA), part of the EDOC Enterprise Collaboration Architecture (ad/2001-06-09, Part
I, Chapter 3, Section 2). In Section 6.5, “CCA Component Library for EAI,” on
page 6-36 a mapping is presented between EAI Integration metamodel and the CCA.
The mapping introduces the concept of a CCA "Component Library." Many of the
concepts in EAI are represented as standard components that may be used in EAI
compositions.

The EAI Integration metamodel reuses the concepts of flow, flow node and
composition. It adds the following basic concepts which are required in EAI
architectural modeling:

® Asynchronous communication
® Message queuing
® Message content and format

It additionally uses the FCM to define as flow components a number of concepts
common to the message oriented middleware used in EAI, such a message routing,
transformation, and publish/subscribe communication.

UML for EAI Draft Adopted Specification 6-1

6.2 FCM Derived Associations

6.2.1 Motivation

EAl modeling makes extensive use of the compositional aspects of the FCM.

Consequently, and in order to simplify the rendering of the EAl metamodel as a UML
profile, this section names some derived associations that are computable from (but not
manifest in) the FCM. These are:

® Composite/implementingComposition

® CompositeNode/contents

® CompositeNode/ComposedConnections

® Representation/parameter

Note that these derived associations, although specifically part of the EAl metamodel
package, do not require additional specializations or constraints beyond those already
present in the FCM. Since derived associations can be computed from information
already in the metamodel, a tool that manipulates the a model need not save derived
associations when saving a model.

6.2.2 FCM Diagrams

The metamodel diagrams from the FCM are included for the reader's reference without
further comment. The reader is referred to ad/2001-06-09 for explanatory text.

FCMComposition

N -
0.1 +composition

FCMCompositionBinding

1/
type +operations

TDLangElement
from TDLang)

+language Element /|' 1

+inputs 0..n

FCMType @ ——

FCMOperation

0..n

name: String

0.1 /\ +instanceOf

FCMConmponent

+outputs 0..n

+faults 0..n

FCMParameter

Figure 6-1 FCMComponent metamodel diagram (from ad/2001-06-09)

6-2 UML for EAI Draft Adopted Specification

January 2002

+annotations FCMAnnotation

> namelnComposition : String
0..n

FCMComposition

0..n
1./ +annotates

s +connections +components
FCMConnection ’mponent
0..n%

0..n
+inbound +node§ o +performedBy’|* 1
.n

0..n
+outbpund +targetNode 1 FCMNode

+sourceNode 1

FCMTerminalToNodeLink

+sourceTermliinal <<derived>> ‘ FCMFunction H FCMSource ﬂsource +sink FCMSink
1 [il !

+interface P..n [il]

0..n
FCMTerminal rimplements
terminalKind : TerminalKind P FCMOperation

1|name : String

. 1 +invokes
FCMTerminal ToTerminalLink +targetTerminal

FCMCommand

Figure 6-2 Flow Composition Model main diagram (from ad/2001-06-09)

TerminalKind <<datatype>>
String
/ /w N
In Out Fault

Figure 6-3 Flow Composition Model datatypes

January 2002 UML for EAI: FCM Derived Associations 6-3

6.2.3 Composite Nodes

FCM Composition | +implementingComposition

(fom FCM Core)
0.1
<<derived>>
+nodes| g
+composite
FCMNode FCMFunction FCMCommand
(from FCMCore) =~ (rom FCMCaore) ~}—— (from FCMCore)

Figure 6-4 Derived association between FCM Command and FCM Composition

Definition

The composition method in the FCM is to construct an FCM Command (which is an
FCMNode) from an FCMComposition (Figure 6-4). In the derived association, the
FCMCommand is a composite node, and the FCM Composition is its
implementingComposition. An FCM Composition can be regarded as fully specifying
the externals of the composite node constructed from it; the FCM Source and FCM Sink
nodes contained in the implementingComposition specify the FCM Type and

FCM CompositionBinding of the composite FCM Command.

More than one instance of an FCMCommand can use the same instance of an

FCM Composition to define its behavior. Some of the EAI operators are defined via
compositions of 'primitive’ EAl behaviors. We define them as subclasses of
FCMCommand, each with a constraint that they use a particular
implementingComposition.

Constraint

An FCMCommand is performedBy an FCM Component (see Figure 2). An
FCM Component may be linked via its FCM Type and an FCM CompositionBinding to
an FCMComposition (see Figure 6-1 on page 6-2)

In the derived association FCMCommand is associated with zero or one
implementingComposition.

6.2.4 Composite Nodes and Their Contents

Using the derived association above, we further document the relationship between an
FCMCommand (compositeNode) that is implemented as an FCMComposition, and the
nodes (contents) and connections (composedConnections) contained in the

FCM Composition. We note that there are further derivable relationships (not shown
here) between an FCM Command and the FCM A nnotations and FCM Components that
are helped by the FCM Composition.

UML for EAI Draft Adopted Specification January 2002

January 2002

<<derived>>

0..n | +contents +compositeNode
FCMNode FCMFunction FCMCommand
(from FCMCore)[~— | (fom FCMCore) ™~ | (from FCMCore)

+compositeNode
<<derived>>

+composedConnections| g

FCMConnection

Figure 6-5 Derived association between a composite node, its content nodes and its composed
connections
Constraint

FCM Command.contents = FCM Command.i mplementingComposition.nodes

FCM Command.composedConnections =
FCM Command.implementingComposition.connections

6.2.5 Relationship between the Interface of a Composite Node and its
Contents

An FCMNode has FCM Terminals as interfaces, but the FCM ties type information to
the FCMParameters of an FCMOperation. We say that an FCM Terminad is the
representation of an FCM Parameter.

FCMTerminal

- - - - +representation +parameter FCMParameter
terminalKind : TerminalKind

<<deried>> 1

Figure 6-6 Derived association between FCMTerminal and FCM Parameter

In a composite node (i.e., a node created from an FCM Composition) the interface
offered is defined by the FCM Source and FCM Sink nodes contained within the
FCM Composition. An FCM Source implements (see Figure 6-6) an FCM Operation.
FCMSink nodes represent the population of a single output parameter of this
FCMOperation.

UML for EAl: FCM Derived Associations 6-5

6-6

6.3 EAI Specializationsof the FCM

6.3.1 Motivation

Section 6.3 defines a set of specializations of the FCM. Each of these introduces a

new concept required for EAI architectural modeling.

6.3.2 EAILiInk

Definition

Links between entities in an EAI architecture are often treated as event channels, and
the occurrence of an event on such a channel initiates processing of the information
associated with the event. As such, these links represent the flow of both data and
control. In the FCM, data and control links are separate, so we introduce EAILink,

which consists of one of each.

Links may have their synchronization specified as synchronous, in which case a link
between a pair of terminals implies a synchronous (call) invocation of the relevant
FCMOperation, or asynchronous in which case a link between a pair of terminals
implies an asynchronous invocation of the relevant FCMOperation (the FCM Operation
which owns the parameter that the terminal represents).

FCMTerminalToTerminalLink

1 (from FCMCore)

+data

FCMDatalLink EAILink

+control

(from FCM)

synchronization :

EAISyncMode

EAISyncMode

— unspecified |
synchronous |
asynchronous

Figure 6-7 Definition of EAILink

Constraints

1

FCMControlLink
(from FCM)

An instance of an EAILink between an output terminal and an input terminal implies
that there is an FCMDataL ink between the two terminals, and an FCM ControlLink
from the output terminal to the node that owns the input terminal.

UML for EAI Draft Adopted Specification

January 2002

January 2002

6.3.3 EAlITerminal

FCMTerminal
terminalKind : TerminalKind

EAlITerminal

Figure 6-8 EAITerminal

Definition
An EAITerminal is a specialization of FCM Terminal.

Constraints

EAITerminal can be connected to other instances of terminals only via instances of
EAILink.

An EAITerminal is the representation (see Figure 6-8) of an FCMParameter that is of
type EAIMessageContent.

An EAITerminal on the exterior of a node constructed from an FCM Composition has a
derived association with a single source or sink.

6.3.4 EAIMessageContent

Description

EAIM essageContent gives a generic metamodel for message content. M essages may
have multiple parts, which may be nested. Each message part may have two distinct
elements:

1. A message header which contains metadata about the message. This is used by the
MOM infrastructure to decide how to process the message.

2. Message body, which contains the business content of the message.

The header and the body are EAIM essageElements. These are associated with asingle
languageElement of class TDLangElement

UML for EAI: EAI Specializations of the FCM 6-7

6-8

Constraints

Each message element (including the message header) conforms to a messageFormat
specification, which may be physically manifest in the message (as, for example, with
an inline XML DTD) or may need to be inferred by the MOM infrastructure.
Distinctions of this kind may be made by designation of the messageDomain (e.g.,
generic DTD, external schema or COBOL copy book).

TDLangElement
(from TDLang)

FCMParameter
(from FCMCore) +languageElement

1T

]

EAIPara
eter

+part +header

6.3.4.1

6.3.4.2

EAIMessageContent EAlMessageP art EAIMessageE lement
+message
domain : Stiing 1.n 0.1
1.1 Iname : String +body

+nestedPart 0.1
0..n Zﬁ

EAIComposedM
essagePart

Figure 6-9 EAI MessageContent

EAIMessageE|ement Format Specification

The format of a message element is defined in the M essageContent metamodel by its
association to a TDLangElement, which is a class in the CAM (see Chapter 7). This
link into the CAM provides all of the following for message elements:

1. The TDLang metamodel provides an abstract view of the message element's
structure. 1t may be used to represent both primitive and more complex data
structures.

2. TDLang provides access to the language-specific representation of the message
element (viathe COBOL, PL/I, and other language metamodels in CAM), as well
as its physical wire format (via the Type Descriptor Metamodel in CAM).

EAlIHeader

EAIHeader is a subclass of EAIMessageElement; it has two associations to
EAIM essageElement;

® replyTo: an EAIMessageElement that is required to specify the terminal to which
replies to an instance of a message should be sent.

® exceptionTarget: an EAIMessageElement that is required to specify the terminal to
which exception notices should be sent

UML for EAI Draft Adopted Specification January 2002

January 2002

The requirement that EAlHeader should specify the information required to locate
replyTo and exceptionTarget terminals is recorded via derived associations with
EAITerminal. These derived associations do not form part of the message itself.

+exceptionTarget

EAIN e Element
0.1
+replyTo
0.1
EAIHeader
<<derived>> ; .
+specifiedR eply ToTerminal
+specifiedExceptionTarget 0.1
<<derived>> FCMTerminal

Figure 6-10 EAIlHeader

6.3.4.3 EAIExceptionNotice

This is message that is sent by the MOM infrastructure if some exception occurs in
processing a message. An instance of an ExceptionNotice will normally contain the
original message, with additional exception-specific information in a separate message

part.

+originalMessagePart

EAIMessageContent

domain : String
name : String

0.1

EAIExceptionNotice

0.1
AlMessagePart

Figure 6-11 EAIExceptionNotice

+exceptionNoticePart

UML for EAI: EAI Specializations of the FCM 6-9

6-10

6.3.4.4 XML Message Elements

Message elements can be data structures defined by traditional language specifications
like COBOL and PL/I. They can also be XML documents, for which the natural
specification language is XML Schema. The OMG XMI Production of XML Schema
submission provides an XML Schema Metamodel. Figure 6-12 shows a linkage
between the XML Schema Metamodel and the TDLang M etamodel that supports XML
Schema as a specification language for message elements.

TDLangClassifier
(from TDLang)

TDLangComposedType
(from TDLang)

TDLangElement
(from TDLang)

\

|

XSDType

(from xmlschema)

XSDComplexType

(from xmlschema)

Figure 6-12 XML message elements

6.3.5 EAIMessageOperation

Description

XSDElement

(fom xmlschema)

EAIMessageOperation is a subclass of FCM Operation used to describe operations for
which all the inputs and outputs are messages.

Constraints

Every input and output of an EAIMessageOperation is an EAlParameter that hasa 1:1
relationship with EAIMessageContent or a subclass of EAIMessageContent.

FCMOperation
name : String

EAIMessageOperation

Figure 6-13 MessageOperation

UML for EAI Draft Adopted Specification January 2002

January 2002

6.3.6 EAISource and EAISnk

Description

EAISource and EAISink represent pointsin an EAI architecture where messages
appear (EAISource) and disappear (EAISink).

Sources and sinks may make use of EAIResources. An EAIResource represents a
usable and sharable entity such as a queue (Section 6.3.7, “EAIQueue,” on page 6-11
or a database (Section 6.4.1.5, “EAIDBTransformer,” on page 6-25).

Constraints

EAIlSource isa subclass of FCM Source. Its sinks must be EAISink, and its implements
operation must be an FCM Operation.

EAISink is a subclass of FCM Sink. Its source must be an EAlSource.

FCMSink

FCMSource

+ R
EAISource +resources resources EAISink

EAIResource

0..n

0..n

Figure 6-14 Sources and sinks

6.3.7 EAIQueue

Description
EAIQueue is a queue of finite length, and is modeled as a subclass of EAIResource.

EAIQueue has an ordered collection messages of EAlMessageContent. A queue has a
name, and the maximum number of messages it can hold is specified by maxLength.

EAIQueue is intended to be an abstraction of queuing infrastructure. We note that most
MOM implementations allow machine-to-machine communication via a remote
queuing infrastructure that can specify a number of different queue types and
relationships between then. This can be modeled as refinement or realization of
EAIQueue or (see Section 6.4.1.2, “EAIStream,” on page 6-22) of the
EAIPrimitiveOperator EAIStream.

UML for EAI: EAI Specializations of the FCM 6-11

6-12

EAIResource

EAIQueue

maxLength : int
name : String

Figure 6-15 EAIQueue

Constraints

maxL ength >= messages->size()

6.3.8 EAIQueuedlnputTerminal and EAIQueuedOutputTer minal

A common means of implementing an asynchronous link between a pair of entitiesin
EAI is for them to share a queuing infrastructure. In this case, the entity in which an
event occurs places a message into a queue and then continues processing. The entity
that is to act on this information can remove the message from the queue at any time.
This normally involves the receiving entity doing one of the following:

1. Polling the queue for the arrival of a message

2. Blocking execution awaiting the arrival of a message

3. Being triggered by the arrival of a message

We represent the fact that an Operator uses queueing via the use of
EAIQueuedi nputTermina and EA1QueuedOutputTerminal, which are subclasses of

EAITerminal.
EAITerminal
name : String
EAIQueuedOutputTerminal +targetQueues | EAIQueue | +inputQueue

1.

n

1

EAIQueuedinputTerminal

Figure 6-16 EAIQueuedOutputTermina and EAlQueuedinputTerminal

UML for EAI Draft Adopted Specification

January 2002

An EAIQueuedinputTerminal has an association with the single queue that it reads
from, while an EAIQueuedOutputTerminal has an association with each of the queues
used by its target EAIQueuedinputTerminals.

Any operator that has an EAlQueuedOutputTerminal is understood to place a single
copy of its output message on each of its targetQueues.

Queued input and output terminals may be used on any of the EAI constructs that have
terminals (EAIPrimitiveOperator, EAlCompoundOperator, EAl Source, EAISink).

Constraints

All EAILinks from an EAIQueuedOutputTerminal must be instances of
EAIQueued nputTerminal.

The EAILink from an EAIQueuedOutputTerminal to an EAlQueuedlnputTerminal
must have synchronization=asynchronous.

An EAILink between an EAlQueuedOutputTerminal and an EAIQueuedinputTerminal
implies that the inputQueue of the inputTerminal is in the targetQueues of the output
terminal.

All EAlQueuedinputTerminals have EAILinks with all EAIQueuedOutputTerminals
that use the same queue instance.

6.3.9 EAIQueuedSource and EAIQueuedSink

Description

EAIQueuedSource and EAIQueuedSink are used to model the internal elements of an
EAIMessageFlow that is associated with EAlQueuedlnputTerminals and
EAIQueuedOutputTerminals.

When viewing the internals (i.e., the EAlMessageFlow) of a CompoundOperator, the
element of the flow that receives messages (and passes them on to the rest of the flow)
is a source of messages to the rest of the EAIMessageFlow, and vice versa. Hence, the
part that reads from a queue is modeled as a EAIQueuedSource and the part that writes
to a queue as EAIQueuedSink.

EAISink EAISource

EAIQueuedSink max Length : int|_*inputQueue EAIQueuedSource

+outputQueues EAIQueue

1..n |name : String 1

January 2002

Figure 6-17 QueuedSource and QueuedTarget

UML for EAI: EAI Specializations of the FCM 6-13

Note that EA1QueuedSink and EAIQueuedSource could themselves be specialized to
use queued terminals. This would imply that queueing is used both outside and inside
the EAIMessageFlow.

Constraints

The outputQueues of an EAIQueuedSink must be the same as the targetQueues of the
EAIQueuedOutputTerminal that it is associated with.

The inputQueue of an EAIQueuedSource must be the same as the inputQueue of the
EAIQueuedinputTerminal that it is associated with.

Refinement relationships

An EAILink with synchronization of unspecified is refined by an EAILink with
synchronization of either synchronous or asynchronous.

Where there is an instance of an EAILink with a synchronization of asynchronous
linking a pair of FCM Terminals, this is refined by the substitution of
EAIQueuedi nputTerminal and EAIQueuedOutputTerminal for the FCM Terminals.

6.3.10 Operators

Operators act upon messages as they flow between systems. We define
EAIPrimitiveOperator to be a subclass of FCM Function, which invokes an
EAIMessageOperation. Subclasses of EAIPrimitiveOperator are used to represent
particular types of message processing behavior.

We define CompoundOperator to represent the behavior of compositions of operators.
This document defines subclasses of either kind of operator that perform specific kinds
of operation on a message. Message operations may act on the message header and
body and may change their content, their format or both. They may also provide
routing behavior.

FCMCommand

CM Function

EAIPrimitiveOperator EAICompoundOperator
+resources +resources
EAIResource
0..n 0..n
+type 1
<<derived>> FCMType
0.1
<<derived>> +defines

Figure 6-18 Definitions of PrimitiveOperator and CompoundOperator

6-14 UML for EAI Draft Adopted Specification January 2002

6.3.10.1 EAIPrimitiveOperator

Description

Instances of EAIPrimitiveOperator enact a simple message processing operation. It is
'opaque’ in that its operation is specified but its internal workings are not modeled. It
may optionally make use of EAIResources to enact the operation.

Constraints

The EAIPrimitiveOperator invokes an EAIMessageOperation.

EAIPrimitiveOperator has a derived association type with FCMType. It subclasses
FCMFunction, which invokes an FCM Operation. FCMOperation is composed by
FCMType.

When used in an EAIMessageFlow, an EAIPrimitiveOperator also defines a type.

6.3.10.2 EAICompoundOperator

Description

An instance of an EAlCompoundOperator composes more complex message
processing behavior from EAIPrimitiveOperators, from other EAlCompoundOperators
or both. It may optionally make use of EAIResources to enact its operations.

Constraints

EAICompoundOperator can only compose EAIPrimitiveOperator or other
EAICompoundOperators. The implementingComposition (a derived association
inherited from FCM Command, see Figure 6-19) must be an EAIM essageFlow.

6.3.10.3 EAIMessageFlow

An EAIMessageFlow is a subclass of FCMComposition. Each of its nodes (see Figure
6-2 on page 6-3) must be one of the operator classes (EAIPrimitiveOperator or
EAICompoundOperator), and its connections must be EAILinks. In addition it allows
nodes to have explanatory annotations attached to them.

January 2002 UML for EAI: EAI Specializations of the FCM 6-15

6-16

6.3.10.4

FCMComposition

FCMAnNnotation

namelnComposition : String

EAIMessageFlow

+operatorAnnotations

EAIlAnnotation

_—

{xE)r} -
0. 0.1

EAICompoundOperator

Figure 6-19 EAIMessageFlow

EAIPrimitiveOperator

Exposing terminalsin an EAIMessageF|ow

When forming an EAICompoundOperator from EAIPrimitiveOperators, the means of
connecting the external representation of an FCMCommand (i.e., its terminals) to the
FCM Composition that implements it is via FCM Source and FCM Sink nodes. These

jointly define the input and output parameters of the composite node, and consequently
the input and output terminals of the EAlCompoundOperator.

An input EAlTerminal in an FCM Composition can be 'exposed’ by attaching an
EAIlSourceto it viaan EAILink. The message type of theinput terminal to be exposed

determines:

® The type of the output terminal of the EAlSource

® The typein the (single) input parameter to the implements FCM Operation

This conseguently determines the type of that the external EAITerminal represents We
introduce a derived association promotedTerminal from EAlITerminal to EAlTerminal
that models this relationship between aterminal on the interior of a composite node

and a terminal on its exterior.

UML for EAI Draft Adopted Specification

January 2002

<<derived>>

0..1.\|, tpromotedTeminal

EAITerminal

0..1
+externalTerminal

Figure 6-20 Derived association between a terminal inside a composite node and the
corresponding terminal outside

Constraints

The promotedTerminal and the external Terminal represent FCM Parameters that have
the same type.

6.3.11 Adapters

An integration architecture provides paths for the flow of messages between the
systems being integrated. Adapters provide the points at which the message-flow paths
are actually connected to those systems. An adapter converts a specific kind of
message from some system-specific format into a specified message-content type, or
vice versa. EAlAdapter is modeled as a specialization of FCMFunction.

6.3.11.1 EAISourceAdapter

An EAlourceAdapter obtains information from a system, translates it into (some
subclass of) EAIM essageContent and then sends it. Source adapters are modeled as a
subclass of FCM Function. The mapping between the internal format and the message
is specified by an internal ToM essage FCM M apping.

FCMFunction

EAISourceAdapter +interalToMessage | FCMMapping

1

Figure 6-21 SourceAdapter

January 2002 UML for EAI: EAI Specializations of the FCM 6-17

6-18

6.3.11.2

6.3.11.3

Constraints

The output terminals of a SourceAdapter are instances of EAlTerminal

Output parameters of the invokes FCM Operation of SourceAdapter must be
EAIlParameters, which are associated with EAIM essageContent.

There is no constraint on the type of input terminals.

There is no constraint on the type of input and fault FCM Parameters. It is noted that
the faults FCMParameters may be EAlParameters (with EAIM essageContent) but that
thisis unlikely to be the case for input because adapters are used to link messaging to
other (internal) interfaces.

EAl TargetAdapter

An EAIlTargetAdapter has a single input EAlTerminal ("in"). It receives a message
with content of a given input type, maps the message content to the format required for
a system and then delivers the information to the system. The transformation is
specified by a messageTolnternal FCM Mapping.

FCMFunction

EAlTargetAdapter +messageTolnternal | FcMMapping

1

Figure 6-22 EAITargetAdapter

Constraints

The input parameters of the FCMFunction that EAlTargetAdapter invokes must be
EAIlParameters (with associated EAIMessageContent).

There is no constraint on whether the outputs and faults of the invokes FCM Function
are FCMParameters or EAlParameters. However, they are unlikely to have associated
EAIM essageContent because adapters are used to link messaging to other (internal)
interfaces.

EAICall Adapter

An EAICallAdapter is invoked synchronously by an application that wishes to make
use of a service made available via a server; the server accepts a request message and
sends a response message back to the service requester. It has two input terminals:

UML for EAI Draft Adopted Specification January 2002

¢ cal": an FCMTerminal that a requesting application can use to invoke the call
adapter

® handleReply": an EAlTerminal that handles areply

It has two output terminals:

® reguest": the EAlTerminal from which the request message is sent
® out": an FCMTerminal to which the reply message is mapped

EAICallAdapter is a subclass of FCM Function.

FCMFunction
+callToRequestMapping
I
EAICallAdapter FCMMapping
1
+reply ToOutputMapping

Figure 6-23 EAICallAdapter

The call adapter has two mappings, one of which specifies how the call input
parameters are mapped to the request message; the other specifies how the return
message is mapped to output parameters represented by the "out" terminal.

When invoked via its "call" terminal, the EAICall Adapter maps the call parameters
into a request message and sends it to the input termina of an
EAIRequestReplyAdapter. It waits for a reply. On receipt of areply it maps the
message as specified in the reply ToOutputM apping, and puts out the result on the "out"
terminal.

Constraints

The "out" terminal of EAICallAdapter must be connected via an EAILink to the
"requestin” termina of an EAlIReguestReplyAdapter.

The "handleReply" terminal of EAICallAdapter is the target of connections viaan
EAILink from the "replyOut" terminal of an EAIReguestReplyAdapter.

January 2002 UML for EAI: EAI Specializations of the FCM 6-19

6.3.11.4 EAIRequestFormat

EAIRequestFormat is a subclass of EAIMessageContent. A message that conforms to
EAIReguestFormat specifies a terminal to which replies should be sent
(specifiedReplyTerminal). The association with the terminal is not explicit in the
message but may be computed from information in the message.

EAIMessageContent

EAIRequestFomat

<<derived>>|

1| +specifiedReplyTerminal

EAITerminal
name : String

Figure 6-24 EAIRequestFormat

6.3.11.5 EAIRequestReplyAdapter

An EAIRequestReplyAdapter is a subclass of FCMCommand. It has a single input
terminal "requestin” and a single output terminal "replyOut".

On receipt of a message that conforms to the EAIRequestFormat, it maps the request
message into the format required by the system it interfaces to, calls an operation on
that system, synchronously receives a result, and formats the result for return to the
"handleReply" terminal specified in the request message.

This effectively creates dynamic and temporary instances of EAILink between the
"replyOut” terminal and the "handleReply" terminal of the EAlCallAdapter that sent

the request messaage.

6-20 UML for EAI Draft Adopted Specification January 2002

EAIP1imitiveOperator

+requestToCallMapping

1

FCM Mapping

EAIRequestReplyAdapter

+returnToReplyMapping

Figure 6-25 EAIRequestReplyAdapter

Constraints

The "requestin” termina expects to receive a message of that conforms to
EAIRequestFormat.

6.4 Kindsof Operator

6.4.1 Operators

We define several specializations of EAIPrimitiveOperator and
EAICompoundOperator. EAlCompoundOperators combine more than one of the
primitive EAl concepts represented by the PrimitiveOperators. |mplementations of
them do not need to follow this internal representation, provided that they obey the
signature (in terms of the messages they receive and send) and the documented
semantics.

6.4.1.1 EAlFilter

An EAIlFilter is a subclass of EAIPrimitiveOperator.

January 2002 UML for EAI: Kinds of Operator 6-21

6-22

6.4.1.2

EAIPrimitiveOperator

|

EAIFilter +filterCondition

FCM Condition

Figure 6-26 Filter

A filter's output is a copy of its input. No output occurs if the input message does not
satisfy the filter condition.

EAISream

EAIStream is an operator that allows 'quality of service' on a communication channel
to be expressed.

The flow of control and data via EAILink between EAlTerminals assumes that
messages are always received in the order that they are sent and that there is basically
no delay in their transmission.

In some implementations, a stream of messages may be received in a different order
from that in which they are sent, and they may be received at a different rate from that
at which they are sent. An EAIStream operator can be used to model this.

An EAIStream can be used to model reordering of incoming messages by maintaining
a buffer.

In an implementation, an incoming message is may be added to the buffer in a place
determined by the streaming algorithm. An outgoing message may be sent at the same
or different time as an incoming message is received. The streaming algorithm
determines when to place messages from the top of the buffer onto the "out" terminal.
Typically, this will be when the buffer contains a sufficient block of messages in the
correct order.

All of this behavior is abstracted via an emissionCondition that determines under what
circumstances a message is emitted from the stream. The message emitted may be any
element of the buffer. Once emitted from the stream, the message is removed from the
buffer.

UML for EAI Draft Adopted Specification January 2002

EAIPrimitiveOperator

N

EAIStream

0.n /+buffer

+emissionCondition

EAIMessageContent
domain : String FCMCondition

name : String

Figure 6-27 Stream

6.4.1.3 EAIlPostDater

EAIlPostDater is a subclass of EAlIStream with a single input terminal ("in") and a
single output terminal ("out").

On receipt of a message at its input terminal, it adds the message to the buffer, and
creates an individual timingCondition for it. The timingCondition may entail a
derivation from the content of the input message by a timerMapping. EAlPostDater
holds the message until its individual timing condition is met, then emits it from its
"out" terminal.

January 2002 UML for EAI: Kinds of Operator 6-23

EAIStream

EAIPostDater i
+timerMapping FCMMapping

1

s

+buffer \|,0.n +timingCondition
0..n
FCMCondition

EAIMessageContent

Figure 6-28 EAIPostDater

6.4.1.4 EAIlTransformer

A Transformer is a subclass of PrimitiveOperator with a single input terminal and a
single output terminal.

EAIPrimitiveOperator

EAlTransformer

+transformation |, 0..n

FCM Mapping

Figure 6-29 Transformer

6-24 UML for EAI Draft Adopted Specification January 2002

January 2002

6.4.1.5

6.4.1.6

The output message is a transformation of the input message, as dictated by the
transformation FCMMapping.

EAIDBTransformer

An EAIDBTransformer is a subclass of EAlTransformer that has access to an
EAIDatabase.

EAlDatabase is modeled as a subclass of EAIResource and has the property
databaseName. Subclasses of EAIDatabase may specify further properties such as
information required to connect to the database.

Access to a database as a resource allows the transformation to make use of
information contained in the database. In particular, it allows the message to be
augmented (or enriched) with data from the database.

EAITrans former EAIResource

EAIDat
EAIDBTransformer +database atabase

databaseName : String

1

Figure 6-30 EAIDBTransformer

EAI Aggregator

An EAIAggregator is a subclass of PrimitiveOperator. It has a single input terminal
("in") and a single output terminal ("out"). Its purpose is to combine several messages
(comprising an aggregate) into a single output message (EAIMessageAggregation). It
is commonly used in conjunction with EAITimer, which can check for deadlines.

On receipt of a message, if there are no existing message aggregates, the aggregator
creates one and adds the message to it.

On receipt of a subsequent message, the aggregator examines each existing aggregate,

evaluating the addT oA ggregate condition (which will depend on the message header or
body contents). If an aggregate exists for which addToAggregate eval uates to true, then
the message is added to it.

Each time a message is added to an aggregate, the aggregateComplete condition is
evaluated. If it evaluates to true, then a message is constructed from the messages it
holds and is sent on the output terminal. The mapping from the messages contained in
the aggregate to the message sent is specified by the aggregationM apping.

UML for EAI: Kinds of Operator 6-25

If the aggregateComplete condition does not evaluate to true, then no message is sent.

EAIPrimitiveOperator

% FCMMapping

EAIAggregator +taggregationMapping | (from FCM)

1..n

+aggregateComplete 1

+aggregate\|/0-N

FCMCondition

EAIMessageAggregation
gengareg (from FCM)

+addToAggregate

1..n

E AlMessageContent

domain : String
name : String

Figure 6-31 EAIAggregator
6.4.1.7 EAIRouter

Description

When a router receives a message, it resends a copy via its single output terminal so
that all connected input terminals receive the message. In addition, a router can accept
dynamic addition or removal of target terminals, and so it can be used to model a
simple publication channel for messages.

Modeling

EAIRouter is modeled as an EAlCompoundOperator. The composition that defines an
EAIRouter contains an EAIRouterUpdate and an EAIBroadcaster operator. It has the
constraint that they share the same instance of EAIRoutingTable.

6-26 UML for EAI Draft Adopted Specification January 2002

January 2002

EAICompoundOperator

EAIRouter

FCMComposition

EAIRouterComposition

! 1

EAIBroadcaster

EAIRouterUpdate

Figure 6-32 EAIRouter

6.4.1.8 EAIRouterUpdate and EAIBroadcaster

EAIPrimitiveOperator

1

EAIRouterUpdate

EAIBroadaster

+routingTable

1 FcurrentRoutingTable

EAIRoutingTable

+routingTargets

EAIlITerminal

Figure 6-33 EAIRouter and EAIRouterUpdate

EAIBroadcaster routes a message to destinations listed in the EAIRoutingTable, which

is maintained by EAIRouterUpdate.

UML for EAI: Kinds

of Operator

name : String

EAIRouterUpdate is a primitive operator with a single input terminal ("control") and
no output terminals. It expects to receive a message that conforms to the
EAIRouterUpdateFormat content type. Such a message can specify either the addition
(adds) or removal (removes) of a single terminal from the routing table.

EAIMessageContent

1

EAIRouterUpdate Format

EAIRemoveTargetFormat

EAIAddTargetFormat

<<derived>> <<derived>>

+removes\|/ 1 1|, +adds

EAITerminal
name : String

Figure 6-34 EAIRouterUpdateFormat

An EAIBroadcaster has a single input terminal ("in") and a single output terminal
("out"). The"in" terminal represents any input message. Thisis copied to the output
terminal for routing to all connected EAlTerminals. The output terminal is connected
via an EAILink to each EAlTerminal in the EAIRoutingTable.

6.4.1.9 EAISubscriptionOperator

An EAISubscriptionOperator is a subclass of EAIPrimitiveOperator with a single input
terminal ("subscribe") and no output terminals. It expects an EAISubscriptionFormat as
input. It adds a single EAISubscription to a subscriptionTable on receipt of an

EAI SubscriptionFormat.

6-28 UML for EAI Draft Adopted Specification January 2002

January 2002

EAIPrimitiveOperator

— +subscriptionTable —
EAISubcriptionOperator EAISubscription

0..n

Figure 6-35 SubscriptionOperator

A message that conforms to the EAlSubscriptionFormat specifies a target EAlTerminal
and a set of EAlSubscriptionRules. In Figure 6-36, thisis shown as a pair of derived
associations. This indicates that the target and associated subscription rules can be
computed from the message content. (There could be some indirection in the
specification of the rules and terminal, indicated by subscriptionModes.)

EAIMessage Content

EAISubscriptionFormat
subscriptionMode : SubscriptionModes

<<derived>> <<derived>>

+specifiedTarget
+specifiedRules 1 P 9

1l.n EAITerminal
EAISubscriptionRule name : String

Figure 6-36 EAISubscriptionFormat

An EAISubscription relates an EAlTerminal to a collection of EAISubscriptionRules.
Subseguently the EAlPublicationOperator (Section 6.4.1.9,
“EAISubscriptionOperator,” on page 6-28) will forward messages that satisfy the
subscriptionRules to the subscribingTerminal.

UML for EAI: Kinds of Operator 6-29

EAISubscription

1 +subscribingTerminal

EAITerminal
EAISubscriptionRule name : String

+subscriptionRules

.n

Figure 6-37 EAISubscription

An EAISubscriptionFilter is a subclass of EAIFilter. Its filterCondition is a set of
EAISubscriptionRules.

EAIFilter

+ilterCondition | EAISubscriptionRule

EAISubscriptionFilter

1..n

Figure 6-38 SubscriptionFilter

An EAISubscriptionRule has subclasses EAl TopicRule and EAlContentRule.

6-30 UML for EAI Draft Adopted Specification January 2002

6.4.1.10

FCMCondition

EAISubscriptionRule

EAITopicRule EAIContentRule

Figure 6-39 EAISubscriptionRule, EAlTopicRule and EAlContentRule
EAIPublicationOperator

Description

The EAIPublicationOperator models the semantics of the publish/subscribe mode of
information sharing. It forwards each message to the targets specified in its
currentSubscriptions, if they pass the relevant filter.

It is modeled as a subclass of EAIPrimitiveOperator, with a single input terminal
("in"), and a single output terminal. M essages sent to the input terminal are sent from
the output terminal ("out") to each subscriber (EAITerminal) if the message conforms
to the EAl SubscriptionRule for that subscriber.

This output behavior isnot the same as that of EAITerminal, which sends a copy of the
message to every target terminal. Therefore a subclass of EAlTerminal is introduced
called EAIPublicationTerminal.

EAISubcriptionOperator

EAIPrimitiveOperator

0..n

EAISubscription

+subscriptionTable

0 EAIPublicationOperator +out | EAlPublicationTerminal

January 2002

+currentSubscriptions 1

Figure 6-40 EAIPublicationOperator and EAISubscriptionOperator

UML for EAI: Kinds of Operator 6-31

The diagram below shows the instance diagram for the EAISubscriptionTable after two
subscriptions have been added.

. (EAISubscriptionTable)

1Rule:
EAISubscriptionRule
sl:
EAISubscription
tlin :
EAITerminal
t2rule :

s2:
EAISubscription

EAISubscriptionRule

t2In :
EAITerminal

Figure 6-41 Example SubscriptionTable instance diagram

6.4.1.11 EAITimer

EAI TimeSetOperator

The TimeSetOperator is a subclass of PrimitiveOperator, with a single input terminal
("set") and zero output terminals. It processes a message (EAIMessageTimerCondition)
that specifies a timerCondition and a means of identifying the messages to which the
condition will apply. It uses this information to add to alist of timeSetConditions.

EAIPrimitiveOperator

EAITimeSet Operator

+timeSetConditions
0..n

EAIMessageTi
merCondition

Figure 6-42 TimeSetOperator

An EAIMessageTimerCondition is composed of two FCMConditions:

6-32 UML for EAI Draft Adopted Specification January 2002

January 2002

6.4.1.12

® timerCondition specifies a deadline (a time constraint). This may be relative or
absolute.

® correlationCondition specifies the messages to which the timerCondition applies.
This is often a condition on an element of a message header, such as the commonly
used ‘correlation identifier.'

EAIMessageTimerCondition

1_| FCMCondition 1
+timerCondition +correlationCondition

Figure 6-43 EAIMessageTimerCondition

Constraints

No more than one EAIMessageTimerCondition can apply to any single message in the
timeSetConditions.

EAI TimeCheckOperator

EAITimeCheckOperator is a subclass of PrimitiveOperator with a single input terminal
("check") and three output terminals ("ontime", "expiry" and "late"). On receipt of a
message, it examines its set of timeCheckConditions to see if any of the
correlationConditions apply. If there is a condition that applies, it checks the
appropriate timerCondition. If the timerCondition is met, then the message is passed to

the "ontime" terminal; if not, it is passed to the "late" terminal.

EAIMessageContent
domain : String
name : String

EAIEXxpiry
Format

Figure 6-44 EAIExpiryFormat

At the time that a particular timeCheckCondition expires, a message of format
EAIEXpiryFormat is sent from the "expiry" terminal.

UML for EAI: Kinds of Operator 6-33

EAIPrimitiveOperator

EAITimeCheckOperator

0.n |, +timeCheckConditions

EAIMessageTimerCondition

Figure 6-45 EAITimeCheckOperator

6.4.1.13 EAITimer

EAITimer is formed from a composition of EAITimeSetOperator and
EAITimeCheckOperator.

It has two input terminals, "set" and "check," and two output terminals "out", "expiry"
and "late", all of which map to terminals of the same name owned by the two primitive
operators. Consequently, the "set" terminal causes the EAITimeSetOperator to be
invoked, while messages sent to the "check" terminal cause the
EAITimeCheckOperator to be invoked.

Constraints

The instance of EAITimeCheckOperator and EAI TimeSetOperator from which an
EAITimer is formed share the same collection of EAIMessageTimerCondition.

6.4.2 Topic-based publish/subscribe

6.4.2.1 EAIlTopicPublisher

An EAITopicPublisher is a subclass of EAISource. It sends messages for publication to
an EAIPublicationOperator. The set of topics that it publishes messages on is denoted
by publishesOn. Thisis a derived association, since a topic publisher need not declare
the set of topic it publishes on.

6-34 UML for EAI Draft Adopted Specification January 2002

6.4.2.2 Topics'allowed' by an EAlTopicRule

An abstract representation of an EAlITopicRule is the set of Topics that it allows.

EAICompoundOperator
EAITimer
<<derived>> <<derived>>
1
EAITimeCheckOperator - 1
EAITimeSetOperator

Figure 6-46 Topics alowed by an EAlTopicRule

6.4.2.3 Relationship between topic-based publishersand subscribers

Topic-based publishers and subscribers arerelated to each other viathe topics that they
produce and consume.

For ainput terminal representing a subscriber connected to a particular
PublicationOperator, the set of topicsit isinterested in (subscribesT o) is determined by
the topic which its filterCondition allows.

EAISource

EAITopicPublisher +publishesOn EAITopic

<<derived>> g p

Figure 6-47 Relationship between a terminal and the topics for which it has a subscription

January 2002 UML for EAI: Kinds of Operator 6-35

<<derived>>

EATopicRule +allows | EAITopic
0..n

Figure 6-48 Relationship between publishers, subscribers and topics

6.5 CCA Component Library for EAI

6-36

This section specifies the CCA component library for EAI. 1t is an informational
supplement to the EAI Integration metamodel.

For each of the listed EAl model elements a corresponding library component is
defined. In each case the library component has the same name as the corresponding
EAI model element.

6.5.1 Operators

6.5.1.1 EAIPrimitiveOperator

EAIPrimitiveOperator corresponds to an unconstrained CCA ProcessComponent.

The Terminal of the EAIPrimitiveOperator corresponds to Port of the CCA
ProcessComponent.

Input Terminal corresponds to a CCA FlowPort with metaattribute direction =
responds.

Output Terminal corresponds to a CCA FlowPort with metaattribute direction =
initiates.

The handled ContentFormat of a Terminal in the EAIPrimitiveOperator corresponds to
the type DataElement of the CCA FlowPort.

The Choreography of the CCA ProcessComponent corresponding to an
EAIPrimiveOperator will have CCA PortActivity. This represents each CCA FlowPort
corresponding to EAI input Terminal, followed by CCA Transition with target on CCA
PortActivity that represents each CCA FlowPort corresponding to EAI output
Terminal.

A CCA ProcessComponent, corresponding to an EAlPrimitiveOperator, can be utilized
in a CCA Composition as a CCA ComponentUsage that uses the CCA
ProcessComponent. For each CCA Port in the CCA ProcessComponent, there will be a
CCA PortConnector corresponding to the CCA FlowPort of the used
ProcessComponent.

UML for EAI Draft Adopted Specification January 2002

In CCA, there is no fundamental distinction between primitive and non-primitive
ProcessComponents. Rather, the "primitiveness’ of a ProcessComponent is not
externally observable. The CCA ProcessComponent may optionally have internal
Composition detail, using other ProcessComponents.

In CCA, there is no fundamental distinction between primitive and non-primitive
ProcessComponents. Rather, the "primitiveness’ of a ProcessComponent is not
externally observable. The CCA ProcessComponent may optionally have internal
Composition detail, using other ProcessComponents.

Sample_EAIPrimitiveOperator

> Y1

Y1 input
Y2 output

Y3 input
Y4 output

.

Figure 6-49 CCA notation for a sample generic EAIPrimitiveOperator

6.5.1.2 EAlTransformer

EAITransformer is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with one CCA FlowPort with direction = responds and one CCA
FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an
EAITransformer will show a CCA PortActivity on the FlowPort with direction =
responds, followed by a CCA PortActivity on the FlowPort with direction = initiates.

The input and output CCA FlowPort will have different DataElement types. The
ProcessComponent will transform from the input DataElement type to the ouput
DataElement type.

The transformation to be performed on the DataElement contents can be specified in a
Property of the CCA ProcessComponent as an expression, script or tranformation
specification in any of the transformation languages available. Alternatively, the
tranformation can be delegated into usages of other technol ogy-specific transformation
ProcessComponents in the internal Composition.

January 2002 UML for EAI: CCA Component Library for EAI 6-37

6-38

Sample_EAIlTransformer .

o

Y1 input

Sample_EAIlTransformer

D 1]

ﬁ Y2 output

transform | XSLT

6.5.1.3

.... Xsl:template

Figure 6-50 CCA notation for sample EAITransformer

EAIFilter

EAIFilter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with one CCA FlowPort with direction = responds and two CCA
FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAIFilter will
show a CCA PortActivity on the FlowPort with direction = responds, followed by a
choice vertex, followed by a CCA PortActivity on each of the FlowPort with direction
= initiates.

The input and each output CCA FlowPort will have the same DataElement type.

The criteria for the choice of true or false output terminal Port can be specified in a
Property of the CCA ProcessComponent as an expression in any of the languages
available. Criterialogic can also be delegated into usages of other ProcessComponents
in the internal Composition.

UML for EAI Draft Adopted Specification January 2002

Sample_EAlIFilter

D 1]

true Y1

Sample_EAlIFilter

D 1]

false Y1 ouput

false Y1

criteria

ocL | an OCL é

expression

6.5.1.4

January 2002

Figure 6-51 CCA notation for a sample EAIFilter

EAISream

EAIStream is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = responds and asingle
CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAIStream
will show a CCA PortActivity on the FlowPort with direction = responds, followed by
a Fork, followed by CCA PortActivity on the FlowPort with direction = initiates,
followed by a Join.

The input and output CCA FlowPort will have the same DataElement type. The
ProcessComponent will store inputs to be sent later, possibly in a different order,
through the output termina FlowPort.

The algorithm used to determine when, and in which order, the incoming messages
will be posted in the output terminal FlowPort can be specified as a Property of the
EAIStream component, or it can be delegated into usages or other ProcessComponents
in the internal Composition.

UML for EAI: CCA Component Library for EAI 6-39

Ylinput)
Sample_EAIStream
\
Y1
i -t

/\/

®

Figure 6-52 CCA notation for a sample EAIStream

6.5.1.5 EAICompoundOperator

EAICompoundOperator corresponds to an unconstrained CCA component. It will use
other EAI Operator or Adapter ProcessComponents in the internal Composition.

The ProcessComponent for EAlCompoundOperator will have externally connectable
Ports that will be delegated into Ports of the internally used ProcessComponent.

Incoming messages on the external Port of the EAlCompoundOperator
ProcessComponent will be delivered to the internally connected Port of the
ProcessComponent operators and adapters used.

Outgoing messages from the internally connected Port of the used ProcessComponent
operators and adapters will be forwarded to the external outgoing Port of the
EAICompoundOperator ProcessComponent.

This recursive composition capability of CCA corresponds to FCM and EAI recursive
composition of nodes, operators and adapters.

For the user of an EAlCompoundOperator ProcessComponent, there is no difference
between using a Compound or a Primitive Operator. The internal composition of the
Compound Operator remains encapsulated by the ProcessComponent. The user can
only observe the external Port and Choreography of the ProcessComponent.

6-40 UML for EAI Draft Adopted Specification January 2002

Sample_EAICompoundOperator .

D v1

I Sample_EAICallAdapter I

| Sample_EAITransformer Y1input

Y2

... Xsl'template

transform ‘ XSLT ‘ :

Y3 output

Figure 6-53 CCA notation for sample EAlCompoundOperator

6.5.2 Adapters
6.5.2.1 EAISourceAdapter

EAISourceAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an
EAISourceAdapter will show a CCA PortActivity on the FlowPort with direction =
initiates.

Sample_EAISourceAdapter
(Y1 output

)

Figure 6-54 CCA notation for a sample EAlSourceAdapter

January 2002 UML for EAI: CCA Component Library for EAI 6-41

When the EAISourceAdapter isto be utilized in Pull mode, an additional FlowPort will
respond to a generic "Get" message that will trigger retrieval from the system and
initiate the output.

Sample_Pull_EAISourceAdapter .
receive Get
cei n#

Y1 ouput

Figure 6-55 CCA notation for a sample Pull mode EAISourceAdapter

6.5.2.2 EAlTargetAdapter

EAIlTargetAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = responds.

The Choreography of the CCA ProcessComponent corresponding to an
EAITargetAdapter will show a CCA PortActivity on the FlowPort with direction =
responds.

Sample_EAIlTargetAdapter

Y1l

Figure 6-56 CCA notation for a sample EAlTargetAdapter

6-42 UML for EAI Draft Adopted Specification January 2002

6.5.2.3 EAIQueuedTargetAdapter

EAIQueuedTargetAdapter is a specialized EAIPrimitiveOperator. It corresponds to a
CCA ProcessComponent with a single CCA FlowPort with direction = responds.

An EAIQueuedTargetAdapter offers the same externally observable contract as the
EAITargetAdapter but with different internal behavior, namely, queued delivery of
messages to the system.

Queueing of messages can be directly implemented or delegated into usages of
technol ogy-specific message-queue ProcessComponents in the internal composition.

6.5.2.4 EAICallAdapter

EAICallAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a CCA FlowPort with direction = responds and a CCA
FlowPort with direction = initiates.

Alternatively, an EAlICall Adapter may correspond to a CCA ProcessComponent with a
Protocol Port, with subPorts obeying a Protocol having a CCA FlowPort with direction
= responds and a CCA FlowPort with direction = initiates. This aggregation in asingle
Protocol Port of the FlowPorts for the call and response messages provides as single
connection point for the full call-response, which is similar to the conventional
functional invocation in programming languages.

The Choreography of the CCA ProcessComponent corresponding to an
EAICallAdapter will show a CCA PortActivity on the FlowPort with direction =
responds, followed by a CCA PortActivity on the FlowPort with direction = initiates.

An EAICallAdapter accepts synchronous calls that are not externally observable. It
converts these to asynchronous messages that are sent on the output terminal initiating
FlowPort. It receives a response on the input terminal responding FlowPort and passes
an equivalent response to the caller. The EAICall Adapter must implement the logic and
mechanisms to wait for the asynchronous response and rebind to the thread of the
calling process.

The input and output CCA FlowPort may have the same or different DataElement type.
The ProcessComponent will convert the input to the type required by the system. The
system will respond with information of a certain type that the ProcessComponent
must convert into the ouput DataElement type.

The transformation to be performed on the DataElement contents can be specified in
Properties of the CCA ProcessComponent as an expression, script or tranformation
specification in any of transformation languages available. Alternatively, the
tranformation can be delegated into usages of other technol ogy-specific transformation
ProcessComponents in the internal Composition.

January 2002 UML for EAI: CCA Component Library for EAI 6-43

Sample_EAICallAdapter .

D vi] #

Sample_EAICallAdapter

Y2 output

| call
= .

Figure 6-57 CCA notation for sample EAICall Adapter

6.5.2.5 EAIRequestReplyAdapter

EAIReguestReplyAdapter is a specialized EAIPrimitiveOperator. It corresponds to a
CCA ProcessComponent with a CCA FlowPort with direction = responds and a CCA
FlowPort with direction = initiates.

Externally, an EAIRequestReplyAdapter exposes similar contract and behaves like the
EAICall Adapter.

The EAIRequestReplyAdapter accepts asynchronous messages. It invokes a system
synchronously and returns the response as a message that other applications can
process asynchronously. The RequestReplyAdapter presents an asynchronous interface
on a synchronous invocation.

6.5.3 CCA and EAI Metamodel Mapping Tables

The following table shows the mapping between EAl and CCA model elements. In
many cases the EAI library component is also part of the mapping.

Table 6-1 Model elements mapping table

EAIl metamodel element CCA metamodel element Library Component
(Component Used)

EAIFlow ProcessComponent

EAIRouterComposition ProcessComponent

EAIPrimitiveOperator ComponentUsage EAIPrimitiveOperator

EAICompoundOperator ComponentUsage EAICompoundOperator

EAITargetAdapter ComponentUsage EAITargetAdapter

6-44 UML for EAI Draft Adopted Specification January 2002

Table 6-1 Model elements mapping table

EAIl metamodel element

CCA metamodel element

Library Component
(Component Used)

EAISourceAdapter ComponentUsage EAISourceAdapter
EAICallAdapter ComponentUsage EAICall Adapter
EAIRequestReplyAdapter ComponentUsage EAIRequestReply Adapter
EAIFilter ComponentUsage EAIFilter

EAIStream ComponentUsage EAIStream
EAIPostDater ComponentUsage EAIlPostDater
EAITransformer ComponentUsage EAITransformer
EAIDBTransformer ComponentUsage EAIDBTransformer
EAIAggregator ComponentUsage EAIAggregator
EAIRouter ComponentUsage EAIRouter
EAIBroadcaster ComponentUsage EAIBroadcaster
EAIRouterUpdate ComponentUsage EAIRouterUpdate
EAISubscriptionOperator ComponentUsage EAI SubscriptionOperator
EAISubscriptionFilter ComponentUsage EAI SubscriptionFilter
EAIPublicationOperator ComponentUsage EAIPublicationOperator
EAITimeSetOperator ComponentUsage EAITimeSetOperator
EAITimeCheckOperator ComponentUsage EAITimeCheckOperator
EAITimer ComponentUsage EAITimer

EAISource Port with direction = responds

EAIQueuedSource

Port with direction = responds

EAITopicPublisher

EAISink Port with direction = initiates
EAIQueuedSink Port with direction = initiates
EAILink Connection

EAIM essageOperation

FlowPort or OperationPort

EAITerminal PortConnector
EAIQueuedInputTerminal PortConnector
EAIQueuedOutputTerminal PortConnector

EAIPublicationTerminal

EAISubscriptionRule

EAITopicRule

EAIContentRule

EAIMessageTimerCondition

January 2002

UML for EAI: CCA Component Library for EAI

6-45

6-46

Table 6-1 Model elements mapping table

EAIl metamodel element

CCA metamodel element

Library Component
(Component Used)

EAIM essageContent

CompositeData

EAIExceptionNotice

CompositeData

EAIRequestFormat

EAIQueue

EAIContent

EAIRouterUpdateFormat

EAIAddTargetFormat

EAISubscriptionFormat

EAIResource

EAIM essageAggregation

EAISubscription

EAITopic

Examples of the CCA modeling elements are presented in Chapter 11.

UML for EAI Draft Adopted Specification

January 2002

EAI Common Application
Metamodel !

7.1 BusinessRequirementsand Value

The current trend for new applicationsis to embrace openWeb standards that simplify
construction and scalability. As new applications are built, it is crucial to integrate
seamlessly with existing systems while introducing new business models and new
business processes.

=
- =
ﬂﬂﬂﬂﬂ @ m Baan on
o o g - SAP on AIX HP/UX

[w

-F'
Netscape .."'== .ﬁ
IE !
Net.Commerce ‘0‘ DB2,
Netscape CICS/39 —

DL/l on
Sun Solaris . IMS/390

%3/390 Windows2000

Figure 7-1 Multiple Application and Development Environments

January 2002 UML for EAI Draft Adopted Specification 7-1

7-2

Andysts from the Meta Group estimate that more than 70 % of corporate data lives on
the mainframe, much of that on the S/390. Many transactions may be initiated by a
Windows/NT or Unix server, but they will be completed on the mainframe under
applications, such as CICS, or IMS applications. It is important to leverage and reuse
these existing assets, including stored procedures, to provide interoperability with
existing applications.

The above figure depicts multiple application components with multiple development
teams and environments. Where is the application in this picture? Everywhere! How is
the application assembled? With connectors!

Connectors are a central part of the application framework for e-business. The demand
is to connect to anything interesting as quickly, and as easily, as possible.

A connector is required to match the interface requirements of the adapter and the
legacy application. It is aso required to map between the two interfaces. Standardized
metamodels for application interfaces allow reuse of information in multiple connector
tools. It will not only reduce work to create a connector, but also reduce work needed
to develop connector builder tools, thus an incentive to connector suppliers.

7.2 Common Application Metamodel for Applications|nterfaces

Business integration technology requires connectors to provide interoperability with
existing applications. Connectors support leveraging and reuse of data and business
logic held within existing application systems. The job of a connector is to connect
from one application system server "interface" to another; it is not meant for an
individual application program. Therefore, an application-domain interface metamodel
describes signatures for input and output parameters and return types for a given
application system domain (e.g. IMS, MQSeries); it is not for a particular IMS or
MQSeries application program. The metamodel contains both syntactic and semantic
interface metadata

The following figure showing the EAl metamodel for application interfaces enables
integration of application components into event-based messaging model including
Flow models.

UML for EAI Draft Adopted Specification January 2002

January 2002

Middleware

Metadata
Repository

Application Interface
etamodel

=
(:;D, Existing Application
Invocation & - 8 Program
Transformation o))
runtime g;?i:?[icoen
connector

Figure 7-2 Application Interface Metamodel

The flow and messaging middleware invokes applications through the application
interfaces. These interfaces are the access points to the applications through which all
input and output is connected to the middleware. The interfaces are described in terms
of the Application Interface Metamodels. Transformation processing according to the
metamodel could take place in source/client applications, target applications, or a
gateway.

7.2.1 End-to-End Connector Usage Using EAI Common Application

Metamodel

The EAI Common Application Metamodel (CAM) consists of meta-definitions of
message sighatures, independent of any particular tool or middleware. Different
connector builder tools can use this information to ensure the "handshaking" between
these application programs, across different tools, languages, and middleware. For
example, if you have to invoke an MQSeries application, you would need to build a
MQ message using data from a GUI tool and deliver it using the MQ API. Similarly,
when you receive a message from the MQSeries application, you would need to get the
buffer from MQSeries, parse it and then put it into a GUI tool data structure. These
functions can be designed and implemented efficiently by a connector builder tool
using EAl CAM as standardized metamodels for application interfaces.

EAI CAM can be populated from many sources, including copy books, to generate

HTML formsand JavaServer Page (JSP) for gathering inputs and returning outputs. An
example of a connector as depicted in the previous figure is that the flow and message
middleware makes a function call to an enterprise application by calling the connector

UML for EAI: Common Application Metamodel for Applications Interfaces 7-3

that then calls the enterprise application API. The connector does language and data
type mappings, for example, to trandate between XML documents and COBOL input
and output data structures based on EAl CAM. Connectors and EAl CAM provide the
end-to-end integration between the middleware and the enterprise applications.

Using IMS as an example: Let's say that you must pass an account number to an IMS
transaction application program from your desktop to withdraw $50.00. With EAI
CAM and a connector builder tool, you will first generate an input HTML form and an
output JSP; and develop a middleware code necessary to support the request. The
desktop application fills the request data structure (i.e. an input HTML form) with
values and calls the middleware. The middleware service code will take the data from
the GUI tool, build an IMS Connect XML-formatted message, and deliver the message
to the IMS gateway (i.e. IMS Connect) via TCP/IP. IMS Connect translates between
the XML documents and the IMS message data structures in COBOL using the
metadata definitions captured in EAl CAM. It then, in turn, sends the IMS message
data structures to IM S via Open Transaction Manager Access (OTMA). The IMS
COBOL application program runs, and returns the output message back to the
middleware service code via IMS Connect. The middleware service code gets the
message and populates the output JSP page (i.e. previously generated GUI tool reply
data structures) with the reply data. The transaction output data will then be presented
to the user.

7.3 Common Application Metamodel

CAM isagroup of interface metamodels that consist of enterprise application interface
metamodels, language metamodels and physical representation metamodels. These
include C, C++, Java, COBOL, PL/I, Type Descriptor, TDLang, IMS transaction
messages, IMS MFS, and CICS BMS, etc. Note that the Java metamodel is defined in
the OMG EDOC (Enterprise Distributed Object Computing) submission.

CAM s highly reusable and independent of any particular tool or middleware. CAM is
an incentive to connector suppliers. It reduces work to create and develop connector
and/or connector-builder tools. With CAM, tools can now easily access enterprise
applications, e.g. IMS and CICS applications; and tools can also access any CAM
enabled applications. CAM is used to describe information needed to easily integrate
applications developed in common programming models with other systems. CAM can
be used for both synchronous and asynchronous invocations.

Because CAM also provides physical representation of data types and storage mapping
to support data transformation in an enterprise application integration environment, it
enables Web services for enterprise applications.

In a nutshell, CAM is needed for
® connector and/or connector-builder tools (Development time)

® datatransformation in an enterprise application integration environment (Execution
time)

® data type mapping between mixed languages

® datatrandations from one language and platform domain into another

UML for EAI Draft Adopted Specification January 2002

January 2002

® data driven impact analysis for application productivity and quality assurance

® viewing of programming language data declarations by developers

CAM uses MOF and UML class modeling mechanisms. All CAM models are instances
of MOF classes at the M2 level.

7.3.1 Enterprise Application Interface Metamodels

The Enterprise Application Interface metamodel describes signatures for input and
output parameters and return types for application system domains.

The Enterprise Application Interface Metamodels listed as follows are non-normative
and can be found in Appendix A.

® |MS Transaction Message
®* IMS MFS
®* IMSCICS BMS

7.3.2 Language Metamodels

The language metamodel, e.g. COBOL metamodel, is used by enterprise application
programs to define data structures (semantics) that represent connector interfaces. An
association between language metamodels (semantics) and the physical layout
metamodel (syntactic) is necessary in order for the marshaller to correctly format the
byte string. This association between language metamodels and Type Descriptor
metamodel is further detailed in Section 7.3.9, “Physical Representation Model:
Convergent Metamodel,” on page 7-22. It is important to connector developers that
connector tools show the source language, the target language, and the mapping
between the two languages. The CAM language metamodel aso includes the
declaration text in the model that is not editable (i.e., read-only model). Because the
connector/adapter developer would probably prefer to see the entire COBOL data
declaration, including comments and any other documentation that would help him/her
understand the business role played by each field in the declaration.

The language metamodel is also to support data driven impact analysis for application
productivity and quality assurance. (But, it is not the intention of the CAM to support
reproduction of copybooks.)

The language metamodels describing application interface data are listed as follows:
e C

® C++

®* COBOL

® PL/

® Java (Java metamodel isin the OMG EDOC final submission document.)

These language metamodels are found in Chapter 13.

UML for EAI: Common Application Metamodel 7-5

7-6

7.3.3 Physical Representation Model: Type Descriptor Metamodel

Type Descriptor metamodel presents a language and platform independent way of
describing implementation types, including arrays and structured types. This
information is needed for marshaling and for connectors that have to transform data
from one language and platform domain into another. I nspections of the type model for
different languages can determine the conformance possibilities for the language types.
For example, along type in Javais often identical to a binary type (computational-5) in
COBOL, and if so, the types may be inter-converted without side effect. On the other
hand, an alphanumeric type in COBOL isfixed in size and if mapped to a Java type,
loses this property. When converted back from Javato COBOL, the COBOL truncation
rules may not apply, resulting in computation anomalies. In addition, tools that mix
languages in a server environment (e.g., Java and COBOL in CICS and IMS) should
find it useful as away to determine how faithfully one language can represent the types
of another. Therefore, an instance of the Type Descriptor metamodel describes the
physical representation of a specific data type for a particular platform and compiler.
The following figures illustrate the classes that constitute the Type Descriptor
metamodel and show how the classes relate to each other. Following the diagramsis a
brief explanation of what each class represents.

UML for EAI Draft Adopted Specification January 2002

January 2002

| nstanceTDBase
<<Or der ed>> ffsetFormila : String
ontent Si zeFormula : String

Il ocSi zeFormula : String
ccessor @ Accessor Val ue
ormulalnBit : Boolean = fal se

+ar rayDescr Z}

ArrayTD

rrayAlign @ int
trideFormula : String
tridel nBit : Bool ean

pper BoundFormul a : String
ower BoundFormul a : String

Aggr egat el nst anceTD
[ighnion : Boolean = fal se

Si npl el nst anceTD
0..*

+si npl e Type

+shar ed Type 1

BaseTDType
ddrUni t @ Addr Uni t Val ue
idth : int
lignment : int
ickname : String
i gEndi an : Bool ean

A +referenceType
1.1

Addr essTD

bsol ute : Bool ean

er m ssion : String
it MdePad : Addr es sMode

+platform nfo

Pl at f or mConpi I erl nfo

latfor mConpi l erType : String
onpilerName : Sring

onpi |l er Version : String
onmpilerFlags : String

perati ngSystem: String
sVersion : String
ardwarePlatform: String

ef aul t Encoding : String

ef aul t BigEndi an : Bool ean

ef aul t Float Type : Fl oat Val ue
ddressSize : AddressMode

StringTD

ncoding : String

maxLengthFornula @ String
heckvalidity : Bool ean
ormat : String

addi ngCharacter : String
haracterSize : int

| engt hEncodi ng : Lengt hEncodi ngVval ue

tringJustification : StringJustificationKind = LeftJustify

Bi _DirectionStringTD

extType : Str
rientation :

extShape : &

ing = Inplicit
String = LTR

ymnetric : Boolean = true
umer al Shapes :

String = Nomi nal
ring = Nominal

Nurber TD
ase @ int
aseWdth : int
asel nAddr : int
aseUnits @ int

heckvalidity : Bool ean

ignCoding : SignCodi ngVal ue

aseUni t Encoding :

ackedDeci mal Si gn :

PackedDeci mal Si gnval ue
Encodi ng

ormat : Bool ean
ign : SignFormat

.f | oat Type : FloatVal ue

BinaryTD
length : int

Figure 7-3 Type Descriptor metamodel

UML for EAI: Common Application Metamodel

TDLangEl ement
(from TDLang)

+l anguagel nstance |1. .1

+instanceTDBase | 1..1

I nstanceTDBase
(from TypeDescri ptor)
PZof fset Formul a

String

PEcontent Si zeFormul a String
PZal | ocSizeFormul a String
PZaccessor Accessor Val ue
PEf or mul al nBi t Bool ean = false
Figure 7-4 TDLang to Type Descriptor
<<enuneration>> <<enunerati on>> <<enunerati on>> <<enuneration>>
Si gnCodi ngVval ue Lengt hEncodi ngVal ue Encodi ng Addr Uni t Val ue
[t wos Conpl enent [f i xedLength [Eebcdic i t
[l@ones Conpl ement [l engt hPrefi xed [asci i [byte
[@si gnvagni t ude [Znul | Ter ni nat ed [Zipacked390 [wor d
[§zoneSi gns [Edoubl ewor d

[EpackedSi gns
[Bunsi gnedBi nary
[gunsi gnedDeci mal

<<enunerati on>> <<enuner ati on>>
PackedDeci mal Si gnVal ue Accessor Val ue

Envs [readonl y

<<enuner ation>>
Addr essMbde

- [EmvsCust om [fawriteonly [Erode16
<<enumeration>> | /@Ent os2_ai x [readwite [lEnode24
Fl oat Val ue lnoAccess lrrode31
PBunspecified [gmode32
-I eeExt ended! nt el SignFormat [Enode64
.! eeExt endedAl X Wleading [Enode128
L] eeExt engeggswo [EleadingSeparate
Bl eeExt endedAS400 [Etrailing StringdustificationKind
&l eeeNonExt ended BBl i
I brB90Hex railingSeparate | gl ef t Justi fy
1L bmi00Hex Bunsigned JrightJustity

Figure 7-5 Type Descriptor Stereotypes

7-8 UML for EAI Draft Adopted Specification January 2002

January 2002

7.3.4 Type Descriptor Metamodel Descriptions

7.34.1

7.3.4.2

7.3.4.3

7.3.4.4

7.3.4.5

7.3.4.6

7.3.4.7

AddressTD

AddressTD represent pointers/addresses. Addresses should be considered to be
different from NumberTD class because some languages on certain machines (e.g.,
IBM 400) represent addresses with additional information, such as permission type
(which is not represented in NumberTD class)

ArrayTD

ArrayTD holds information for array types. Data element instances may be defined as
repeating groups or arrays. This is modeled as a one-to-many association between
InstanceTDBase and the ArrayTD model type. One instance of ArrayTD is created for
each dimension, subscript, or independent index of the data element. Each instance
holds information about the bounds and accessing computations. The association order
between ArrayTD and InstanceTDBase is the same as the order for the corresponding
association in the language model, and reflects the syntactic ordering of the indices as
defined by the programming language.

BaseTDType

BaseTDType is the abstract parent class of al types in the TD Metamodel.
BaseTDType holds implementation information common to al data types of the same
runtime environment, as specified by PlatformCompilerinfo.

Bi-Directional SringTD

Bi-DirectionStringTD is a subclass of StringTD. Bi-DirectionStringTD represents
strings with extended properties and formats such as numeral shapes and right-to-left
reading direction.

BinaryTD

BinaryTD represents a string of binary bits whose format is not to be modified.

DateTD

DateTD represents date types with its associated format (e.g., mm/dd/yyyy,
dd/mm/yyyy)

FloatTD

FloatTD represents floating point numbers declared by alanguage element.

UML for EAI: Common Application Metamodel 7-9

7-10

7.3.4.8

7.3.4.9

7.3.4.10

7.34.11

7.3.4.12

7.3.4.13

InstanceTDBase

InstanceTDBase is the most basic, fundamental core class of the Type Descriptor
Metamodel. Every TD Metamodel instance contains at least one instance of
InstanceTDBase. For each instance of a CAM language Element class there is a
corresponding instance of InstanceTDBase. InstanceTDBase contains attributes that
describe the physical layout of each declared variable and structure element in a
program. It is an abstract class realized by either SimplelnstanceTD or
AggregatelnstanceTD. To find the parent of any instance (if it has one) navigate the
association back to the CAM Language Element class (via a language-independent
element class, e.g., TDLangElement), follow the association to the language-specific
Composed class, then follow the association back to the parent InstanceT DBase.

Number TD

NumberTD represents all integer and packed decimals.

PlatformCompilerinfo

PlatformCompilerInfo captures the static compiler and program runtime environment.
Since this static information is shared by all instances of InstanceTDBase, this class
only needs to be instantiated once.

SmplelnstanceTD and Aggregatel nstanceTD

Both SimplelnstanceTD and Aggregatel nstanceTD are subclasses of InstanceTDBase.
InstanceTDBase has two concrete subtypes: SimplelnstanceTD and
AggregatelnstanceTD. SimplelnstanceTD models data elements without
subcomponents, while AggregatelnstanceTD models data elements with
subcomponents. To find the subcomponents of an AggregatelnstanceTD, one must
navigate back to the corresponding data element declaration in the CAM language
model. There, the association between an aggregate type and its subcomponents may
be navigated, leading to a set of subcomponent data elements, each of which hasone or
more corresponding instances in the Type Descriptor model.

SringTD

StringTD represents standard |eft-to-right format character strings. StringTD also
supports single characters elements.

Type Descriptor Stereotypes
® AccessorVaue enumerates permission rights for each TDLangElement.

® AddrUnitVaue enumerates the unit associated with the value of address attributesin
Type Descriptor Metamodel.

® BitModePadValue enumerates the address size. Values in this enumeration are used
to calculate padding.

UML for EAI Draft Adopted Specification January 2002

January 2002

® Encoding enumerates numeric base unit encoding supported by Type Descriptor
M etamodel.

® FloatValue enumerates floating types supported by Type Descriptor Metamodel.

® | engthEncodingValue enumerates string length encoding val ues supported by Type
Descriptor Metamodel.

® PackedDecimal SignValue enumerates platforms that support the packed decimal
format.

¢ SignCodingValue enumerates numeric sigh encoding values supported by Type
Descriptor Metamodel.

® StringJustificationKind enumerates string justification layout values supported by
Type Descriptor Metamodel.

7.3.5 Type Descriptor Formulas

In the following discussion, “field” refers to a component of alanguage data structure
described by the Type Descriptor metamodel, while “attribute” denotes part of the
model, and has a value representing a “property” of thefield. Thus the value of afield
means a run-time value in a particular instance of a language data structure, whereas
the value of an attribute is part of the description of afield in alanguage data structure,
applies to all instances of the data structure, and is determined when the data structure
is modeled.

For most attributes in an instance of the Type Descriptor metamodel, the value of the
attribute is known when the instance is built, because the properties of the fields being
described, such as size and offset within the data structure, are invariant. But if a field
in a data structure is defined using the COBOL OCCURS DEPENDI NG ON construct
or the PL/I Ref er construct, then some properties of the field (and properties of other
fields that depend on that field' svalue) cannot be determined when the model instance
is built.

Properties that can be defined using these language constructs are string lengths and
array bounds. A property that could indirectly depend on these language constructs is
the offset of afield within a structure, if the field follows a variable-size field.

In order to handle these language constructs, properties of afield that could depend on
these constructs (and thus the values of the corresponding attributes), are defined with
strings that specify a formula that can be evaluated when the model is used.

However, if a property of afield is known when the model instance is built, then the
attribute formula simply specifies an integer value. For example, if a string has length
17, then the formula for its length is “17.”

The formulas mentioned above are limited to the following:
® Unsigned integers

® The following arithmetic integer functions

UML for EAI: Common Application Metamodel 7-11

7-12

neg(x) = -X /'l prefix negate
add(x,y) := x+y /1 infix add
sub(x,y) := x-y /1 infix subtract
my(x,y) := x*y /1 infix nultiply
div(x,y) :=xly /1 infix divide
max(x,y) := max(x,y)

mn(x,y) := mn(x,y)

mod(x,y) := x nod y

The mod function is defined as mod(x,y) = r where r is the smallest non-negative
integer such that x-r is evenly divisible by y. So mod(7,4) is 3, but mod(-7,4) is 1. If y
is a power of 2, then mod(x,y) is equal to the bitwise-and of x and y-1.

® The val function

The val function returns the value of afield described by the model. The val

function takes one or more arguments, and the first argument refers to the level-1

data structure containing the field, and must be either:

« the name of alevel-1 data structure in the language model

« theinteger 1, indicating the level-1 parent of the variable-size field. In this case,
the variable-size field and the field that specifies its size are in the same data
structure, and so have a common level-1 parent.

® The subsequent arguments are integers that specify the ordinal number within its
substructure of the (sub)field that should be dereferenced.

By default, COBOL data fields within a structure are not aligned on type-specific
boundaries in storage. For example, the “natural” alignment for a four-byte integer isa
full-word storage boundary. Such alignment can be specified by using the
SYNCHRONI ZED clause on the declaration. Otherwise, data fields start immediately
after the end of the preceding field in the structure. Since COBOL does not have bit
data, fields always start on a whole byte boundary.

For PL/I, the situation is more complicated. Alignment is controlled by the Aligned
and Unaligned declaration attributes. By contrast with COBOL, most types of data,
notably binary or floating-point numbers, are aligned on their natural boundaries by
default.

7.3.6 Type Descriptor Formula Examples

7.3.6.1 COBOL

The examples use the proposed inline comment indicator “*>" from the draft standard.
It is not yet legal COBOL usage.

1. Consider the following data description:
*> Field O fset

01 Used- Car. *> "o

UML for EAI Draft Adopted Specification January 2002

January 2002

02 Summary. *> " 0"
03 Make pic x(36). *> "o"
03 Model pic x(44). *> " 36"
03 VIN pic x(13). *> " 80"
03 Col or pic x(10). *> " 93"

88 Red val ue 'Red'.
88 Wiite value '"VWite'.
88 Bl ue val ue ' Bl ue'.

02 History. *> "103"
03 M| eage pic 9(6). *> "103"
03 NunCl ai ms binary pic 9. *> "109"
03 I nsCode pic x. *> 111"
03 d ai ns. *> "112"

04 aimoccurs 1 to 9 tines
dependi ng on NunCl ai ns. *> stride(l) = "157"
05 ClaimNo pic x(14). *> "112"
05 ClaimAm binary pic 9(5).*> "126"
05 Insurer pic x(39). *> "130"
05 Details pic x(100). *> "169"
02 Price comp pic 9(5)v99. *>

"add(112, npy(val (1, 2,2),157))"

The offset of Model is straightforward, and is given by the formula“ 36.” So is that of
Cl ai ms, whichis“112.”

But because the array Cl ai mcan occur a variable number of times, the structure

Hi st ory isavariable-size field. Thus the offset of Pri ce, which immediately
follows Cl ai ns, requires a more complicated formula, involving the array stride (the
distance between successive elements along a specific dimension). In the case when
there is only one dimension for Cl ai m the formula for its stride is “157.” Thus the
formula offset of Pri ce for asingle dimension Cl ai mis:

"add(112, npy(val (1, 2,2),157))"

The first argument of the val function is 1, meaning that the field containing the value
at run-time, NunCl ai ns, isin the same level-1 structure, Used- Car, as the field,
Pri ce, whose offset is specified by the formula. The other two arguments are 2 and
2. The first 2 refers to the second immediate subcomponent, Hi st or y, of Used-
Car. The second 2 means that the field to be dereferenced is the second component of
Hi story,thatis, NunCl ai ns.

In the case when NumCl ai s is greater than 1 (i.e., when Cl ai ns is amulti-
dimension array) the offset for each element within Cl ai ms is 157 more than the
offset for the previous dimension. For example, the offset formula for the second
instance of Cl ai mNo is 112+157=269 while the third instance would be
269+157=426.

If the OCCURS DEPENDI NG ON object were in a separate structure, the third
subcomponent of level-1 structure Car - Dat a, say, then the val function would be
“val (Car - Dat a, 3).”

UML for EAI: Common Application Metamodel 7-13

7-14

2. COBOL structure mapping is top-down, although the direction doesn’t make any
difference unless the SYNCHRONIZED clause is specified on the data declaration.
Specifying SYNCHRONIZED forces alignment of individual fields on their natural
boundaries, and thus introduces “gaps” into the structure mapping. Consider the
following data structure that is identical to the previous example, except for the
SYNCHRONIZED clause:

*> Field O fset
01 Used-Car sync. *> Q"
02 Summary. *> " Q"

03 Make pic x(36). *> "Q"

03 Model pic x(44). *> "36"
03 VIN pic x(13). *> " 80"

03 Color pic x(10). *> "93"

88 Red val ue 'Red'.
88 Wiite value "VWite'.
88 Bl ue val ue ' Bl ue'.

02 History. *> "103"
03 Ml eage pic 9(6). *> "103"
03 NunCl ai ms binary pic 9. *> "110"
03 I nsCode pic x. *> "112"
03 C ai ns. *> "113"

04 Claimoccurs 1 to 9 tines
dependi ng on Nun(Cl ai ns. *> stride(l) = "160"

05 ClaimNo pic x(14). *> "113" plus one
sl ack byte after each instance of Cl aim\o

05 ClaimAmt binary pic 9(5).*> "128"

05 Insurer pic x(39). *> "132"

05 Details pic x(100). *> "171" plus
one sl ack byte after each instance of Details and one sl ack
byte after each instance of C ains

02 Price conp pic 9(5)v99. *>
"add(add(113, mpy(val (1,2, 2),160)),3)"

To position the binary fields on their appropriate half-word or full-word storage
boundaries, COBOL introduces padding, known as “slack bytes”, into the structure.
Working top-down, this padding is introduced immediately before the field needing
alignment. So there is one byte of padding between M | eage and NunCl ai ns.

For an array, such as Claim, COBOL not only adjusts the padding within an element,
but also the alignment of each element of the array. In the example, the first occurrence
of Claim starts one byte past a full-word boundary. Because the field ClaimNo is three
and a half words long, it ends three bytes past a full-word boundary, so COBOL inserts
one byte of padding immediately before the binary full-word integer ClaimAmt. And
to align subsequent occurrences, so that they too start one byte past a full-word
boundary like the first, and can thus have an identical configuration, COBOL adds two
bytes of padding at the end of each occurrence.

UML for EAI Draft Adopted Specification January 2002

2

January 2002

Finally, after padding, each occurrence of Claim (starts and) ends one byte past a full-
word boundary, so COBOL puts three bytes of padding before the binary field Price.
As aresult of all these extra bytes, the formula for the offset of Price has changed
considerably from the unaligned example, and is now:

"add(add(113, mpy(val (1,2, 2),160)),3)"

There are several differences between the OCCURS DEPENDI NG ON construct and
PL/I’'s Refer option. Storage for COBOL structures is always allocated at the maximum
size, whereas PL/I structures are allocated at the actual size specified by the Refer
option. It islegal and usual to change the number of occurrences in a particular
instance of a variable-size COBOL array, and this has the effect of changing the
location and offset of any fields that follow the array. For PL/I, the value of the Refer
object of a particular instance of a structure is intended to be fixed during execution.
Thus aligned objects following a variable-size field are always correctly aligned for
each instance of the structure, because the amount of padding is computed uniquely for
each instance, as determined by the Refer option. By contrast, the amount of padding
for any aligned fields following a variable-size COBOL array is computed assuming
the maximum array size, and is fixed at compile time. If the array is smaller than its
maximum size, then the alignment will typically be incorrect. For instance in this
example:

1 a sync.
2 b binary pic 9.
2 c pic x occurs 1 to 5 tines depending on b.
2 d binary pic 9(9).

COBOL inserts one byte between ¢ and d. The alignment of d is therefore correct for
only two values of b, the maximum, 5, and 2.

3. Asnoted above, the formulas describe not only offsets of fields within a structure,
but also properties of arrays, such as bounds and strides. COBOL does not have true
multi-dimensional arrays, although element references do use multiple subscripts.
Instead, COBOL has arrays of arrays, as in the following simple example:

1 a *< offset ="0"
2 dl1 occurs 5 tines. *< offset = "0O"
*< | bound(1l) = "1"
*< hbound(1) = "5"
*< stride(l) = "168"
3 d2 occurs 6 tines. *< offset = "0"
*< | bound(2) = "1"
*< hbound(2) = "6"
*< stride(2) = "28"

4 el binary pic 9(9) occurs 7 times. *< offset =

" Oll
*< | bound(3) = "1"
*< hbound(3) = "7"
UML for EAI: Common Application Metamodel 7-15

7-16

7.3.6.2

*< stride(3) = "4"

The program can refer to dices of the array by subscripting the higher-level container
fields, for example, d1(2) or d2(3, 4), but the normal kind of reference is to the
low-level elements using the full sequence of subscripts, for instance, el (4, 5, 6).
To locate element el (m n, 0) using these stride formulas, one would take the
address of a and add to it (m-1)*168 + (n-1)*28 + (0-1)*4. For COBOL, the lower
bound of an array subscript isalways1. That is, the first element is always element(1),
and vice versa.

Needless to say, any dimension of the array can have the OCCURS DEPENDI NG ON
clause, and the array can be followed by other fields that complicates the formulas a
lot. Consider the example:

1 a.
2 x1 binary pic 9. *< of fset = "0O"
2 x2 binary pic 9. *< of fset = "2"
2 x3 binary pic 9. *< of fset = "4"
2 dl occurs 1 to 5 tinmes *< of fset = "6"
dependi ng on x1. *< | bound(1) = "1"
*< hbound(1) = "val (1,1)"
*< stride(l) =
"npy(val (1, 2), npy(val (1,3),4))"
3 d2 occurs 1 to 6 tines *< offset = "6"
dependi ng on x2. *< | bound(2) = "1"
*< hbound(2) = "val (1,2)"
*< stride(2) = "nmpy(val (1,3),4)"
4 el binary pic 9(9) *< offset = "6"
occurs 1 to 7 times *< I bound(3) = "1"
dependi ng on x3. *< hbound(3) = "val (1,3)"
*< stride(3) = "4"
2 b binary pic 9(5). *< offset = "see below "

Computing the address of a particular element still involves the stride formulas, but
these are no longer simple integers. The address of element el (m n, 0) inthe
above example is given by taking the address of a and adding to it:
(m1)*stride(l) + (n-1)*stride(2) + (o-1)*stride(3), i.e.,
(m1l)*4*val (1,3)*val (1,2) + (n-1)*4*val (1,3) + (o0-1)*4.

Similarly, these stride formulas are used in the formula for the offset of b:

"add(6, npy(val (1, 1), npy(val (1,2), npy(4,val (1,3)))))

PL/I

1. Given the following structure

UML for EAI Draft Adopted Specification January 2002

January 2002

dcl /* offset
1 ¢ unaligned
,2 cl
,3 c2 fixed
,3 ¢3 fixed
,2 c4
,3 ¢5 fixed
,3 ¢c6 fixed
,3 ¢c7 fixed
,2 €8 fixed
,2 ¢c9 char (

bi
bi

bi
bi
bi
bi

* refer(c7)) /*

n(31)
n(31)

n(31)
n(31)
n(31)
n(31)

,2 ¢c10 char(6) /*

,2 cll

char (4)

"add(add(24, val (1, 2,3)),6)" */

/*
/*
/*
/*
/*
/*
/*
/*
/*

QrEQR®AEQQQ

" 20u
" 24u

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"add(24, val (1,2,3))" */
/*

The offset of ¢3 would be given by the simple formula “4”, but the offset of ¢10 would

be given by the formula:

"add(24,val (1,2,3))"

The first argument in the above val function is 1 that indicates the current structure, c.
The subsequent arguments are 2 and 3, indicating that the third element, c7, of the

second level-2 field, c4, is the field to be dereferenced.

The offset of c11 is equal to the offset of c10 plus the length of c10 and would be

given by the following formula:

"add(add(24,val (1,2,3)),6)"

2. PL/I structure mapping is not top-down, and this can be illustrated by examining the
mapping of the following structure:

dcl /* offset
1 a based,
2 b,

3 bl fixed bin(15),
3 b2 fixed bin(15),
3 b3 fixed bin(31),

2 c,

/*

/*

/*
/*

"add(8, nod(neg(val (1,1,1)),4))" */
3 ¢l char(n refer(bl)),
3 c2 fixed bin(31);

/*
/*

[*
[*

ENQQQ

*/
*/
*/
*/
*/
*/

0" */

"val (1,1,1)" */

The value of bl is given by val(1,1,1), and in order to put c2 on a 4-byte boundary,
PL/I puts any needed padding before ¢ (yes, not between ¢l and c2), and hence the
offset of ¢ would be given by the following formula:

"add(8, nod(neg(val (1,1,1)),4))"

UML for EAI: Common Application Metamodel

7-17

So if bl contains the value 3, then this formula becomes add(8,mod(neg(3),4)), which
evaluates to 9. |.e., there is one byte of padding between the structure b and the
structure c.

3. The model also uses these formulas to specify the bounds and strides in an array,
where the stride is defined as the distance between two successive elements in an
array.

For example, in the following structure, the second dimension of a.e has a stride
specified by the formula “4”, and the first dimension by the formula “20":

dcl
1 a, /* offset = "0" */
2 b(4) fixed bin(31), /* offset = "Q" */
/* lbound(1l) = "1" */
/* hbound(1) = "4" */
/[* stride(1l) = "4" */
2 c(4) fixed bin(31), /* offset = "16" */
/* lbound(1l) = "1" */
/* hbound(1) = "4" */
/[* stride(1l) = "4" */
2 d(4) char(7) varying, /* offset = "32" */
/* lbound(1l) = "1" */
/* hbound(1) = "4" */
/[* stride(1) = "9" */
2 e(4,5) fixed bin(31); /* offset = "68" */
/* lbound(1l) = "1" */
/* hbound(1) = "4" */
/* stride(l) = "20" */
/* lbound(2) = "1" */
/* hbound(2) = "5" */
[* stride(1) = "4" */

This means that to locate the element a.e(m,n), one would take the address of a.e and
add to it (m-1)*20 + (n-1)*4.

If the example were changed slightly to:

dcl
1 a(4), /* offset = "0" */
/* lbound(1l) = "1" */
/* hbound(1) = "4" */
/* stride(l) = "40" */
2 b fixed bin(31), /* offset = "0Q" */
2 ¢ fixed bin(31), /[* offset = "4" */
2 d char(7) varying, /* offset = "8" */
2 e(5) fixed bin(31); /* offset = "20" */
/* lbound(1l) = "1" */

7-18 UML for EAI Draft Adopted Specification January 2002

January 2002

/* hbound(1) = "5" */
/* stride(l) = "4" *)

then there is padding between d and e, but the user of the type descriptor can be
blissfully unaware and simply use the stride and offset formulas to locate any given
array element.

The stride for ais “40”, the stride for eis “4”, and the offset for e is“20.” This means
that to locate the element a(m).e(n), one would take the address of a and add to it (m-
1)*40 + 20 + (n-1)*4.

Findly, if the example were changed again to:

dcl

1 a(4), /* offset = "0O" */
/* lbound(1) = "1" */

/* hbound(1) = "4" */

/* stride(1) = "40" */

2 b fixed bin(31), /* offset = "0" */

2 ¢c(8) bit(4), /* offset = "4" */

/* lbound(1) = "1" */

/* hbound(1) = "8" */

/* stride(1) = "4" */

2 d char(7) varying, /* offset = "8" */

2 e(5) fixed bin(31); /* offset = "20" */

/* lbound(1) = "1" */

/* hbound(1) = "5" */

/* stride(1) = "4" */

then the computations for a.e are the same as above, but the computations for a.c
become interesting.

The stride for ais still “40”, the stride for cis“4” (but this “4” is a count of bits, not
bytes), and the byte offset for cis “4.” To locate the element a(m).c(n), one needs both
a byte address and a bit offset. For the byte address, one would take the address of a

and add to it (m-1)*40 + 4 + ((n-1)*4)/8. The bit offset of a(m).c(n) would be given by
mod((n-1)*4,8).

7.3.7 Physical Representation Model: TDLang Metamodel

The TDLang metamodel serves as base classes to CAM language metamodels by
providing a layer of abstraction between theType Descriptor metamodel and any CAM
language metamodel, including higher level languages. All TDLang classes are
abstract and common to all the CAM language metamodels. All associations between
TDLang classes are marked as "volatile," "transient,” or "derived" to reflect that the
association is derived from the language metamodel. The TDLang model does not
provide any function on its own, but it is the type target for the association from the
Type Descriptor metamodel to the language metamodels.

UML for EAI: Common Application Metamodel 7-19

7-20

With the TDLang base classes, the Type Descriptor metamodel can be used as a recipe
for runtime data transformation (or marshaling) with the language-specific metamodel
for overall data structures and field names, without duplicating the aggregation (parent-
child) associations present in the language model.

The TDLang model eliminates the need to have unique associations from each
language model to the Type Descriptor model (e.g., cobolToTD and cToTD). All
language models can access InstanceTDBase by calling the instanceTDBase
association through the parent TDLangElement class.

The following figure illustrates the TDLang Metamodel. TDLang connects language
models to the Type Descriptor Model. The TDLang metamodel acts as a generic
placeholder for avariety of language models to inherit from. Following the diagram is
a brief explanation of what each class represents.

TDLangModelElement
EEhame : String

i

TDLangClassifier

+tdLang SharedTy pe / 0..* TDLangElement

/

1.1 +tdLangTypedElement

0..*
+tdLangElement

TDLangComposedType +tdLangGroup /

0..1

Figure 7-6 TDLang Metamodel

7.3.8 TDLang Metamodel Descriptions

7.3.8.1 TDLangClassifier

TDLangClassifier is the parent class of all CAM language Classifier classes and
TDLangComposedType. TDLangClassifier represents all data types of a CAM
language metamodel. Since TDLangClassifier is abstract, it is implemented by
language specific classifier classes. Sample subclasses of TDLangClassifier include
String, integer, character, float, and addressable pointers for each language model.
Subclasses of TDLangClassifier provide the type information declared by a
TDLangElement.

UML for EAI Draft Adopted Specification January 2002

7.3.8.2 tdLangTypedElement : TDLangElement

Used by an element within a ComposedType to navigate back to the parent
ComposedType.

7.3.8.3 TDLangComposedType

TDLangComposedType represents the type of data with subcomponents.
TDLangComposedType is the parent class of all CAM language ComposedTypes.
Since TDLangComposedType is abstract, it is implemented by language specific
composed classes. Sample subclasses of TDLangComposedType are COBOL 01-level
data declarations with nested elements, C structs and unions, and PL/I structures,
unions, or elementary variables and arrays.

tdLangElement : TDLangElement

Used by TDLangComposedType to get a list a TDLangElements contained within the
composed type.

7.3.8.4 TDLangElement

TDLangElement isthe most basic, fundamental core class of the TDLang Metamodel.
TDLangeElement is the parent class of all CAM language element classes.
TDLangElement represents typed unit elements declared in acopybook or source code,
that is typed data elements without a subcomponent. Since TDLangElement is
abstract, it isimplemented by language specific element classes. Sample subclasses of
TDLangElement are COBOLElement, CTypedElement, and PLIElement.

tdLangGroup: TDLangComposedType
Used by TDLangElement to determine the TDLangComposedType it belongs to.

tdLangSharedType: TDLangClassifier
Used by TDLangElement to determine the type associated to the element.

7.3.8.5 TDLangModelElement

TDLangM odel Element is the parent class of all TDLang classes.

TDLangM odel Element represents a combination of an element and its declared data
type. Since elements and user-defined types may have associated names,

TDLangM odelElement has a name attribute that can be separately instantiated by
TDLangElement and TDLangClassifier.

January 2002 UML for EAI: Common Application Metamodel 7-21

7-22

7.3.9 Physical Representation Model: Convergent Metamodel

The Type Descriptor metamodel is a language-independent model used to convert a
datatype into its expected language-specific type. This is accomplished by associating
the base class, InstanceTDBase, to TDLangElement. As the parent class of all
language model element classes, TDLangElement allows Type Descriptor to access the
information regarding all language-specific data types for marshaling. Type
Descriptor's association to the language elements via TDLangElement also provides
the aggregate associations captured in the language models (i.e., the ComposedTypes
associations for parent-child relationships). This ability to navigate up to parent or
sibling elements is required to determine the value of various formula-based attributes
in the Type Descriptor model. For example, in order for a child element C to
determine it's offset formula value, it will need to navigate up to element B to find B's
offset value and allocation size. The result of the adding element B's offset value and
allocation size is element C's offset value.

Caching and navigation are two approaches to determining the parent value, but the
navigation approach is superior to the cache approach in two respects. First, contents
in the cache may become invalid as subscript values change from one child element to
the next during runtime, resulting inaccurate cache data. Second, to fix this problem
the marshaller will need to recalculate the values of each element at runtime, resulting
in a decrease in performance. In the case when we apply navigation from the Type
Descriptor model to the language models, we are able to quickly go from the child to
the parent element to determine the formula information on a real-time basis. The
navigation approach provides accurate values quickly without the need to perform
recal culations.

The next diagram shows how language models associate to the Type Descriptor model
viathe TDLang model. Following the diagram is a brief explanation of what each
class represents.

Interface Metanodel Paraneters

1 +l anguagel nst ance +i nst anceTDBase

| nstanceTDBase

+| anguageE enent (from TypeDescriptor)

TDLangH enent

PLIElerent

QOBOLElement CT ypecElenent <<Elerent s of other | anguages. ..

>>

Figure 7-7 Convergent Metamodel

UML for EAI Draft Adopted Specification January 2002

January 2002

7.3.10 Convergent Metamodel Descriptions

7.3.10.1 Interface Metamodel Parameters

Interface Metamodel Parameters represent a variety of input and output parameter
classes which map to underlying language elements. Information on the language
element's physical representation is captured by the Type Descriptor metamodel. Each
instance of TDLangElement maps its corresponding physical representation in
InstanceTDBase. TDLangElement navigates to InstanceTDBase via the
instanceTDBase association. Examples of Enterprise Application Metamodel
Parameters include ApplicationData (from IM S Transaction Message Metamodel),
MFSMessageField (from IMS MFS Metamodel), and FCM Parameter (from FCM
Metamodel).

7.3.10.2 TDLangElement and Language Elements

As stated in Section 7.3.8.4, “TDLangElement,” on page 7-21, TDLangElement is the
parent class of all CAM language Element classes. Figure 7-7 on page7-22 shows how

any CAM language element can be modeled to support any given Interface Metamodel
Parameter.

7.3.10.3 InstanceTDBase

As stated in Sectio n7.3.4.8, “InstanceTDBase,” on page 7-10, InstanceTDBase is used
to represent the physical layout of each language element.

7.3.11 Sample Serialization of Convergent Metamodel

An example of how a marshaller might traverse the Type Descriptor-TDLang-
Language model is as follows:

Given the following COBOL Data Declaration:

01 NANE.
02 FI RST PI C X(10).
02 LAST PI C X(10).

The following COBOL and Type Descriptor XM1 instances would be serialized:

UML for EAI: Common Application Metamodel 7-23

7-24

<COBOLEl enent ... level ="01" name="NAME">

<Aggr egat el nst anceTDBase ... offsetFormul a="0" conten-
t Si zeFor mul a="20" al | ocSi zeFor nul a="20" accessor="readWite"
formul al nBi t="fal se" defaultFl oat Type="i bm890Hex" />

<COBOLConposedType ... typedef="false"/>
<COBOLEl enent ... level ="02" nane="FIRST"/>
<Si npl el nstanceTD ... offsetFornul a="0" contentSi ze-

Formul a="10" al |l ocSi zeFor mul a="10" accessor="readWite" for-
mul al nBi t ="f al se" defaul t Fl oat Type="i bn8390Hex"/ >

<COBOLEl enrent ... level ="02" name="LAST"/>

<Si npl el nstanceTD ... offsetFornul a="10" contentSi ze-
For mul a="10" al |l ocSi zeFor mul a="10" accessor="readWite" for-
mul al nBi t ="f al se" defaul t Fl oat Type="i bn8390Hex"/ >

</ COBOLConposedType>

</ COBOLEI enent >

Of particular interest is how the offsetFormulais determined. In order to determine the
offsetFormula value of element LAST, the model needs to be able to navigate upward
from LAST's SimplelnstanceTD to FIRST's SimplelnstanceTD to determine the
offsetFormula and allocSizeFormula attributes of FIRST. Formula-based values can
either be static (serialized during import time) or dynamic (serialized during runtime).
It is this capability to navigate back-and-forth from language models to Type
Descriptor that allows us to determine how to marshal each language element.

Formula-based attributes in the Type Descriptor model are typed as String in order to
support both calculation and numeric values. Runtime determined values such as
COBOL's Occurs-Depending-On clause will have calculation formulas as its value
(e.g., "20+10x") while static values will use numeric values (e.g., allocSizeFormula of
FIRST is"10"). Calculation formulas will be evaluated by a "Formula Evaluator",
which takes the formula String as input and returns the calculated numeric value when
runtime information is available (e.g., once the 'x' value of formula "20+10x" is
determined we can return a numeric value). In the case of an numeric value (evaluated
integer), simply pass the attribute value into a "Formula Evaluator" program and the
integer representation of the string will be returned. The formulas in the Type
Descriptor model should be generic for all languages, therefore, the "Formula
Evaluator" will cover all languages (COBOL, C, C++, PL/I, etc.).

UML for EAI Draft Adopted Specification January 2002

Part 3- ProfileDefinition

Contents

This section contains the following chapters.

Section Page
8. Collaboration Modeling 8-1
9. Activity Modeling 9-1

The profile presented here focuses on two main modeling approaches, based on
collaborations and based on activities. These are described in Chapters 8 and 9,
respectively.

The collaboration-modeling approach is based on a modeling framework of classes that
provide detailed definitions of the semantics of the collaboration. It is thus useful for
providing the detailed specification of message flows in the design of integration
subsystems.

The activity-modeling approach is based on the use of activity graphs. This approach is
particularly useful for showing the overall control and data flow required for
integration, typically at a higher level than in collaboration modeling.

Casting the metamodel as a UML profile allows EAI architecture models to be notated
using standard UML notation. This means that most UML tools (specifically ones
which support the extension mechanisms of UML, such as stereotypes and tagged
values) can be used to define EAI architecture models.

Standard practice for defining UML profiles has been adopted. A mapping of
metamodel classes to their base UML classes, with accompanying stereotypes, tagged
values and constraints is summarised for each approach. An implementation of this
mapping can be used, for example, to generate metadata conforming to the EAI

metamodel from XMI generated from models notated using the UML profile.
Specialized EAI tools will more likely use the metamodel than the UML profile as a
basis for storing and manipulating models.

The art of defining a UML profileisto provide the best fit possible with UML, so that
the notation is natural for a modeler in the relevant domain (EAI in this case), and fits
with one's general intuitions about the the meaning of the elements of UML that are
used in the profile. The profile described here has been designed with these principles
in mind.

8.1 Overview

CollaborationModeling 8

8.1.1 General Approach

January 2002

The collaboration profile makes use of UML class and collaboration diagrams to notate
EAI models. The main parts of the profile are:

® Notation for terminals
® Notation for operators
® Notation for resources

® Notation for message formats

Operators are notated by class diagrams, which declare the input and output terminals
of the operator and the message formats of those terminals. The class diagram can also
be annotated with the definition of the operations performed when manipulating
incoming messages to generate outgoing messages.

For compound operators, class diagrams also specify the component operators of the
compound, which may, themselves, be compound operators. Collaboration diagrams
are used to show how its components are connected together.

Different kinds of terminals are defined by appropriate stereotypes on UML Class.
Specific, named terminals are identified with operators via associations.

Different kinds of operator are identified by appropriate stereotypes on UML Class.

Some operators make use of resources. Resources are notated by classes, with
stereotypes used to capture the different kinds of format.

Message formats are notated by classes, with stereotypes used to capture the different
kinds of format.

UML for EAI Draft Adopted Specification 8-1

8-2

8.1.2 Use of UML operations

There are places where UML operations have been used with specific names to 'carry’
certain pieces of metadata within a model defined by the profile. For example, when
one definesaterminal, it is necessary to define an operation called handle whose return
type determines the format of message content that the terminal can handle; when one
defines afilter, it is necessary to define a boolean operation alow which determines,
for a message supplied as argument, the conditions under which a message can pass
through the filter. This approach to encoding this information was taken, because it
accords with one's intuitions about the meaning of UML and of UML operations in
particular. For example, one is able to explain what a filter does by referring to its
allow operation - only incoming messages for which the allow operation evaluates to
true get passed on.

It should be stressed that the operations themselves imply nothing about the scheme
used to implement models, though clearly the information they hold will need to be
carried through in some way. Indeed, most implementations are likely to work from the
metamodel direct (as this issue does not arise there) and the profile just used as a
means of defining models using UML notation, which can then get converted to
instances of the metamodel for subsequent processing.

There are many ways to show the definition of UML operations, which will depend on
specific organizational practices and/or support provided by UML CASE tools. One
device that is commonly used is to attach notes to the class containing the operation.
This device has been used in all examples used to illustrate the definition of this
profile.

8.1.3 Concrete Notation

Only raw stereotypes have been defined in this profile. The user may replace these
with concrete icons at his or her discretion.

8.1.4 Chapter structure

8.2 Terminals

The remainder of this chapter provides a detailed description of each of the four parts
of the profile. Each part is described stereotype by stereotype, using generic examples
for illustration. The constraints that apply in the context of a particular stereotype are
also defined. The detailed descriptions are followed by a section describing the
mapping of the EAl metamodel to the elements of the profile. This section also
provides a summary of the stereotypes used in the profile, and follows the format laid
down by UML 1.4.

The terminals of an operator are shown by associations to classes with stereotypes
<<input>> (for input terminals) and <<output>> (for output terminals), from classes
with operator stereotypes (see sections below). A prototypical example showing the
defintion of terminals for a primitive operator is given in Figure 8-1. This shows a
primitive operator with two input and two output terminals. The output terminals are of

UML for EAI Draft Adopted Specification January 2002

8

<<Input>>
Y linput

the same kind, but the input terminals are not (one is known to be a queued terminal,
even though they both handle the same kind of message format). The names of the
terminals are, in this case, labell and label2.

+out2Name
— <<Output>>
+labell <<PrimitiveO perator>> +label2 Y 2output
X1

handle(content : Y1)

<<MessageContent>>
Y1

<<MessageContent>>
Y2

January 2002

handle(content : Y2)

Some des‘cription
of what the
operator does.

Figure 8-1 Class diagram for prototypical primitive operator with terminals

An input terminal is responsible for conveying incoming messages to the operator,
while an output terminal is responsible for conveying outgoing messages away from
the operator. The names of the terminals with respect to the operator are specified as
labels on the appropriate association end. In general, operators may have one or more
input and one or more output terminals. The number and names of the input and output
terminals may be constrained for specialist primitive and compound operators.

Terminals can handle messages with a specified content format. This is indicated by
declaring an operation handle on the class defining terminal kinds (i.e., classes with
stereotypes <<input>> and <<output>>) which takes one argument of the specified
format. Formats are specified by classes with a stereotype <<L angElement>> or one of
its substereotypes, or stereotype <<MessageContent>> or one of its substereotypes. For
most operators (adapters are the exceptions), the stereotype will usualy be
<<MessageContent>> corresponding to the generic format for message content.

It is not the role of this specification to say how a terminal handles its messages.
However, the stereotypes <<QIlnput>> and <<QOutput>> may be used to indicate that
handling is performed using a queue. Unless stated otherwise (e.g., as a constraint), it
is assumed that terminals defined for any kind of operator may be plain or queued.

Finaly, dynamic connection of terminals is supported. That is, it is possible to send

some operators (for example routers) a message containing a terminal identifier, so that
the operator can add or remove that terminal from the list of targets of one or more of
its output terminals. The targets of an output terminal are the terminals connected to it.

UML for EAI: Terminals 8-3

8.3 Operators

8-4

Constraints

There should only be one input and ouput class per handle format/stereotype pairing,
and the name of this class will be a concatenation of the format name and the
stereotype name.

The type of the content parameter of the handle operation must have a stereotype of
<<LangElement>> or one of its sub-stereotypes, or of <<M essageContent>> or one of
its substereotypes.

8.3.1 Primitive Operator

Figure 8-1 on page 8-3 also shows a prototypical example of the definition of a
primitive operator.

Primitive operators are useful for notating operators which have no internal structure
(or whose internal structure is of no interest) such as system applications. A generic
primitive operator is shown as a class with a stereotype <<PrimitiveOperator>>. The
class may have an associated note (corresponding to EAIAnnotation in the metamodel)
for recording a description of what the operator does.

Constraints

The type of content of the terminals of a generic primitive operator must have a
stereotype <<MessageContent>> or one of its substereotypes.

8.3.2 Transformers and Database Transformers

Figure 8-2 showsthe general format of the notation used to define a transformer, which
is represented by a class with stereotype <<Transformer>>. A transformer uses the
transform operation to transform the content of the input message and then sends the
transformed message via the single output terminal of the transformer.

<<Input>> <<Transformer>> <<Output>>
Y linput +in XT +out Y2output
handle(content : Y1) transform(content : Y1) : Y2 handle (content : Y2)

Definition of
transform operation.

Figure 8-2 Class diagram for prototypical transformer

UML for EAI Draft Adopted Specification January 2002

8

A database transformer is just like a transformer, except that it accesses a database in
order to perform the transform operation. In this case, the stereotype
<<DBTransformer>> is used, and this requires a database resource to be declared, asin
Figure 8-3.

<<Input>>
Y linput

_ <<DBTransformer>> <<Output>>
+in XDBT +out Y 2output

handle(content : Y1) transform(content : Y1) : Y2 handle(content : Y2)

+database

<<Database>>
YDB

Definition of transform

operation, which may refer

to the database and any

intemal structure whic h that
has.

Figure 8-3 Class diagram for prototypical database transformormer

Additionally, the definition of transform may make reference to this attribute.

Constraints

The input terminal must be labelled in and the output terminal out.

The content format of in and out must match the format of the parameter and resuilt,
respectively, of the transform operation.

The type of content of the terminals of a transformer must have a stereotype
<<MessageContent>> or one of its substereotypes.

For database transformers, there must be a directed association to a database resource
(i.e., a class with stereotype <<Database>>). This should be labeled database.

8.3.3 Filters

January 2002

Figure 8-4 shows the genera format of the notation used to define a filter.

UML for EAI: Operators 8-5

+false
<<Input>> <<Filter>> <<Output>>
Y linput +in XF +true Y loutput
handle(content : Y1) allow(content : Y1) : Boolean handle(content : Y1)

allow(content) = some
boolean expression
involving content

Figure 8-4 Class diagram for prototypical filter

A filter does not modify the content of the messages it recelves. However, afilter only
passes on those messages whose content meets specific criteria. When afilter is
triggered, it uses the allow operation to test if the content of the input message meets
the criteria. If so, the content is sent to the true output terminal, otherwise it is sent to
the false terminal.

Constraints

The input terminal must be labelled in, and the output terminals true and false.

The content format of all the terminas must match that of the parameter of the allow
operation. This type must have a stereotype <<MessageContent>> or one of its
substereotypes.

8.3.4 Streams

8-6

For operators described so far it is assumed that messages are always received in the
order that they are sent and that there is basically no delay in their transmission. In
reality, there are some cases where a stream of messages may be received in a different
order than that in which they are sent and they may be received at a different rate than
that at which they are sent. A stream operator is used to model this. Figure 8-5 shows
the general format of the notation used to define a stream operator.

UML for EAI Draft Adopted Specification January 2002

<<Ihput>> <<Stream>> <<Output>>
Y linput +in XS +out Y loutput
handle(content : Y1) emit() : Y1 handle(content : Y1)

Definition of emit
operation.

Figure 8-5 Class diagram for prototypical stream

Messages that arrive from the input termina do not get passed on, but instead are
stored in a buffer or some other appropriate data structure. The emit operation defines
the algorithm used to decide when and in what order messages get emitted to the
output terminal. Abstractly, one can imagine aloop that continually calls the emit
operation. It returns a message to be put on the output terminal at each call. There may
be a delay between its being called and its returning a message.

Constraints
The input terminal must be labeled in and the output terminal out.

The content format of the terminals must match that of the result of the emit operation.
This type must have a stereotype <<MessageContent>> or one of its substereotypes.

8.3.5 Post Daters

Figure 8-6 shows the genera format of the notation used to define a post dater.

<<Input>> <<Po§(tFI)DDater>> <<Output>>
Y linput +in +out Y loutput
. emit() : Y1 .
handle(content : Y1) setTimingCondition(content : Y1) handle(content : Y1)

Definition of ’
setTimingCondition.

Figure 8-6 Class diagram for prototypical post dater

January 2002 UML for EAI: Operators 8-7

8-8

A post dater is specified using the <<PostDater>> stereotype. A special kind of stream
isapost dater. On receipt of a message at its input terminal, it adds the message to the
buffer, and creates an individual timingCondition for it. The timingCondition is derived
from the content of the input message by the setTimingCondition operation. A post

dater holds the message until its individual timing condition is met and then emits it
from its out terminal.

As the definition for emit is fixed for post daters, only a definition for
setTimingCondition should be provided.

Constraints

The input terminal must be labeled in and the output terminal out.

The content format of the terminals must match that of the result of the emit operation
and the parameter of the setTimingCondition operation. This type must have a
stereotype <<MessageContent>> or one of its substereotypes.

8.3.6 Source Adapters

Figure 8-7 shows the genera format of the notation used to define a source adapter,

which is represented by a class with stereotype <<SourceAdapter>>. A source adapter
isan operator that obtainsinformation from a system (e.g., vendor-supplied package or
legacy application system), where that information might not be in a message content

format, translates it into message content of a given output type and then sends out a
message with that content.

<<Input>> <<SourceAdapter>> <<Qutput>>
Y3input ald XSA +out Yloutput
handle(content : Y3) adapt(content : Y3) : Y1 handle(content : Y1)

Y3

<<LangElement>> “

operation.

Definition of adapt ﬁ

Figure 8-7 Class diagram for prototypical source adapter

When using a source adapter as a component of a compound operator (see
Section 8.3.18, “Compound Operators,” on page 8-19), it is usually the case that its
input terminal will not be connected to any other terminals. How information gets

placed on that terminal is left unstated, since the internals of an application are out of
scope for EAI modeling.

UML for EAI Draft Adopted Specification January 2002

January 2002

Constraints

The input terminal must be labeled in and the output terminal out.

The type of content in and out must match the type of the parameter and result,
respectively, of the adapt operation.

The type of content of the out terminal must have a stereotype <<MessageContent>>
or one of its substereotypes. The type of the content of the in terminal must have a
stereotype <<LangElement>> or one its substereotypes.

8.3.7 Target Adapters

Figure 8-8 shows the genera format of the notation used to define a target adapter,
which isrepresented by a class with stereotype <<TargetAdapter>>. A target adapter is
an operator that accepts messages and translates them into information for a system
(e.g., vendor-supplied package or legacy application system), where that information
might not be in a message content format.

<<Input>> <<TargetAdapter>> <<QOutput>>
Ylinput +in XTA +out Y3output
handle(content : Y1) adapt(content : Y1) : Y3 handle(content : Y3)

|

\
\
\
\

Definition of adapt ﬁ

operation.

Figure 8-8 Class diagram for prototypical target adapter

When using a target adapter as a component of a compound operator (see

Section 8.3.18, “Compound Operators,” on page 8-19), it is usually the case that its
output terminal will not be connected to any other terminals. What happens to
information after it leaves that terminal is left unstated, since the internals of an
application are out of scope for EAl modeling.

Constraints

The input terminal must be labeled in and the output terminal out.

The type of content in and out must match the type of the parameter and result,
respectively, of the adapt operation.

The type of content of the in terminal must have a stereotype <<M essageContent>> or
one of its substereotypes. The type of the content of the out terminal must have a
stereotype <<LangElement>> or one its substereotypes.

UML for EAI: Operators 8-9

8-10

8.3.8 Call Adapters

Figure 8-9 shows the genera format of the notation used to define a call adapter.

<<Input>> <<output>>
Y3input Y 8output
+call +out
handle(content : Y3) \“\\\\\\ <<CallAdapter>> /////// handle(content : Y8)
XCA
mapReplyToOut(content : Y1) : Y8
<<Input>> — mapCallToRequest(content : Y3) : Y9 o <<output>>
Ylinput +handleReply +request Y 9output
handle(content : Y1) handle(content : Y9)
<<LangElement>> Definition of Definition of
Y8 mapReplyToOut mapCallToRequest
<<LangElement>>
Y3
<<RequestFormat>>
Y9

Figure 8-9 Class diagram for prototypical call adapter

A call adapter is invoked synchronously by an application that wishes to make use of a
service (made available via a server) that can respond to arequest message and send a
response message back to the service requester. It accepts a call (which isnot in a
standard message format) on its call terminal and maps that call to a request message,
which it sends to the request terminal. On receipt of areply from the handleReply
terminal, it maps that reply to a format understood by the application and places the
result of the mapping on the out terminal.

A call adapter is used in conjunction with arequest/reply adapter. See Section 8.3.18.4,
“Call and Request/Reply Adapters,” on page 8-25 for details.

Constraints

The input terminals must be labeled call and handleReply, and the output terminals out
and request.

UML for EAI Draft Adopted Specification January 2002

The type of content of call and request must match the type of the parameter and
result, respectively, of the mapCall ToRequest operation.

The type of content of handleReply and out must match the type of the parameter and
result, respectively, of the mapReplyToOut operation.

The type of content of the handleReply terminal must have a stereotype
<<MessageContent>> or one of its substereotypes. The type of the content of the call
and out terminals must have a stereotype <<L angElement>> or one its substereotypes.
The type of content of the request terminal must have a stereotype
<<RequestFormat>>.

8.3.9 Request/Reply Adapters

<<Input>>
Y9input

Figure 8-10 shows the general format of the notation used to define a request/reply
adapter.

<<RequestReplyAdapter>>

XRRA <<Output>>

+replyOut Yloutput

handle(content : Y9)

+requestin mapRequestToCall(request : Y9) : Y8

<<LangElement>>
Y3

<<LangElement>>
Y8

January 2002

mapReturnToReply(return : Y3) : Y1 handle(content : Y1)

Definition of Definition of
mapRequestToCall. mapReturnToReply.

Figure 8-10 Class diagram from prototypical request/reply adapter

A request/reply adapter receives a request (from a call adapter) which contains both a
terminal identifier and some other content. The mapReguestToCall operation extracts
the information content of the request and converts it to a format suitable for passing to
some underlying system. The mapReturnToReply operation takes the information
returned from the system and constructs a message which is placed on the output
terminal, but only after the terminal identifier in the origina request has been added to
the target list of its replyOut terminal. When the message has been sent, the terminal
identified in the request message is removed from the target set of replyOut.

Note that any terminal permanently connected to the replyOut terminal will have
replies of all requests broadcast to it.

A request/reply adapter is used in conjunction with a call adapter. See Section 8.3.18.4,
“Call and Request/Reply Adapters,” on page 8-25 for details.

UML for EAI: Operators 8-11

8-12

Constraints
The input terminal must be labeled requestin, and the output terminal replyOut.

The type of content of requestin and replyOut must match the type of the parameter of
mapRequestToCall and the result of mapReturnToReply, respectively.

The type of content of the replyOut terminal must have a stereotype
<<MessageContent>> or one of its substereotypes. The type of content of the requestin
terminal must have a stereotype <<RequestFormat>>. The type of the result of
mapRequestToCall and the parameter of mapReturnToReply must have a stereotype of
<<LangElement>> or one of its substereotypes.

8.3.10 Sources and Queued Sources

Figure 8-11 shows the general format of the notation used to define a source, which is
represented by a class with stereotype <<Source>>. A source is an operator that
delivers message content to an output terminal. How that message content is
constructed, or where it comes from, is not stated.

<<Output>>

<<Source>> +out Y loutput

XSo

handle(content : Y1)

Figure 8-11 Class diagram for prototypical source

A gueued source is a source that has a <<Queue>> resource. It isidentified by the
stereotype <<QSource>>, as illustrated by Figure 8-12.

<<Output>>

<<QSource>> +out Y loutput

XQso

handle(content : Y1)

Figure 8-12 Class diagram for prototypical queued source

Constraints

There is a single output terminal labeled out.

The type of content of out must have a stereotype <<MessageContent>> or one of its
substereotypes.

For queued sources, there must be a directed association to a queue resource (i.e., a
class with stereotype <<Queue>>). This should be labeled queue.

UML for EAI Draft Adopted Specification January 2002

8.3.11 Sinks and Queued Snks

Figure 8-13 shows the general format of the notation used to define a sink, which is
represented by a class with stereotype <<Snk>>. A sink is an operator that receives
message content from an input terminal. What happensto that content thereafter is left
unsaid.

<<Input>>

Y linput +in <<Sink>>

XSi

handle(content : Y1)

Figure 8-13 Class diagram for prototypical sink

A queued sink is analogous to a queued source, and is identified by the stereotype
<<QSink>>.

Constraints
There is a single input terminal labeled in.

The type of content of in must have a stereotype <<M essageContent>> or one of its
substereotypes.

For queued sinks, there must be adirected association to a queue resource (i.e., a class
with stereotype <<Queue>>). This should be labelled queue.

8.3.12 Aggregators

Figure 8-14 shows the general format of the notation used to define an aggregator.

January 2002 UML for EAI: Operators 8-13

<<Input>>
Y linput

+in

<<Aggregator>>
XAgg <<Output>>

+out Y 2output

handle(content : Y1)

addToAggregate(content : Y1, aggregate : Seq(Y1)) : Boolean
aggregateCompleted(aggregate : Seq(Y1)) : Boolean handle(content : Y2)

aggregate(aggregate : Seq(Y1)): Y2

aggregate

aggregateToAggregate(content,aggregate)= : Definition of
boolean expression defining under what ' aggregate
conditions content can be added to “ operation.

aggregateCompleted(aggregate)=
boolean expression defining what
it means for aggregate to be
complete.

Figure 8-14 Class diagram for prototypical aggregator

An aggregator operator is indicated by the <<Aggregator>> stereotype. On receipt of a
message at its input terminal, if there are no existing message aggregates, the
aggregator creates one and adds the message to it. On receipt of a subsequent message,
the aggregator examines each existing aggregate, evaluating the addToAggregate
condition (which will depend on the message header or body contents). If an aggregate
exists for which addToAggregate evaluates to true, then the message is added to it.

Each time a message is added to an aggregate, the aggregateComplete condition is
evaluated for that aggregate. If it evaluates to true, then a message is constructed from
the messages it holds and is sent on the output terminal. The mapping from the
messages contained in the aggregate to the message sent is specified by the aggregate
operation.

If the aggregateComplete condition does not evaluate to true, then no message is sent.

Constraints
The input terminal must be labeled in and the output terminal out.

The content format of in and out must match the format of the parameter and resuilt,
respectively, of the transform operation.

The type of content of the terminals must have a stereotype <<MessageContent>> or
one of its substereotypes.

8.3.13 Timers

8-14

Figure 8-15 shows the general format of the notation used to define a timer.

UML for EAI Draft Adopted Specification January 2002

January 2002

<<Input>>
Y4input
handle () +set +ontime
<<Input>>) <<Output>>
Y linput <<Timer>> +late Y loutput
XTi
handle () +check handle(content : Y1)

+expiry <<output>>

<<TimerSetFomat>>

Y4

Y 10output

handle(content : Y10)

<<ExpiryNoticeFormat>>

Y10

Figure 8-15 Class diagram for prototypical timer

A timer is specified using the <<Timer>> stereotype. It processes a message on its set
terminal that specifies atimer set message which contains a pair comprising a timer
and a correlation condition. This gets added to the timer's list of condition pairs. When
atimer receives a message from the check terminal, it looks through its list of
condition pairs and sees if the message satisfies any of the correlation conditions. If so,
then the timer condition is examined to see if it has been met, and, if so, the message
is past onto the ontime terminal. Otherwise it is passed onto the late terminal. If it does
not meet any correlation condition, it is assumed the message is on time and therefore
passed onto the ontime terminal.

Whenever atimer condition from the list of condition pairs expires, an expiry notice is
sent to the expiry terminal.

Constraints

The input terminals must be labelled set and check. The output terminals must be
labelled ontime, late and expiry.

The content format of the check, late and ontime terminals must be the same. Thistype
must have stereotype <<M essageContent>> or one of its substereotypes.

The type of content of the set terminal must have a stereotype <<TimerSetFormat>>.

UML for EAI: Operators 8-15

8-16

The type of content of the expiry terminal must have a stereotype
<<ExpiryNoticeFormat>>.

8.3.14 Routers

Figure 8-16 shows the general format of the notation used to define a router.

Y linput

<<input>>
Y5input
+control
handle(content : Y5)
\ <<Routers> <<Output>>
+out Y Loutput
XR outpu
<<Input>> ji/n//”/ handle(content : Y 1)

handle(content : Y1)

<<RouterUpdateFormat>>

Y5

Figure 8-16 Class diagram for prototypical router

A router is specified using the <<Router>> stereotype. When a router receives a
message on its in terminal it resends a copy via its out terminal, so that all connected
input terminals receive the message.

In addition, a router can accept dynamic addition or removal of target terminals to or

from its out terminal, and so it can be used to model a simple publication channel for
messages. This isachieved by sending a message with content that isin a router-update
format to its control terminal.

Constraints

The input terminals must be labeled in and control. The output terminal must be
labeled out.

The type of content of the in and out terminals of a router must have a stereotype
<<MessageContent>> or one of its substereotypes. The type of content of the control
terminal must have a stereotype <<RouterUpdateFormat>>.

UML for EAI Draft Adopted Specification January 2002

8.3.15 Subscription Operators

Figure 8-17 shows the general format of the notation used to define a subscription
operator.

<<input>> o
Y7input +in <<SubscriptionOperator>>

XSub

handle(content : Y7)

+subscriptionTable

<<SubscriptionFormat>> <<SubscriptionTable>>
Y7 Y6

Figure 8-17 Class diagram for prototypical subscription operator

A subscription operator is specified using the stereotype <<SubscriptionOperator>>. It
expects a message of subscription format as input. This carries a subscription
comprising a terminal identifier and a filter definition. When it receives one of these
messages, it adds the subscription to its subscription table. A subscription message
may also request subscriptions for a terminal to be canceled.

Constraints
The single input terminal must be labeled in.

The type of content of the in terminal must have a stereotype <<SubscriptionFormat>>.

There must be a directed association to a subscription table (i.e., a class with
stereotype <<SubscriptionTable>>). This should be labeled subscriptionTable.

8.3.16 Publication Operators

Figure 8-18 shows the general format of the notation used to define a publication
operator.

January 2002 UML for EAI: Operators 8-17

<<Input>>) o <<Output>>
Y Linput +in <<Pub||ca;[(|gr£perator>> +out Y loutput
handle(content : Y1) : handle(content : Y1)

+subscriptionTabIe/

<<SubscriptionTable>>
Y6

Figure 8-18 Class diagram for prototypical publication operator

A publication operator is specified using the stereotype <<PublicationOperator>>.
Messages sent to the input terminal are sent from the output terminal to each
subscriber (terminal) if the message passes the filter specified by the subscription for
that subscriber.

A publication operator is accompanied by at least one subscription operator when
defined as part of an architecture. See Section 8.3.18.5, “Publish and Subscribe,” on
page 8-25 for details.

Constraints

The input terminal must be labeled in, and the output terminal out.

The type of content of both terminals must be the same and have a stereotype
<<MessageContent>> or one of its substereotypes.

There must be a directed association to a subscription table (i.e., a class with
stereotype <<SubscriptionTable>>). This should be labeled subscriptionTable.

8-18 UML for EAI Draft Adopted Specification January 2002

January 2002

8.3.17 Topic Publishers

Figure 8-19 shows the general format of the notation used to define a topic publisher.

<<TopicPublisher>> +out

<<Output>>
Y loutput

XTopic

Details of
topics.

handle (content : Y1)

Figure 8-19 Class diagram for prototypical topic publisher

A topic publisher is specified using the stereotype <<TopicPublisher>>. It is kind of

source, which sends only sends messages to the output terminal on a set of specified
topics. Details about the topics may be added as a note. The content type of the output
terminal may also be an indicator of the kinds of topics published on.

Topic publishers are usually connected to the input terminal of a publication operator.
See Section 8.3.18, “Compound Operators,” on page 8-19 for details.

Constraints

The single output terminal must be labeled out.

The type of content of this terminal must have a stereotype <<MessageContent>> or
one of its substereotypes.

8.3.18 Compound Operators

8.3.18.1

Compound operators allow more complex message transformation and routing
behavior from a (possibly nested) composition of individual operators to be modeled.
Indeed any non-trivial architecture will be modeled as a compound operator whose
components will be primitive or other compound operators.

Compound operators are defined using a combination of class and collaboration
diagrams.
Classdiagrams

Figure 8-20 shows the class diagram for an example compound operator, which is
specified using the stereotype <<CompoundOperator>>. The example is taken from
Chapter 10.

UML for EAI: Operators 8-19

<<PrimitiveOperator>> +orderProcesser <<CompoundOperator>>
BackEndProcessingSystem <@ BackEndBrokerageSystem

- +orderT Filter
+ownershipEilter orderTypeFilte +ownershipAdder

<<Filter>> <<Filter>> <<Transformer>>
AccountOwnership OrderType AddOwnership
allow(content : Order) : Boolean allow(content : Order) : Boolean transform(content : Order) : Order
y . transform(content) =

llow(content) = = :
allow(content) = allow(content) = copy of content with account
content.account is content.type is ;
f M or IB : ownership added
rom appropriate

Figure 8-20 Class diagram for example compound operator

This defines a compound operator called BackEndBrokerageSystem with three
components: two filters and a transformer. The primitive operator, filters and
transformers are defined as previously discussed. Components are shown by means of
a composite association targeted on a class representing an operator definition.
Although the components shown here are all primitive operators, they may be
compound operators, as illustrated by Figure 8-21.

<<CompoundOperator>> -
P OnlineBrokerage
. +
+ib +middleware pubSub
<<CompoundOperator>> <<Primitive Operator>> <<CompoundOperator>>
InternationalBrokerageServer MiddlewareServer PubSubServer

+backEnd

<<CompoundOperator>>
BackEndBrokerageSystem

<<CompoundOperator>>
InvestmentManagerServer

+iv

Figure 8-21 Class diagram for a compound operator with compound components

8-20 UML for EAI Draft Adopted Specification January 2002

Note, in this diagram, that one component of an OnlineBrokerage is a
BackEndBrokerageSystem, which, as we have already seen, is a compound operator.

As with primitive operators, class diagrams can also be used to define the terminals of
a compound operator. The terminals of BackEndBrokerageSystem are defined by
Figure 8-22.

<<input>>
Orderinput

handle(content : Order)

in

<<Compound>>
BackEndBrokerageSystem

+out

<<output>>
OrderWithOwnershipoutput

handle(content : OrderWithOwnership)

Figure 8-22 Terminals for example of compound operator
Figure 8-22 does not show the connectivity of the components, that is, how the
terminals of the components are connected together and connected to the terminals of

the compound operator. A collaboration diagram is used to show the connectivity of
the components.

8.3.18.2 Collaboration Diagrams

The collaboration diagram corresponding to Figure 8-20 is given in Figure 8-23.

January 2002 UML for EAI: Operators 8-21

: BackEndBrokerageSystem

false :
Orderoutput

ownershipFilter : ownershipAdder :
AccountOwnership AddOwnership

i
in : true : _in: out : outOrders :
Orderinput Orderoutput Orderinput Orderoutput Orderoutput

inOrders : || | _inOrders : outOrders :
Orderinput Orderinput Orderoutput
I

_in: _true :
Orderinput Orderoutput
T

orderTypeFilter :
OrderType

_false :
Orderoutput

Figure 8-23 Collaboration diagram for example compound operator

orderProcessor :
BackEndProcessingSystem

This shows:

® The components of the compound as objects contained in an object representing the
compound

® The terminals of the components (also contained in the compound), and the
terminas of the compound itself (outside the compound).

The names of the objects correspond to the names of the components or terminals, as
declared on the class diagram. The compound object has no name, as it represents an
arbitrary operator of the compound-operator type being defined. We have used gray (or
black) to distinguish input (or output) terminals from operators; thisis just a
convention. Connection of components is shown by connecting the terminals in an
appropriate way (see Section 8.3.18.6, “Constraints,” on page 8-26 for a definition of
what is appropriate). Ownership of terminals by an operator is also shown through
links; the convention is to cluster terminals around their operator.

Sometimes one may wish to be explicit about whether the connection between
terminals is synchronous or asynchronous. This is shown by putting a message on the
link, which is marked as asynchronous or synchronous. Figure 8-24 shows the standard
UML notation for this.

8-22 UML for EAI Draft Adopted Specification January 2002

synchronous i

: Ylinput

N

asynchronousﬁ

: Ylinput

Figure 8-24 Synchronous and asynchronous links

The arrow of the message goes in the direction of the message flow (output to input
when terminals of components of a compound are connected).

8.3.18.3 Components of the sametype

A situation that the modeler should be aware of is the case where a compound may

include two components of the same type of operator. Thisisillustrated by Figure 8-25
and Figure 8-26. The point to note is that there are two components of
StandardIB System operator type (which is evident from the two associations to the

StandardIBSystem class on the class diagram) and two objects of this class on the

collaboration diagram.

+legacyClient5

<<PrimitiveOperator>>
1990IMSystem

<<CompoundOperator>> |g
I — BrokerageCompany
’ ’ S
+japan
<<PrimitiveOperator>>
JapanIBSystem
+uk +france +onlineBrokerage

+netbasegdClient2

<<PrimitiveOperator>>
2000IMS ystem

<<PrimitiveO perator>>

<<CompoundOperator>>
StandardIBSystem OnlineBrokerage

Figure 8-25 Class diagram for example with components of same type

January 2002 UML for EAI: Operators

8-23

8-24

BrokerageCompany

2000IMSystem

notifications :
legacyClient5 : |~ 1990IMSNinput

legacy5Naotifications :
2000IMSNoutput

2000IM S Ooutput

orders :

1990IMSystem

- - notifications :
netbasedClient2 : | | 2000IMSNinput

orders :

netbased2Notifications :
1990IM SNoutput

2000IMSOs : | |
2000IMSQinput

1990IMSOs :

1990IMS Ooutput

1990IM S Qinput

JapanIBSystem ||

japan :

notifications :

JapanNotificationsinput

japanNotifciations :

orders :

JapanNotificationsoutput

japanQrders :

JapanOrderoutput

JapanOrderinput

france :
StandardIBSystem

notifications :
SINinput

franceNotifications :
SINoutput

orders :

SIOoutput

uk :
StandardIBSystem

standardlOs :

_orders :
SIOoutput

S1Qinput [

_notifications :

~ SINinput

ukNotifications :
SINoutput

onlineBrokerage :

OnlineBrokerage

Figure 8-26 Collaboration diagram for example with components of same type.

UML for EAI Draft Adopted Specification

January 2002

8

This example happens to illustrate the top-level definition of an EAI architecture, in
this case for a brokerage company.

8.3.18.4 Call and Request/Reply Adapters

A common configuration of components is the connection of call and reguest/reply
adapters. Thisis illustrated by Figure 8-27.

: XComp2
call : out :
Y3input | | Y 8output
— a: XCA
handleReply : [1 request :
__ Ylinput Y9output
requestin: | | c: replyOut :
Y 9input XRRA Y loutput
_call: _request :
Y3|ngut — b : XCA Y90utput
_handleReply _out:
. Ylinput Y 8output

January 2002

Figure 8-27 Configuration of call and request/reply adapters

Here, two call adapters (a and b) are connected to a single request/reply adapter (c).
The call adapters get information from an underlying system through their call
terminals. They construct requests that are then passed on to the requestin terminal of
the request/reply adapter. This processes the request, usually by making a call to some
underlying system, and then constructs a reply, which it puts on its replyOut terminal.
Before sending the reply, the original request is examined to identify the terminal to
which the reply must be sent (which will be the handleReply terminal for a or b,
depending on which one sent the request), and this is added to the target terminals list
of replyOut, just for the duration of sending the reply.

8.3.18.5 Publish and Subscribe

Another common configuration of components is the connection of publication and
subscription operators. This is illustrated by Figure 8-28.

UML for EAI: Operators 8-25

8-26

: XComp3

appl: X2 [

infoln : topicPub :
Y linput XTopic

_subscriptionsOut :

app2 : X2

subscriptionsOut :
Y 7output _out:
Y loutput

— sub : XSub
in: —_— in:

Y7input | | Y linput
I
pub : XPub

Y 7output

Y linput

_infoln :

8.3.18.6

Figure 8-28 Configuration of publication and subscription operators

A publication operator pub is fed information to publish by atopic publisher topicPub.
The feed is provided by the connection of the out terminal of topicPub to the in
terminal of pub. Now pub has a subscription table (subTable) which it shares with the
subscription operator sub. Two applications, appl and app2, send subscription requests
to sub. The subscription requests will identify their infoln terminals as the terminals
where published information, matching the criteria of the subscriptions, should be
received.

A more sophisticated (and more common) version of this example would have multiple
topic publishers feeding messages to the publication operator. Then multiple publishers
would share the subscription table of the subscription operator.

Constraints

Only operators with stereotype <<Compound>> can have composition associations,
and these must be with other operators (classes with an operator stereotype). The
associations have a label but no indication of cardinality.

The type of content of the terminals must have a stereotype <<MessageContent>> or
one of its substereotypes.

UML for EAI Draft Adopted Specification January 2002

8.4 Resources

The class and collaboration diagrams used to notate a compound operator must be
consistent. This means:

® Names of terminal objects must match the labels on termina associations on the
class diagram. The types of the object must correspond to the terminal classes
defined in the class diagram.

® Names of component operator objects must match the labels on the composition
associations on the class diagram. The types of the objects must correspond to the
operator classes at the target of those associations as defined on the class diagram.

On the collaboration diagram, only output terminals may be connected to input
terminals of other components. Input (output) terminals of the compound operator may
only be connected to input (output) terminals of components.

The content type handled by terminals must be the same for any two terminals
connected together on the collaboration diagram.

Resources are things that operators use to do their job, but which are not themselves
operators. The specific resources declared in this profile are databases, queues and
subscription tables.

Resources are defined as classes with stereotype <<Resource>> or one of its
substereotypes: <<Database>>, <<Queue>> and <<SubscriptionTable>>.

The use of aresource by an operator is indicated, in the class diagram defining that
operator, by adirected association from the operator to the resource. See Section 8.3.2,
“Transformers and Database Transformers,” on page 8-4 and Section 8.3.15,
“Subscription Operators,” on page 8-17 for examples.

When operators with resources are used as part of a compound, they may share a
resource. This is shown by adding an object of the resource class and connecting the
sharing operators to it with a link. See Section 8.3.18.5, “Publish and Subscribe,” on
page 8-25 for an example.

8.5 Message Formats

8.5.1 MessageContent Core

January 2002

The data contained in a message is its MessageContent. M essages are defined using
ordinary UML class modeling mechanisms. However, message content classes are
restricted to represent transmittable data structures.

The model for messages is that they may contain one or more parts, each of which may
have its own header part. The header contains information used by the messaging
infrastructure to control how it deals with the message. Each message part may also
have a body section, which contains the application data. M essage parts may be nested.

UML for EAI: Resources 8-27

Both the header and the body may contain nested structures of primitive message

elements.

We formalize these restrictions using the UML stereotypes given in Table 8-1. A class
of the <<MessageContent>> stereotype represents a serialized message. To reflect the
ordering of the parts of a message, there are additional constraints:

1. All associations are ordered with respect to each other.

2. Associations of multiplicity greater than one are ordered.

For example, a message header usually occurs in a message part before the message

content.

Table 8-1 Stereotype specification for message content description

Stereotype Parent Tags Constraints Description
MessageContent N/A domainformat | May only have containment Top level for describing
associations with classes of stereotype | messages(such as a MIME
<<MessagePart>> or envelope)
<<ComposedM essagePart>>
M essagePart N/A NA May only be composed by a class of Used to describe 'large scal€'
stereotype <<M essageContent>>May message structuring (such as
contain a'header' association with a MIME parts)
class of stereotype
<<MessageElement>>May contain a
'body" association with a class of
stereotype <<M essageElement>>
ComposedMessagePart | MessagePart | NA May have associations with classes of | Used to describe nested
stereotype <<MessagePart>> and of message parts
stereotype
<<ComposedM essagePart>>
LangElement NA NA Models message headers,
message bodies and their
content
Figure 8-29 shows an example of a content class with two dataitems, an integer and a
string. These simple message parts have been rendered as attributes of the owning
SimpleContent class. Thisis recommended in order to allow compact representation of
simple message types.
8-28 UML for EAI Draft Adopted Specification January 2002

<<MessageContent>>
SimpleMessage

1

<<MessagePart>>
DefaultPart

+body |, 1

<<LangElement>>
SimpleContent
<<LangElement>> a: Integer
<<LangElement>> b : String

Figure 8-29 A simple message content class

More complicated message-content structures can be created using composition, asis
shown in Figure 8-30. This models a message which has a single part. The message
has as its header a string, while the message body is a table of addresses. Thistable has
a single integer, records, that is a count of the records in the message.

<<Message Content>>
TabularMessage

1
<<MessagePart>>
TabularMessagePart

<<LangElement>> header : String

+body Tl

<LangElement>>
AddressTable

<<LangElement>> records : Integer

0..n
<LangElement>>
Record

<<LangElement>> name : String
<<LangElement>> address : String

Figure 8-30 A model of a message containing a table

January 2002 UML for EAI: Message Formats 8-29

8.5.2 Basic MOM Message Structure

The stereotypes given in the preceding section provide the framework to allow
messages to be specified, but they do not cover commonly occurring concepts
supported by message oriented middleware (M OM) products.

In this section we add the basic concept of an exception message, a message sent by
the messaging infrastructure when a fault occurs in the processing of a message. We
also define a MOMHeader, which can specify an exception target (the location to
which a message should be sent in the event of an exception) and areply target, and it
can identify the kind of message being sent.

Table 8-2 Stereotype specification for MOM structure

Stereotype Parent Tags Constraints Description

MOMHeader MessageElement NA May have an association 'replyTo' with a | Stereotype to capture common
<<MessageElement>> class that specifies | MOM header information
areply target and another
‘exceptionTarget' with a
<<MessageElement>> class that specifies
an exception target

ExceptionNotice | MessageContent NA May have a message part containing the | Message sent by the MOM
header and body of the message that infrastructure if a fault occurs
caused the fault while processing a message

8.5.2.1 ExceptionNotice

8-30

Figure 8-31 illustrates the usage of the ExceptionNotice stereotype. In this example,
we have defined a class MOM Exception, which models the message content of an
exception message created by a MOM system after a fault has occurred.

MOM Exception contains two associations to classes that conform to the MessagePart
stereotype:

® originalMessage is an association to a class that models the content of the message
that caused the exception. In this case, the original message had just one message
part. If the original message had contained several parts, it would be possible to
model originalMessage as a class that conforms to the ComposedM essagePart
stereotype.

® exceptionInformation is an association to a message part that contains only
exception header information. The exception header holds information that
identifies the exception type and a string that describes the exception.

UML for EAI Draft Adopted Specification January 2002

<<ExceptionNotice>>
MOMEXxception
1
+originalMessage 1 +exceptioninformation
<<MessagePart>> <<MessagePart>>
ApplicationMessage | Exceptioninformation
+header \/ ,
+header 1 <<LangElement>>
<<MOMHeader>> ExceptionHeader
Header +body <<LangElement>> exceptionType : String
<<LangElement>> exceptionTarget : String <<LangElement>> exceptioninformation : String
<<LangElement>> replyTo : String
1

8.5.2.2

January 2002

<<LangElement>>
ApplicationBody

Figure 8-31 Example of the use of the ExceptionNotice and MOM Header stereotypes

MOMHeader

The MOMHeader stereotype demands that a message header must identify the
following elements, but does not dictate how they are represented in the message:

® replyTo: a means of identifying alocation to send a reply message to

® exceptionTarget: ameans of identifying alocation to send an exception notice in the
event of a fault occurring in the processing of a message

Figure 8-32 demonstrates an example of the use of the MOMHeader stereotype. In this
case, the domain and format are both identified using strings, and the exceptionTarget
and replyTo header content are specified using the MOMEndpointSpec class. In a
particular MOM implementation, this information should allow an EAI terminal to be
identified.

UML for EAI: Message Formats 8-31

<<MOMHeader>>
MHeader

] U

+replyTo +exceptionTarget

1 1
<<LangElement>>
OMENdP ointS pec
<<LangElement>> endpointName : String
<<LangElement>> endpointManagerName : String

Figure 8-32 Example of the use of the MOMHeader stereotype

8.6 Mappingwith Metamodel

The mapping with the metamodel is summarized by a series of tables, which are
organized below into sections corresponding to the four main parts of the profile:
terminals, operators, resources and message formats.

These tables are based on the approach specified in UML 1.4. for defining stereotypes
for use in a profile. We have extended them to show the mapping to the EAI
metamodel. Thus the tables also serve to summarize the stereotypes used in the profile.

In addition to the tables, we have detailed important mapping constraints which dictate
how information associated with an instance of an EAl metaclass is related to
information associated with an instance of the stereotyped UML base class. These are
listed below the relevant tables.

The mapping constraints should be distinghuished from constraints that apply to the
use of the profile itself (e.g., the use of a particular stereotype). Those are defined in
the section describing that aspect of the profile.

8-32 UML for EAI Draft Adopted Specification January 2002

8.6.1 Terminals

Table 8-3 Mapping of terminals

EAI Metaclass Base class Stereotype Parent Description & constraints
EAITerminal Core::Association See Section 4.2

Core::Class Input or Output See Section 4.2
EAIQueuedInputTerminal Core:: Association See Section 4.2

Core::Class Qlnput Input See Section 4.2
EAIQueuedOutputTerminal | Core:: Association See Section 4.2

Core::Class QOutput Output See Section 4.2

January 2002

Mapping Constraints

EAITerminal

1. This mapping is valid only for terminals which belong to operators that define
types.

1. The association is sourced on the class corresponding to the operator to which the
terminal belongs; it is targeted on the class identified with the terminal.

2. The handle operation of the class must have a parameter of a type corresponding to
the type of the parameter associated with the terminal.

3. Different terminals may map to the same class (but not the same association).
4. The name of the terminal is the name of the target end of the association.

5. The stereotype of the class corresponds to the value of the terminalKind attribute of
the terminal.

EAIQueuedinputTer minal and EAIQueuedOutputTerminal

There are no additional constraints.

8.6.2 Operators

Operators and terminals in the metamodel are used in two roles. Firstly they are used
to define types and parameters; secondly they are used to define the connectivity of a
compound operator in its role in defining a type. The mapping of operators has been
split into two parts, reflecting the two different roles. The first part deals with all
operators, except compound operators. The second part deals with compound
operators, which, as suggested above, requires a second mapping of operators and
terminals to be defined.

UML for EAI: Mapping with Metamodel 8-33

Table 8-4 Mapping of operators (except compound)

Description &

EAI Metaclass Base class Stereotype Parent constraints
EAIPrimitiveOperator Core::Class PrimitiveOperator See Section 4.3.1
EAITransformer Core::Class Transformer PrimitiveOperator See Section 4.3.2
EAIDBTransformer Core::Class DBTransformer Transformer See Section 4.3.2
EAIFilter Core::Class Filter PrimitiveOperator See Section 4.3.3
EAIStream Core::Class Stream PrimitiveOperator See Section 4.3.4
EAIPostDater Core::Class PostDater Stream See Section 4.3.5
EAISourceAdapter Core::Class SourceA dapter PrimitiveOperator See Section 4.3.6
EAITargetAdapter Core::Class TargetAdapter PrimitiveOperator See Section 4.3.7
EAICall Adapter Core::Class Call Adapter PrimitiveOperator See Section 4.3.8
EAIRequestReplyAdapter Core::Class ReguestReplyAdapter PrimitiveOperator See Section 4.3.9
EAISource Core::Class Source PrimitiveOperator See Section 4.3.10
EAIQueuedSource Core::Class QSource Source See Section 4.3.10
EAISink Core::Class Sink PrimitiveOperator See Section 4.3.11
EAIQueuedSink Core::Class QSink Sink See Section 4.3.11
EAIAggregator Core::Class Aggregator PrimitiveOperator See Section 4.3.12
EAISubscriptionOperator Core::Class SubscriptionOperator PrimitiveOperator See Section 4.3.15
EAIPublicationOperator Core::Class PublicationOperator PrimitiveOperator See Section 4.3.16
EAITopicPublisher Core::Class TopicPublisher PrimitiveOperator See Section 4.3.17

8-34

Mapping Constraints
EAIPrimitiveOperator

6. This mapping is only valid for compound operators defining a type (not ones used
to show connectivity of components).

7. The name of operator (and hence the type which the operator defines) is the name
of the class.

8. There must be an association on the class diagram corresponding to each terminal
of the primitive operator.

EAITransformer

9. The transformation mapping of the operator maps to the operation transform, in the
class corresponding to the operator.

EAIDBTransformer

UML for EAI Draft Adopted Specification January 2002

January 2002

10. The database resource maps to the database association sourced on the class
corresponding to the operator.

EAIFilter

11. The filterCondition of the operator mapsto the allow operation in the corresponding
class.

EAI|Stream

12. The emissionCondition of the operator maps to the emit operation in the
corresponding class.

EAI|PostDater

13. ThetimerMapping of the operator corresponds to the setTimingCondition operation
in the corresponding class.

EAISourceAdapter and EAIlTargetAdapter

14. The internal ToM essage (resp. messageTol nternal) mapping for the operator
corresponds to the adapt operation in the corresponding class.

EAICallAdapter

15. The callToRequestMapping of the operator corresponds to the mapCall ToRequest
operation in the corresponding class.

16. The replyToOutMapping of the operator corresponds to the mapReplyToOut
operation in the corresponding class.

EAIRequestReplyAdapter

17. The requestToCallMapping of the operator corresponds to the mapRequestToCall
operation in the corresponding class.

18. The returnToReplyM apping of the operator corresponds to the mapReturnT oReply
operation in the corresponding class.

EAISource, EAIQueuedSource, EAISink, EAIQueuedSink

There are no further constraints.

EAIAqaregator

19. The aggregateComplete condition of the operator corresponds to the
aggregateCompl ete operation in the corresponding class.

20. The addToAggregate condition of the operator corresponds to the addToAggregate
operation in the corresponding class.

21. The aggregationMapping of the operator corresponds to the aggregate operation in
the corresponding class.

EAISubscriptionOperator_and EAIPublicationOper ator

UML for EAI: Mapping with Metamodel 8-35

22. The subscriptionTable resource maps to the subscriptionTable association sourced
on the class corresponding to the operator.

TopicPublisher
There are no further constraints.

A compound operator utilizes a graph of operators, terminals and resources to define
the connectivity of its components. This isexposed by the mapping defined inTable 6.

Table 8-5 Mapping of compound operator

Description &

EAI Metaclass Base class Stereotype Parent constraints
EAICompoundOperator Core::Class CompoundOperator See Section 4.3.18

CommonBehavior::Object See Section 4.3.18
EAITimer Core::Class Timer CompoundOperator See Section 4.3.13
EAIRouter Core::Class Router CompoundOperator See Section 4.3.14
EAIPrimitiveOperator (and | Core::Association, See Section 4.3.18
subclasses) CommonBehavior::Object
EAICompoundOperator Core::Association, See Section 4.3.18
(and subclasses) CommonBehavior::Object
EAIResource (and CommonBehavior::Object See Section 4.3.18
subclasses)
EAITerminal (and CommonBehavior::Object See Section 4.3.18
subclasses)
EAILink CommonBehavior::Link See Section 4.3.18

Mapping Constraints

EAICompoundOperator

23. This mapping is only valid for compound operators defining a type (not ones used
to show connectivity of components).

24. The name of operator (and hence the type which the operator defines) is the name
of the class.

25. There must be an association on the class diagram corresponding to each terminal
of the compound operator.

26. On the class-diagram part of the definition of the compound operator, there must be
an association for each component operator.

27. The object is unnamed on the collaboration diagram defining the connectivity of the
compound's components, and it contains al objects corresponding to the component
operators and their terminals.

8-36 UML for EAI Draft Adopted Specification January 2002

28. On the collaboration diagram, the objects corresponding to the terminals of the
operator appear outside the object corresponding to the operator.

EAITimer and EAIRouter

29. Exceptionally, the components of these operators are not exposed in the profile.
Therefore they do not have collaboration diagrams associated with them, and they
do not map to objects.

EAIPrimitiveOperator (and subclasses), EAl CompoundOperator (and

subclasses).

30. This mapping is only valid for operators which are used in the role of defining the
components of a compound operator. That is, they do not define atype, and they are
owned by a compound operator (one of its nodes).

31. The association must be a composite association. The name of the part end
corresponds to the name of the operator. The association is sourced on the class
corresponding to the compound operator of which the operator in question is a part,
and targeted on the class corresponding to the operator which defines the type of the
operator in question.

32. The name of the object corresponds to the name of the operator. The type of the
object is the class that corresponds to the operator which defines the type of the
operator in question.

33. There must be an object corresponding to each terminal of the operator, and this
must be linked to the object corresponding to the operator.

34. The object corresponding to the operator in question may be linked to an object
corresponding to a resource, if the operator that defines the type of the operator in
question is associated with a resource. The type of the resource object is the class
corresponding to the resource.

EAIResource (and subclasses)

35. This mapping isonly valid if the resource is associated with an operator used in the
role of defining a component of a compound.

EAITerminal

36. The name of the object is the name of the terminal. The type of the object is the
class corresponding to the termina that defines the parameter associated with the
terminal.

EAILink

37. The (UML) link must connect the objects associated with terminals that the (EAI)
link connects.

January 2002 UML for EAI: Mapping with Metamodel 8-37

38. The (UML) link has no message if the value of the synchronization attribute of the
(EAI) link is unspecified. It has a synchronous (asynchronous) message if the value
of that attribute is synchronous (asynchronous). The direction of the message is
from the object corresponding to the source of the (EAI) link, to the object

corresponding to the target of the (EAI) link.

8.6.3 Resources

Table 8-6 Mapping of resources

EAI Metaclass Base class Stereotype Parent Description & constraints
EAIResource Core::Association See Section 4.4

Core::Class Resource See Section 4.4
EAIDatabase Core:: Association Resource See Section 4.4

Core::Class Database Resource See Section 4.4
EAIQueue Core:: Association Resource See Section 4.4

Core::Class Queue Resource See Section 4.4
EAISubscriptionTable Core:: Association Resource See Section 4.4

Core:: Class SubscriptionTable Resource See Section 4.4

8-38

8.6.3.1 Maypping Constraints

39. The name of the resource maps to the name of the target end of the association.

40. The source of the association is the class corresponding to the operator associated
with the resource.

41. The target of the association must be a class with a stereotype corresponding to the
name of the (metamodel concrete) class of the resource.

UML for EAI Draft Adopted Specification

January 2002

8.6.4 Message Formats

Description &

EAI Metaclass Base Class Stereotype Parent constraints

EAIM essageContent Core::Class MessageContent See Section 4.5.1
EAIM essagePart Core::Class MessagePart See Section 4.5.1
EAIComposedM essagePart | Core::Class ComposedMessagePart | MessagePart See Section 4.5.1
TDLangElement Core::Class LangElement See Section 4.5.1
EAIHeader Core::Class MOMHeader MessageElement See Section 4.5.2
EAIExceptionNotice Core::Class ExceptionNotice MessageContent See Section 4.5.2

January 2002

8.6.4.1 Mapping Constraints

TDL angElement

42. Composed types will map to a TDLangElement with a TDLangComposedType. See
Section 7.3.8.4, “TDLangElement,” on page 7-21.

UML for EAI: Mapping with Metamodel

8-39

8-40 UML for EAI Draft Adopted Specification January 2002

ActivityModeling 9

Messages are produced as a result of business events occurring in enterprise
applications. The sequence of these events and the resulting message flows across
system boundaries is defined in the overall system integration process. This section
describes a profile for modeling EAI processes using activity graphs. These models can
subsequently be refined to realize the functionality specified using the stereotypes
defined in Chapter 8.

9.1 Modeling Integration Processes

Chapter 8 describes a profile for defining the collaborations necessary for application
integration. It may be characterized as a profile for designing integrations. Many
application-integration developers also adopt a process-oriented approach where the
initial artifact is a definition of the business process, end-to-end, which is to be
integrated. Of course such a process definition will encompass many integration points,
each of which will need to be implemented. The value of the process view is to
establish the requirement in a form that is understandable and verifiable by the
business users. In this sense it is arequirements or analysis view and exists at a higher
level of abstraction than the collaboration-based definitions of the previous chapter.

Whilst for any particular implementation approach it should be possible to map the
analysis model onto the design model, it is beyond the scope this submission to do so.
In a sense, it would be pre-empting the development process. We consider a general
formal mapping - with enforcement of alevel of detail capable of forma mapping - to
be inappropriate, since different practitioners have different approaches.

9.2 Anlntegration Process Scenario

January 2002

Integration processes contain control flow and message flow aspects. Message flow is
fundamental in EAI processes, as message-based integration is at the core of the
problem domain.

UML for EAI Draft Adopted Specification 9-1

9-2

This section introduces the profile elements required to define such models by means
of an example scenario. Variants of the secenario are discussed. Some illustrate the
capability of the profile to support high levels of abstration, such as might be preferred
for communicating with business users; others illustrate how the profile can be used to
define more detail.

9.2.1 The Exchange Process

The scenario we have chosen is a collaborative business-to-business example, where
Buyers and Sellers negotiate atransaction via an online Exchange. The overall process
is represented in the activity graph in Figure 9-1. Annotations have been added (as
parameters on transitions) to represent additional information about required operations
(such astransformations) and to identify implementation details (such as queues). This
is an example of where different practitioners might choose to capture this information
at this level or may choose to omit it. The intention is that the profile is capable of
representing it if required.

UML for EAI Draft Adopted Specification January 2002

January 2002

<<subsystem>>
Buyer system

1

<<subsystem>>
Exchange

1

<<subsystem>>
Seller system

place
request
Ic

(28
iy Y,
,6'76‘/0 R

2

Figure 9-1

In this example, activities represent the legacy applications that consume and/or raise
business events. The existence of connectors to detect and publish the events and to
interpret these events for the legacy applications is implicit at this level of abstraction.

e ..
2N

=\ register
T request and). -

N broadcast ToPup,
Request Ve 5%
S

<<subscribe>> *

rrrrrrrr T — place quote
uest transforn = g}

accept
quote

receive
confirmation

Req

777 S collect <
Q . quotes
uote

Quote
{set}

Quote\\\

§ 7 Qu
S A
{set} . oS
3 notify sellers :%
Soe,
00@ /ef

‘7\;6;4;0*?& 777777777777777777777 confirm
] quote
close
S Ureavest S
Quote

Quote

9.2.2 Modeling message flow explicitly

Basic way of modeling message based integration with Activities (Exchange
example)

The message-flow aspects can be emphasized by using an explicit stereotype

"messageFlow" for the transfer of messages between subsystems. This approach,
illustrated in Figure 9-2, contrasts with the more abstract approach illustrated in Figure

9-1.

UML for EAI: An Integration Process Scenario

Note that the use of a transition between two ObjectFlowStates is not norma activity-
graph usage, but is not prohibited by the UML semantics definitions.

00

pl:itl
[state K]
<<data flow>>
a b
pl:itl p2:tl
[state K] [state I]

Figure 9-2 Application of the "messageFlow" stereotype to emphasize data-flow aspects

Figure 9-3 illustrates the impact of applying this technique to the exchange example.

<<subsystem>> <<subsystem>> <<subsystem>>
Buyer system Exchange Seller system

place
request

/o;\
N, i
K register
E <<msglflows> “__| riquest and
Request Request roadcast
{queue = x} {queue =y} v%
RN
SN
\l—‘ <<subscribe>> lace quote®
<<msg flow>> - {transform = g} p q
Request Request
{queve =7} {queue = s}
Lk [e colect N
“z<msp flow>> quotes <<<"E gﬂow»
e Quote Quote Quote Quote

accept \ {set} {set} {queue =w} {queue =t}
quote

Quote
{set}

Figure 9-3 Application integration example with "messageflow" stereotype (partial)

9-4 UML for EAI Draft Adopted Specification January 2002

In this activity graph, the partitions represent the enterprise systems that require
integration. Inside each partiiton, action states (i.e., activities) represent the invocation
of application APIs. A transition between an activity and an object-flow state
represents the production or consumption of a message. Transitions with the stereotype
"messageFlow" represent message transfers across system boundaries. Message flows
may be "point-to-point." They may also be designated as "multicast" (according to a
publish/subscribe protocol) by adding the stereotypes "publish" and "subscribe" to
appropriate transitions.

9.2.3 Modeling control flow

In addition to message flow aspects, control flow aspects can be added to the process
definition. In Figure 9-4, control flow transitions have been added within each of the
component systems in a fragment of the Exchange example.

January 2002

<<subsystem>> <<subsystem>> <<subsystem>>
Buyer system Exchange Seller system

accept
quote

L

Quote
{seth

Figure 9-4 Optional control flow transitions between activities within a single system

\ register
Fansiomn=1}- % avedfiions 1 request and
Request Request
{queue =x} {queve =y}
! <<publish>> \[—‘ <<subscribe>>
Bt >D <<msg flon>> ~ {transform=g} place quote*
Request Request
{queue =z} {queue =s}
N Ty
amefyfions> L W <<msfy flow>>
Vs Quote Quote Quote Quote
{set} {set} {queue =w} {queue =t}

UML for EAI: An Integration Process Scenario

9.2.4 Abstracting detail by decomposition

Activities can be decomposed to show the constituent set of subactivities. An example
of the decomposition of the integration step "Place Quote" is shown in Figure 9-5. In
this step, an incoming Request message results in an outgoing Quote message. In the
decomposition, a "connector" activity is responsible for handling the incoming
message. Once a message is accepted by the system, a "transformer” activity
transforms the message content to a locally acceptable format. Finally, "adapter”
activities take this known input and adapt it into the legacy data store format. A
subsequent "adapter” is responsible for invoking the legacy system. After the legacy
application has run, a similar set of steps produces the outgoing message.

<<subscribe>>

lace qUOte |---rwrwwwrmrrweonee D
D {ransform= g} {transform= h} >
<<message>> <<message>>

Request Quote

{queue = s} {queue =t}

<<transform>> <<connector>>
D ———————————————— transform from D invoke legacy
Request Xchange format g() Request \ application

queue=s [transformed]
{format = XML}

(<<legacy>>
D Quotation

Quote K Application J

[created locally]
{format = Tables}

<<connector>>
transform legacy
data to standard

[<<transform>>
D transform to D
Quote \ Xchange h() / Quote

[stored locally] queue=t

Figure 9-5 Decomposition of the integration step "Place Quote" in the context of the Exchange
example

It should be noted that the above figure constitutes a prototypical example - many

variants of these will exist using additional operator activities (e.g., involving "router"
and "filter" operators) and with varying process structure.

9.2.5 Further fragmentary examples

Other activity graph constructions that can be used in modeling system-integration
processes are described in the following subsections.

9-6 UML for EAI Draft Adopted Specification January 2002

9.2.5.1 Multiple synchronized inputsand outputs

Multiple synchronized inputs and/or outputs can be modeled with join and fork
pseudo-states (see Figure 9-6).

S AR >
L e Y - T, M— 2
Ly N >

3

Figure 9-6 Modeling multiple inputs and outputs with join and fork pseudo-states.

9.2.5.2 Internal dataflowswithin a subsystem

An internal dataflow between two activities within a single system can be modeled
with ObjectFlowStates (see Figure 9-7).

register
D ———————————————————————— request and

broadcast

<<message>>
Request
<<publish>>
<<message>>
Request
<<business object>>
Request
[created]
B 77777777777777777 collect
quotes
<<message>> <<message>>
Quote Quote

Figure 9-7 Modeling internal data flow with object flow states

9.2.5.3 Modeling decisionsexplicitly

Decisions can be modeled with guards, either implicitly with multiple outgoing or
explicitly by using a decision PseudoState - the latter approach is relevant for modeling
content based routing where the middleware is responsible for rule execution (as
opposed to embedded rules executed by applications) (see Figure 9-8).

January 2002 UML for EAI: An Integration Process Scenario 9-7

9-8

D 77777777777777
rejection
o7

%~ Quote

e
notify sellers }-— ><><:
g

9254

9.25.5

9.25.6

invoke legacy
app A

<<router>> a0,)
g s, confirm
TN || >
quote
Quote

Figure 9-8 Example of a decision node to model rule-based routing

Synchronization

Synchronization is made explicit with Fork and Join PseudoStates - for instance, this
can be used to model multiple parallel invocation of legacy systems in the case that
there is more than one system (or more than one function) needing to be invoked (see
Figure 9-9).

invoke legacy
app B

invoke legacy
app D

invoke legacy
app C

Figure 9-9 Synchronization with forks and joins

Multiple concur rent invocations of activities

Dynamic concurrent invocation of activities (where the number of actual activities
invoked is determined at run time depending on the input) is denoted by a"*" symbol
in the activity (see Figure 9-10).

place quote*

Figure 9-10 Dynamic concurrent invocation of an activity

Modeling business events explicitly

Events (as based on the definition of a signal in UML) can be added to transitions or
they can be modeled explicitly as object-flow states. In the latter case, the underlying
classifier is a signal, with attributes representing the event parameters. This can be

UML for EAI Draft Adopted Specification January 2002

9

useful for modeling "adapter" implementations that respond to events (e.g., a database
trigger) and for systems that natively expose a required integration event on their
interface (see Figure 9-11).

<<adaptor>> <<adaptor>>
invoke legacy _ transform legacy
application <<signal>> data to standard <<message>>
QuoteCreated Quote

Figure 9-11 Explicit modeling of an event for an adapter implementation

Integration processes will usually not be defined beyond this level of detail in activity
graphs. The design of the interactions between the classes involved is best described
using collaboration modeling, as discussed in Chapter 4.

9.3 Profile Element Summary

The following is a summary of the activity-graph stereotypes and tagged values for
modeling processes in the context of EAl. These stereotypes are in addition to the ones
defined in Chapter 4. Tagged values on the activity stereotypes enable the linking of
activities to their realization in terms of the Operator and Message Classifiers that
implement the messaging functionality at the Collaboration level.

It should noted that some stereotypes apply to more than one UML metaclass. In some
cases, the metaclass name is given in brackets to indicate that this is a secondary
modeling option. For instance, a "transform" stereotype is primarily attached to an
activity, indicating that the activity is realized by a transform operator. A "transform"
stereotype can also be attached to a transition as a secondary option which can be
useful for models that are (to be) decomposed.

This profile definition assumes the UML 1.3 extension mechanism, which is string-
based. In UML 1.4, references to metaclasses can be used as an alternative to name
based strings. Furthermore, in UML 1.4, multiple stereotypes can be applied to an
element.

9.3.1 Stereotypes

Table 9-1 defines the basic stereotypes. Tagged val ues for these stereotypes are defined
in Table 9-2.

January 2002 UML for EAI: Profile Element Summary 9-9

Table 9-1 Behavior stereotypes for modeling EAI system-integration processes

Stereotype UML metaclass Comments / constraints

"integration process "ActivityGraph A system integration process in the context of EAI

"message "ObjectFlowState A data element that is interchanged between two systems. The
ObjectFlowState "inherits" the stereotype from the Signal classifier
with stereotype "message” that it points to, if one is defined at this
stage (tagged value defined below). The underlying Classifier of the
ObjectFlowState represents the "content” of the message (to be
added as a Signal parameter during design). The production or
consumption of a message by an activity is modeled with a "flow"
Transition

"flow "Transition A flow is an exchange of data between two systems. An abstract
stereotype. A "flow" may optionally have an associated guard
condition

"messageflow "Transition A "messageflow" is a subtype of a "flow" where the Transition is to
or from a"message". Abbreviated to "msg flow". The production or
consumption of a message constitutes an event in EAI context. Note
that general business events are modeled as Signals in UML.

"connector "ActionState, A "connector" is a smple or compound activity that converts a

ActivityGraph(Transition) specific kind of message from some system-specific format into a
specified message-content type, or vice versa

"operator "ActionState, An "operator" is an activity that acts upon messages as they flow

ActivityGraph(Transition) between systems. Note: if the activity has more than one message as
input or output, then the operator must be a Compound Operator.

"transform "ActionState, A kind of operator that transforms datasets from one format to

ActivityGraph,(Transition) another. An instantiable subtype stereotype of "operator"
"filter "ActionState, A kind of operator that filters messages according to a rule
ActivityGraph,(Transition)
"router "ActionState, A kind of operator that determines a outgoing channel based on a
ActivityGraph(PseudoState) rule
"stream "ActionState, A kind of operator
ActivityGraph(Transition)
"adapter "ActionState, A kind of operator, indicating a wrapper activity that that
ActivityGraph(Transition) encapsulates dataflow and / or controlflow to and from a legacy
system, e.g. an operator that performs invocation and associated
marshalling.

"publish "Transition(ActionState) A kind of operator, indicating that there is a publisher - subscriber
protocol involved in the message transmission (default is point - to -
point)

"subscribe "Transition(ActionState) A kind of operator, indicating that there is a publisher - subscriber
protocol involved in the message transmission (default is point - to -
point)

"legacy "ActionState, A "legacy" is any existing application that participates in an

ActivityGraph(PseudoState) integration
9-10 UML for EAI Draft Adopted Specification January 2002

9.3.2 Tagged Values

Table 9-2 defines the extended "meta-properties” (i.e., tagged values) for the
stereotypes defined above, and a number of general supporting tags. Some of these tags
are references to classes and signals that are defined using the modeling framework
defined in Chapter 4. These references define the realization of the messaging
functionality specified in the integration process (e.g., using sequence diagrams).

Table 9-2 Tagged values with the stereotypes defined in the previous table

Tagged value

UML Metaclass/
stereotype

Notes

signallmplementation :
String

"message" ObjectFlowState

Indicates that an ObjectFlowState with stereotype "message” is

realized by a Signal (note: in UML 1.4 this becomes a reference
to a Signal Classifier stereotyped "message" instead of a string).
Note the base classifier reference of the ObjectFlowState points
to its content class.

sourcelmplementation :
String

"message" ObjectFlowState
(ActionState,ActivityGraph)

Indicates that an ObjectFlowState with stereotype "message” is
realized as a Source Classifier at a detailed level (note: in UML
1.4 this becomes a reference to a Classifier instead of a string).
Alternatively, when applied to an activity it indicates that in the
detailed realization this activity has an associated Source
Classifier. Optional property.

targetl mplementation :
String

"message" ObjectFlowState
(ActionState,ActivityGraph)

Indicates that an ObjectFlowState with stereotype "message” is
realized as a Target Classifier at a detailed level (note: in UML
1.4 this becomes a reference to a Classifier instead of a string).
Alternatively, when applied to an activity it indicates that in the
detailed realization this activity has an associated Target
Classifier. Optional property.

gueueName : String

"message”
Obj ectFlowState(Transition)

Indicates the name of the queue to be used (note: in UML 1.4 this
becomes a reference to a Queue Classifier instead of a string)

gueueProtocol : String
{IMS, IBM MQ, Oracle
AQ, ..}

"message" ObjectFlowState
(Transition)

Indicates the target implementation type for the queue

format : String { XML, ...}

"message" ObjectFlowState
(Transition)

Indicates the target implementation format for the message

isSet : Boolean

"message” ObjectFlowState

Indicates that an ObjectFlowState contains a set of messages.
Shorthand notation for a type expression, e.g., "Set of Quote".

communicationProtocol :
String { http, iiop, smtp, ..

}

Transition

Indicates the target communication protocol to be used

January 2002

UML for EAI: Profile Element Summary

9-11

Table 9-2 Tagged values with the stereotypes defined in the previous table

Tagged value

UML Metaclass/
stereotype

Notes

operatorlmplementation :
String

"operator" Activity (Transition)

Indicates a reference to the Classifier that realizes the activity.
Note: in the case of a subtype of "operator" such as "transform",
"connector", "publish" or "adapter" this tagged value indicates the
transformationlmplementation Classifier,
connectorlmplementation Classifier, etc. (note: in UML 1.4 this
becomes a reference to a Classifier with stereotype "operator"
instead of a string)

operationlmplementation :
String

"adapter" Activity (Transition)

Indicates a reference to a public operation of a "legacy" system
(note: in UML 1.4 this becomes a reference to an Operation on a
Classifier instead of a string)

directoryNameEntry : String

Subsystem

Indicates the implementation target name for the subsystem

9.3.3 Mapping to EAl Metamodel

Although the activity graph elements are largely used at a higher level of abstraction,
asillustrated above, it is possible to decompose some aspects of the model sufficiently
to map directly onto the same metaobjects as the collaboration model. Table 9-3 lists
these mappings and identifies the appropriate metaclasses to map the other activity
graph profile elements.

Table 9-3 Mapping from Activity Graph Stereotypes to EAl Metaclasses

Stereotype

EAI metaclass

Comments/Constraints

"integration process

"FCM Composition

The "integration process' is the overall context for the model. It is
merely the aggregation of all the elements of the activity graph.

"message "EAIMessageContent Direct mapping

"flow "FCMLink Not being constrained to only connecting terminals, a "flow" in the
activity graph profile, which is a stereotype on the UML metaclass
Transition, is more generic than EAILink

"messageflow "FCMDatalink A "messageflow" is an example of a Transition that does not directly
connect Terminals. It represents the propagation of a message from
one system to another, probably implemented as queue-to-queue
propagation, but at this level of abstraction it is not appropriate to
specify that.

"connector "EAIPrimitiveOperator Direct mapping

"operator "EAIPrimitiveOperator Direct mapping

"transform "EAITransformer Direct mapping

"filter "EAIFilter Direct mapping

"router "EAIRouter Direct mapping

"stream "EAIStream Direct mapping

9-12 UML for EAI Draft Adopted Specification January 2002

Table 9-3 Mapping from Activity Graph Stereotypes to EAl Metaclasses

Stereotype EAI metaclass Comments/Constraints
"adapter "EAISourceAdapter/EAITar | Whether an instance of an activity model "adapter” is an instance of
getAdapter an EAISourceAdapter or an EAlTargetAdapter can be inferred from
the context.
"publish "FCMLink The application of this stereotype is specifying a constraint on the

underlying queue implementation, but the link itself is not the queue.
Thisis an example of where the analysis model contains a design
hint but is not of itself a design specification.

"subscribe "FCMLink See "publish”

"legacy "FCMNode "legacy" is a necessary component of the activity profile because it
provides a reference point for the business, but in the integration
itself "legacy" has no behavior, so it is mapped to the generic
FCMNode.

January 2002 UML for EAI: Profile Element Summary 9-13

9-14 UML for EAI Draft Adopted Specification January 2002

Part 4- Proof of Concept

Contents

This section contains the following chapters.

Section Page
10. Example: Connectivity and Information Sharing 10-1
11. Example Using the EDOC CCA 11-1

This section provides a proof of concept for the profile by giving examples of the use
of the profile for actual EAl modeling. An example is provided that is relevant to both
of the scenarios of the Scope that are covered by this specification and uses

collaboration modeling. In Chapter 11, avariant of part of this example is presented in

the CCA of the UML Profile for EDOC.

Example: Connectivityand
| nfor mation Sharing 10

This chapter shows how the UML Profile for EAl can be used to model the integration
of applications for a brokerage firm using collaboration modeling. The chapter is
structured as follows:

® Section 10.1 provides a brief description of what a brokerage firm does. This
provides some explanation of the domain in which the models are being devel oped.

® The following sections describe aspects of the brokerage firm's systems, which are
then captured in models expressed using the collaboration profile of Chapter 8.

10.1 The Brokerage Business

January 2002

A brokerage firm accepts orders for stock trades from various parties:
® Direct from customers
® From partner brokerages in other countries

® From investment managers

The job of the brokerage firm is, essentially, to enact the trades requested in those
orders and then send notifications back to the customer.

The focus of the modeling in this chapter is the handling of orders from partner
brokerages and from investment managers. This requires an architecture integrating
with the systems used by these stakeholders, which allows order events from systems
external to the enterprise to be transformed into a common format and then filtered,
elaborated and processed. Notifications need to be generated and sent back to the
originating systems.

The overall architecture for this integration is depicted in Figure 10-1.

UML for EAI Draft Adopted Specification 10-1

10

International

Investment

Brokerage Manager
System System
Online Brokerage htp
TCP/IP
International Investment —
Brokerage Manager
Server Server
Pub/sub
Pub/sub
TCP/IP
Pub/Sub
) SNA Back-End - server
Middle- Brokerage
ware System
Server
| TCP/IP

Figure 10-1 As-is architecture for international and investment managers

International customers (i.e., customers outside the U.S.) are served by a brokerage

system in their own country. This system keeps track of portfolios for its customers.
If those customers wish to trade U.S. securities, those trade requests are serviced by
the on-line brokerage system.

Investment managers manage portfolios on behalf of customers with large or complex
holdings. They use the brokerage system to place trades and to get information about
various securities for their customers. Different investment-manager firms use

different software for portfolio management.

Using the UML profile, we elaborate a model of the architecture of this system.

10.2 Connection of Enterprisesto the Online Brokerage System

The on-line brokerage system is connected to five external systems. Thisis shown in
the collaboration diagram in Figure 10-2.

10-2 UML for EAI Draft Adopted Specification

January 2002

10

notifications :

legacyClient5 :
2000IMSystem

— 1990IMSNinput

orders :

2000IMS Ooutput

netbasedClient2 :

1990IMSystem

notifications :
— 2000IMSNinput

orders :

1990IMS Ooutput

: BrokerageCompany

legacy5Notifications :
2000IMS Noutput

2000IMSOs : ||
2000IMSOinput

netbased2Notifications :
1990IMS Noutput

1990IMSOs :
1990IMSQinput

japan :

notifications :

JapanIBSystem ||

JapanNotificationsinput

orders :
JapanOrderoutput

JapanNotificationsoutput

japanNotifciations :

JapanOrderinput

japanOrders :

franceNotifications :

france :

StandardIBSystem

notifications :
SINinput

orders :
SIOoutput

uk :

StandardIBSystem

_orders :

SINoutput

standardlOs :

SIOoutput

_notifications :
___SINinput

SlOinput [

ukNotifications :
SINoutput

onlineBrokerage :
OnlineBrokerage

January 2002

Figure 10-2 Brokerage company - component connections

This diagram highlights the two key processes involved:

1. The processing of orders entered into the system

2. The publication of notifications about processed orders

UML for EAI: Connection of Enterprisesto the Online Brokerage System

10-3

10

10-4

Thus each system external to the online brokerage has an output terminal for issuing
orders to be sent on to the online brokerage system and an input terminal for receiving
notifications back. Interestingly, although input streams of orders in the same format
may be merged (e.g., the output terminals of uk and france both connect to the same
input terminal of the on-line brokerage), the output streams of notifications will not.
There are good business reasons (such as confidentiality) to ensure, for example, that
only notifications for France go to France and not to also to the UK.

It has been left unspecified as to whether the connections between external systems
and the on-line brokerage are synchronous or asynchronous, although they arelikely to
be asynchronous.

Figure 10-3 is the corresponding class diagram, which declares the components of the
brokerage-company operator, where primitive operators are used to model the systems
external to the online brokerage. Notice that two of the externa systems (uk and
france) are of the same type. The components of the compound operator representing
the on-line brokerage system will be explored in the subsequent sections.

<<CompoundOperator>> |g <<PrimitiveOperator>>
g BrokerageCompany +legacyClient5 1990IMSystem
Y 'Y .
+japan
<<PrimitiveOperator>> +netbasedClient2

JapanlBSystem

+uk +france +onlineB rokerage

<<PrimitiveOperator>>
2000IMS ystem

<<PrimitiveO perator>>
StandardIBSystem OnlineBrokerage

<<CompoundOperator>>

Figure 10-3 Brokerage company - components

UML for EAI Draft Adopted Specification January 2002

10

<<Output>> <<Output>>
JapanOrderoutput SlOoutput
handle(content : JapanOrder) handle(content : StandardinternationalOrder)
+orders +orders
<<PrimitiveOperator>> <<PrimitiveOperator>>
JapanlBSystem StandardIBSystem

+notifications +notifications

<<Input>> <<Input>>
JapanNotificationsinput SINinput
handle(content : JapanNotification) handle(content : StandardInternationalN otification)

Figure 10-4 International brokerage systems - terminals

Figure 10-4 to Figure 10-6 define the terminals of al these operators and of the on-line
brokerage. The on-line brokerage must handle four different formats of orders and
notifications. Two of the systems (france and uk) use the same formats.

<<lInput>>

<<Input>> .
1990IMSNinput

2000IM SNinput

handle(content : 2000IM System Notification) handle(content : 1990IM SystemNotification)
+notifications +notifications
|
s‘
<<PrimitiveOperator>> <<PrimitiveOperator>>
2000IMSystem 1990IMSystem
+orders
+orders
<<Output>> <<Output>>
2000IM SOoutput 1990IMS Ooutput
handle(content : 2000IM System Order) handle(content : 1990IMSystemOrder)

Figure 10-5 Investment-manager systems - terminals

January 2002 UML for EAI: Connection of Enterprisesto the Online Brokerage System 10-5

10

<<Input>>
S1Oinput

handle(content : StandardInternationalOrder)

+standardlOs

+ukNotifications

<<Output>>
SINoutput

<<Input>>
2000IMS Oinput

handle(content : 2000IMSystemOrder)

+2000IMS Os

<<Output>>
2000IMSNoutput

handle(content : 2000IMSystemNotification)

+netbased2Notifications

handle(content : StandardIntemationalNotification)

OnlineBrokerage

<<CompoundOperator>>1990IMSOs

+franceNotifications

+japanOrders

<<Input>>
JapanOrderinput

handle(content : JapanOrder)

+japanNotifications

<<Output>>
JapanNotifications output

<<Input>>
1990IMS Oinput

handle(content : 1990IM SystemO rder)

+legacy5Notifications

<<Output>>

handle(content : JapanNotification)

1990IMS Noutput

handle(content : 1990IMSystemN otification)

Figure 10-6 On-line brokerage system - terminals

10.3 The On-line Brokerage System

10-6

The on-line brokerage system is a compound of an international brokerage server, an
investment manager server, a middleware server, a back-end brokerage system and a
Pub/Sub server. The components are declared in Figure 10-7, and the way in which
they are connected together is specified in Figure 10-8.

UML for EAI Draft Adopted Specification

January 2002

10

<<CompoundOperator>> -
| OnlineBrokerage
+ib +middleware *+publSub
<<CompoundOperator>> <<Primitive Operator>> <<CompoundOperator>>
InternationalBrokerageServer MiddlewareServer PubSubSerer
+backEnd
<<CompoundOperator>> <<CompoundOperator>>
InvestmentManagerServer Tiv BackEndBrokerageSystem

Figure 10-7 On-line brokerage system - components

: OnlineBrokerage

legacy5Notifications :
1990IMSNoutpu

_legacy5Notifications:

1990IM SNoutput

2000IMSOs: _2000IMSOs:
2000IMSOinput 2000IMSOinput
an

fixmlOrders :
FIXMLOrderinput ‘
T T
‘ im : InvestmentManagerServer ‘ middleware : MiddlewareServe

1990IMSOs _1990IMSOs: inOrders :
1990IMSOinput 1990IMSOinput Orderinput

outOrders :
Orderoutput

__outOrders:
Orderoutput

netbase d2Notifications:
2000IMSNoutput
_inOrders:
Orderinput
‘ backEnd : ‘

. . . P BackEndBrokerageSystem
japanNotifications: _japanNotifications : imServerFIXMLO ders
JapanNotificationsoutput JapanNotificationsoutput outOrders : FXIMLOrderoutput
- Orderoutput
japanOrders: apanOrders: _outOrders: pubSub : PubSubServer
apanOrde ut anOrde ut Orderoutput

_netbased2Notifications:

2000IMSNoutput

ib : InternationalBrokerageServer ordersin -

Orderinput

T
_fixm IOrdE_rsr ibServerFIXMLOrders :
FIXMLOrderinput i FXIMLOrderoutput

i |
T
standardlOs _standardlOs
SIOinput : SIOinput
—— L |
ukNotifications _ukNotifications :
SINoutp ut SINo utput
franceNotifications : franceNotifications :
SINoutput SINoutput

Figure 10-8 On-line brokerage - component connections

January 2002 UML for EAI: TheOn-line Brokerage System 10-7

10

10-8

<<lInput>>
JapanOrderinput

handle(content : JapanOrder)

Orders from international brokers are handled by the international-brokerage server,
and orders from the investment managers are handled by the investment-manager
server. These systems convert the orders into a common format and pass them on to
the middleware server, which forwards them to the back-end brokerage server. There
the orders are processed, and ownership information is added. On exit from this
system they are passed to the Pub/Sub server, which routes the processed orders back
to the IB or IM system, depending on which one generated the order. The IB and IM
systems generate notifications from the processed orders, which are passed on to the
external systems as appropriate.

The terminals for each of these systems are defined by Figure 10-9 through to Figure
10-13. Asusual, these diagrams give details about the formats of message handled by
the terminals of each system.

<<lInput>>
FIXMLOrderinput

handle(content : FIXMLOrder)

+japanOrders

+fixmIOrders

<<CompoundOperator>>
InternationalBrokerageServer

<<output>>
Orderoutput

+standardlOs

<<lInput>>
Sl1Oinput

handle(content : StandardintemationalOrder)

+u

=

Notifications

+outOrders

handle(content : Order)

+japanNotifications

+franceNotifications

<<Output>>
JapanNotificationsoutput

handle(content : JapanNotification)

<<Output>>
SINoutput

handle(content : StandardinternationalNotification)

Figure 10-9 International brokerage server - terminals

UML for EAI Draft Adopted Specification

January 2002

10

<<Input>>
FIXMLOrderinput

handle(content : FIXMLOrder)

+fix

<<lhput>>
1990IMS Oinput

<<Input>>
2000IMS Oinput

handle(content : 2000IMSystemOrder)

+2000IMSOs
IOrders

<<CompoundOperator>>

+1990IMSOs

handle(content : 1990IMSystemOrder)

+netbased2Notifications

InvestmentManagerServer

<<output>>
Orderoutput

+outOrders

handle(content : Order)

+legacy5Notifications

<<Qutput>>
2000IMS Noutput

<<Qutput>>
1990IMSNoutput

handle(content : 2000IMSystem Notification)

handle(content : 1990IMSystem Notification)

Figure 10-10 Investment-manager server - terminals

<<Input>>
Orderinput

handle(content : Order)

<<Input>>
Orderinput

+inOrders

<<PrimitiveOperator>>
MiddlewareServer

+outOrders

<<output>>
Orderoutput

handle(content : Order)

Figure 10-11 Middleware server - terminals

<<output>>

+inOrders

handle(content : Order)

January 2002

<<CompoundOperator>>
BackEndBrokerageSystem

+outOrders

Orderoutput

handle(content : Order)

Figure 10-12 Back-end brokerage system - terminals

UML for EAI: TheOn-line Brokerage System

10-9

10

<<Input>>
Orderinput

+ordersin

<<CompoundOperator>> i <<Output>>
ibServerFIXMLOrders
PubSubServer FXIMLOrderoutput

handle(content: Order)

handl tent : FIXMLOrd
+imServerFIXMLOrders |2ndle(conten rder)

Figure 10-13 Pub/sub server - terminals

We are now ready to examine the workings of each of the components of the on-ine
brokerage server.

10.4 International Brokerage Server

10.4.1 Orders

For international customers, order flow is as follows:

® When a customer of an international broker placesan order for execution of atrade
involving securities traded on a U.S. exchange, the order is forwarded to the on-line
brokerage for execution, which then passes on the order to its international
brokerage server.

® Theinternational brokerage server transforms the order into the standard format
understood by the back-end systems.

10.4.2 Notifications

10-10

The International server will send notifications to the international broker in near real
time. These are generated from the order events received from the Pub/Sub server.

The diagrams defining the components of the international-brokerage server (IBS) are
given by Figure 10-14 and Figure 10-15.

UML for EAI Draft Adopted Specification January 2002

10

<<Transformer>>
SIOHandler

<<Transformer>>
JapanlOHandler

transform(content : StandardinternationalOrder) : Order

transform(content : JapanOrder) : Order

<<Source>>
NPubSubGenerator

+sioHandler

+japanPubSubGen

+japanlOHandler

+standardSubscriber

<<CompoundOperator>> @
InternationalBrokerageSener

+japanSubscriber

<<SubscriptionOperator>>
NPubSubOp

+standardPubSubGen

+japanPublisher

January 2002

¢

<<PublicationOperator>>
— + Publi SINPublisher
<<PublicationOperator>> standardPublisher
JapaniNPublisher
+japanGenerator +standardGenerator
<<Transformer>> <<Transformer>>
JapaniNGenerator StandardINGenerator

transform(content : Order) : JapanNoatification

transform(content : Order) : StandardinternationalNotification

Figure 10-14 IBS - components

UML for EAI: International Brokerage Server

10-11

10

10-12

japanOrders :
JapanOrderinput

: InternationalBrokerageServer

standardIOs :

in: || japanlOHandler : out:
JapanOrderinput || JapanlOHandler Orderoutput

SIOinput

japanNotifications :
JapanNotificationsoutput

ukNotifications :
SIN output

franceNotifications :
SINoutput

— - - 3 outOrders :
in: | | sioHandler: _out: Orderoutput
SlOinput SlOHandler Orderoutput
_out: in: out:
RETEUINiife=t o s elNiie NIl | JapanNotificationsinput JapanNotificationsoutput
I

japanPublisher : japanGenerator :
JapanINPublisher JapanlNGenerator
T
- ‘ in:
subscriptionTable : FIXMLOrderinput
_NotificationPubST
japanSubscriber : japanPubSubGen :

NPubSubOp NPubSubGenerator fixmlOrders
= FIXMLOrderinput
in: out:

NPubSubinput NPubSuboutput
in : NPubSubinput _out:
NPubSuboutput
T
standardSubscriber : standardPubSubGen :
NPubSubOp NPubSubGenerator

_in:
- ‘ FIXMLOrderinput
subscriptionTable : ———
_NotificationPubST standardGenerator :
\ StandardINGenerator

standardPublisher : 3
SINPublisher _out:
—‘ SINoutput
out: in: ‘
SINoutput SINinput

Figure 10-15 IBS - component connections

For orders, there needs to be one transformer per input format, which converts that
input format to the standard format.

For notifications, there needs to be one transformer per notification format. As there
may be many external systems which handle the same format (in this case uk and
france work with the same format), and these are likely to come and go, it makes sense
to use a dynamically configurable publication operator on the output of each
transformer. This avoids having a separate transformer for each system; a transformer
is only needed for to each format. This means, in turn, that connection of a new

UML for EAI Draft Adopted Specification January 2002

10

system to Pub/Sub will only require a notification output terminal to be set up for
connection to the notification input terminal of that system. New internal components
will not be required.

The publication operator will dynamically connect to the appropriate notification
output terminals on a message-by-message basis, as dictated by its subscription table.
This explains why the notification output terminals of the IBS are not connected to any
of its components. For each publisher, a combination of a subscription operator and
source is used to generate subscriptions from some underlying system.

The definitions of the terminals of the components have been omitted, as they are
relatively straightforward.

10.5 Investment Manager Server

January 2002

10.5.1 Orders

Things are a little bit different for order placement from the Investment Manager
systems:

® First of all, these systems utilize different tools for placing orders. So the
Investment Manager server has to convert these different formats into a common
format that can be handled by the middleware server and the back-end systems.

¢ Secondly, the investment managers commonly perform complex operations like
balancing portfolios for a number of their customers at one time. This means
sending a single message that can include multiple buy and sell orders for a single
account and can include transactions on behalf of multiple accounts at the same
time. It makes sense to think of all the transactions related to a single account as a
unit of work in this context. The Investment Manager Server decomposes these
complex messages and turns them into single order requests that are placed with the
back-end systems.

Thus the handling of orders by the investment manager server is similar to that of the
international brokerage server. The only difference is that the transformers generate
batch ordersin a standard format, and these then feed into a transformer, which takes a
single batch order as input and generates multiple output messages in the standard
order format.

10.5.2 Notifications

As with orders, the investment management server may batch up any number of
notifications for transmission to its partners.

The modeling of the investment manager server, with respect to notifications, is similar
to that of the international brokerage server. The only differenceis that there must be
an aggregator which generates batch orders from the order stream. They can then be
fed on to the transformers and publishers.

UML for EAI: Investment Manager Server 10-13

10

10.6 Middleware Server and Back-End Brokerage System

10-14

Orders for international and investment customers go through the standard path for the
brokerage system. They are routed to the middleware server, which forwards them to
the back-end systems for execution. No additional modeling for the middleware server
isrequired at this level.

The back-end brokerage system is responsible for processing the orders. As orders are
processed and the order database is updated, this triggers events that mark changes in
the state of the order to be published. At this point, the following things happen:

® The order is checked for "account ownership." Accounts belong to different
organizations within the enterprise. | n particular, the order events are examined at
this point to determine whether or not the account bel ongs to the international or to
the investment manager system. To make the determination requires extracting
information from the customer databases.

® A further filter is then checked based on the type of order event. Not all order
events are published from this back-end system.

® |f the filter is passed, then a transformation is made of a database record into a
COBOL copybook format. The information about account ownership is added to
the order event.

The processing of orders is modeled by a primitive operator, which here has been
called orderProcessor and is of type BackEndProcessingSystem. The other three
stages of order manipulation are modeled by two filters and a transformer. These are
declared in Figure 10-16, and the way in which they are connected together is specified
by Figure 10-17.

<<PrimitiveOperator>>
BackEndProcessingSystem

+orderProcesser <<Com poundOperator>>
<@ BackEndBrokerageSystem

+ownershipEitter

+orderTypeFilter
+ownershipAdder

<<Filter>> <<Filter>> <<DBTransform er>>
AccountOwnership OrderType AddOwnership
allow(content : Order) : Boolean allow(content : Order) : Boolean transform(content : Order) : Order

allow(content) =
content.account is
from IM or IB

. - transform(content) =
allow(content) = copy of content with account
content_.type IS ownership added
appropriate

Figure 10-16 Back-end brokerage system - components

UML for EAI Draft Adopted Specification January 2002

10

: BackEndBrokerageSystem

false :
Orderoutput

ownershipFilter :

ownershipAdder :

AccountOwnership AddOwnership
T
in : true : _in: out : outOrders :
Orderinput Orderoutput Orderinput Orderoutput Orderoutput

inOrders : || | _inOrders : outOrders : i : true :
Orderinput Orderinput Ordemutput Orderinput | RO CIG
L T
orderProcessor orderTypeFilter :
BackEndProcessingSystem OrderType
_false :
Orderoutput
Figure 10-17 Back-end brokerage system - component connections
The message-content format handled by the terminals of the filter and transformer can
be deduced from the definition of the allow and transform operations, so we have
omitted them here. The terminals for BackEndProcessingSystem are defined by Figure
10-18.
<<Input>> <<PrimitiveO perator>> <<output>>
Orderinput i - + Orderoutput
P +inOrders BackEndProcessingSystem outOrders P

handle(content : Order)

10.7 Publication

January 2002

handle(content : Order)

Calls underlying
systems to
process orders.

Figure 10-18 Back-end processing system - terminals

The order event is then pushed to a Pub/Sub server. It accomplishes the following
tasks:

® |t transforms the order event into FIXML (a set of XML DTDs for the Financial
Industry eXchange - FIX - protocol format).

UML for EAI: Publication 10-15

10

10-16

® |t publishes the event with a subject that includes the notion of ownership. The
international and institutional customer servers subscribe to different order events:
the international server subscribes to events that pertain to its customers, and the
ingtitutional server does likewise.

The Pub/Sub server can be modeled quite simply. The first point requires a
transformer. Although the second point mentions publish and subscribe, dynamic
subscription (akey part of the publication and subscription operators) is not required in
this case. Rather, subscriptions are set up statically to filter messages based on their
topic, and so this can be shown as a filter instead.

The definition of the components is given in Figure 10-19, and their configuration is

given in Figure 10-20.

<<CompoundOperator>>
PubSubServer

+filter

<<Filter>>
IBorIMFilter

allow(order : Order) : Boolean

allow(order) =
true if order from an
international broker else false

+transform er

<<Transformer>>
OrderToFIXML

transform(content : Order) : FIXMLOrder

transform (order):
converts order to FIXML

information as possible

format, preserving as much

Figure 10-19 Pub/sub server - components

: PubSubServer

inOrders :
Orderinput

in : Orderinput

T
: OrderToFIXML

true : ibSenerFIXMLOrders :
FXIMLOrd eroutput FXIMLOrderoutput

out :
FXIMLOrderoutput

in :
FIXMLOrderinput

: IBorlMFilter

false :
FXIMLOrd eroutput

Figure 10-20 Pub/sub server - component connections

UML for EAI Draft Adopted Specification

imServerFIXMLOrders :
FXIMLOrderoutput

January 2002

10

The terminal specifications for thefilter and the transformer have been omitted, as they
can be deduced from the declaration of the allow and transform operations.

January 2002 UML for EAI: Publication 10-17

10

10-18 UML for EAI Draft Adopted Specification January 2002

ExampleUsingtheEDOC CCA 11

11.1 Example
The example in this section is based on a variant of that in Chapter 10. It illustrates the
use of the Component Collaboration Architecture (CCA) of the UML Profile for
EDOC. The high-level view in Figure 11-1 is avariant of that in Figure 10-2 on
page 10-3.
January 2002 UML for EAI Draft Adopted Specification 11-1

11

CommunityProcess BrokerageCompany

newYork 2000IMSystem

2000IMSystemOrdering

sanFrancisco 1990IMSystem

1990IMSystemOrdering

japan JapanlBSystem

JapanOrdering

uk StandardIBSystem

StandardinternationalOrdering

france StandardIBSystem

StandardinternationalOrdering

onlineBrokerage OnlineBrokerage

2000IMSystemOrdering

1990IMSystemOrdering

JapanOrdering

StandardinternationalOrdering

Figure 11-1 BrokerageCompany component connections

The next two figures show the components.

11-2 UML for EAI Draft Adopted Specification

January 2002

11

Component 2000IMSystem Component JapanIBSystem

2000IMSystemOrdering

JapanOrdering

Component 1990IMSystem Component StandardIBSystem

1990IMSystemOrdering

StandardinternationalOrdering

Figure 11-2 Ordering Components

Component OnlineBrokerage

| 2000IMSystemOrdering \

| 1990IMSystemOrdering \

| JapanOrdering \

‘ StandardInternationalOrdering ‘

Figure 11-3 OnlineBrokerage Component

The Protocols are in Figure 11-4 to Figure 11-7.

January 2002 UML for EAI: Example 11-3

11

Protocol 2000IMSystemOrdering 2000IMSystemOrder in)

[> 2000IMSystemOrder 2000IMSystemNotification
QOOOIMSyStemNotification 09

Figure 11-4 2000IM SystemOrdering Protocol

1990IMSystemOrder in
Protocol 1990IMSystemOrdering

|> 1990IMSystemOrder 1990IMSystemNotification
@QOIMSystemNotiﬁcation 09

Figure 11-5 1999IM SystemOrdering Protocol

11-4 UML for EAI Draft Adopted Specification January 2002

11

- JapanOrder in
Protocol JapanOrdering

[> JapanOrder JapanNotification

JapanNotification out

Figure 11-6 JapanOrdering Protocol

i - StandardinternationalOrder in
Protocol StandardInternationalOrdering

|>StandardInternationaIOrder
GtandardInternationaINotification 09

StandardInternationalNotification

Figure 11-7 Standardlnternational Ordering Protocol

January 2002 UML for EAI: Example 11-5

11

Component OnlineBrokerage

Component
InvestmentManagerServer

‘ 2000IMSystemOrdering ‘—{ 2000IMSystemOrdering ‘

‘ ‘ Ordering
1990IMSystemOrdering 1990IMSystemOrdering
‘ — | Component
‘ BackEndBrokerageSystem
Ordering

Component
InternationalBrokerageServer

‘ JapanOrdering ‘—‘ JapanOrdering

| StandardinternationalOrdering ‘—‘ StandardinternationalOrdering

Ordering

Figure 11-8 Detail of OnlineBrokerage Component

Component
InvestmentManagerServer

Component
2000IMSystemIBSHandler

2000IMSystemOrdering —————— 2000IMSystemOrdering

Ordering

Ordering

Component
1990IMSystemIBSHandler

1990IMSystemOrdering |————— 1990IMSystemOrdering

Ordering

Figure 11-9 Detail of InvestmentManagerServer Component

11-6 UML for EAI Draft Adopted Specification January 2002

11

Component 2000IMIBSHandler

|: 2000IMOrdering Ordering

2000IMOrder Order
2000IMNotification Notification RS

2000IMOrder in Order out

Notification in

Component 2000IMIBSHandler

2000IMOrder_

EAlTransformer
|: 2000IMOrdering Ordering

2000IMOrder ——— 2000IMOrder
z 2000IMNotification —

2000IMNotification_
EAITransformer

Notification 2000IMNotification

Figure 11-10 Detail of 2000IMIBSHandler Component

January 2002 UML for EAI: Example 11-7

11

Component 1990IMIBSHandler

|: 1990IMOrdering Ordering 1990IMOrder in Order out
1990IMOrder Orde 4
z 1990IMNotification otificatio

Notification in

Component 1990IMIBSHandler

1990IMOrder_
EAITransformer

1990IMOrdering Ordering
1990IMOrder ———— 1990IMOrder
1990IMNotification - I_ Notification RS

1990IMNotification_
EAITransformer

Notification 1990IMNotification

Figure 11-11 Detail of 1990IMIBSHandler Component

11-8 UML for EAI Draft Adopted Specification January 2002

11

Component
InternationalBrokerageServer

Component JapaniBSHandler
JapanOrdering JapanOrdering

Component
StandardInternationallBSHandler

Ordering

Ordering

StandardInternationalOrdering ’—‘ StandardInternationalOrdering Ordering

Figure 11-12 Detail of InternationaBrokerageServer Component

January 2002 UML for EAI: Example 11-9

11

Component JapanIlBSHandler

JapanOrdering Ordering JapanOrder in Order out
JapanOrder Orde g
JapanNotification otificatio

Notification in

Component JapanIlBSHandler

JapanOrder_
EAlTransformer
JapanOrdering Ordering
JapanOrder JapanOrder
JapanNotification — Notification I
JapanNotification_

EAITransformer

Notification JapanNotification

Figure 11-13 Detail of JapanIMIBSHandler Component

11-10 UML for EAI Draft Adopted Specification January 2002

11

Component
StandardIntliIBSHandler

[StandardintlOrdering

StandardintlOrder
StandardIntINotification

Ordering

Order
Notification IS

Component
StandardIntliIBSHandler

StandardIntlOrder in

Order out

E StandardintlOrdering

StandardIntlOrder ——
StandardIntINotification

EAITransformer

StandardintlOrder_

—>standardintlOrder

EAITransformer

StandardintINotification_

Notification

StandardIntINotification

Ordering

Notification RS

Figure 11-14 Detail of StandardinternationallMIBSHandler Component

January 2002 UML for EAI: Example

11-11

11

11-12 UML for EAI Draft Adopted Specification January 2002

Part 5- |mplementation Mappings

Contents

This section contains the following chapters.

Section Page
12. Mapping to WebSphere MQ Integrator 12-1
13. Java Message Service (JMS) 131
14. Language Metamodels 14-1

The profile presented in this specification is intended to provide the basis for modeling
EAI architectures, largely at alogical level. However, the implementation of such an
architecture requires, of course, the use of various technologies and tools appropriate
to integration, such as message brokers. This section presents a selection of mappings
of the modeling approaches of the profile into such implementation technologies. The
set of technologies discussed here is by no means an exhaustive set of those applicable
to EAI, but is simply intended to demonstration how the profile is usable with such

technologies.

MappingtoWebSohereMQ
| ntegrator 12

WebSphere MQ Integrator (WMQI — formerly known as MQSeries Integrator) is
IBM’s message broker product, addressing the needs of business and application
integration through management of information flow. It provides services that allow
you to:

® Route a message to several destinations, using rules that act on the contents of one
or more of the fields in the message or message header.

® Transform a message, so that applications using different formats can exchange
messages in their own formats.

® Store and retrieve a message, or part of a message, in a database.

® Modify the contents of a message (for example, by adding data extracted from a
database).

® Publish a message to make it available to other applications. Other applications can
specify subscriptions that govern receipt of publications related to topics or topic
ranges, optionally qualified by SQL-style filters based on message content.

These services exploit the message-oriented middleware (MOM) capability provided
by the MQSeries and WebSphere MQ products.

This chapter presents a mapping from the EAl modeling elements to implementation
elements; thisisintended to show how an architectural model can be mapped to a more
detailed implementation level.

12.1 WebSphere MQ Messaging

January 2002

WebSphere MQ is IBM’s new name for M QSeries.

UML for EAI Draft Adopted Specification 12-1

12

12.1.1 WebSphere MQ Messages

WebSphere MQ messages are modeled as classes that conform to the ContentFormat
stereotype. The most abstract version of this models the message as consisting of a
header, which is content class MQMD (M QSeries Message Descriptor), and a body
which is unconstrained. The MQMD contains the fundamental information required to
allow efficient manipulation of a message by the WebSphere MQ messaging system,
such as message expiry information and message identifier. The application-data
portion of the message is effectively unconstrained, although a message type indicator
within the MQMD can be used to indicate what format the message application data
conforms to so that it can be checked at runtime.

Where more information is required for the middleware that is responsible for
processing a message, extended header information has been defined. A few examples
of these extended message formats are shown in Table 12-1; they include the message
format expected by the WebSphereMQ CICS and IMS bridges, which enable
intercommunication with applications running in CICS and IMS respectively, and the
message format used by WMQI for Publish/Subscribe intercommunication.

One point to note about WebSphere MQ messages, which is correctly modeled by the
structure shown, is that al of the more complex message types can, if desired, be
treated as though they were simple WebSphere MQ messages. In this case, the
extended header information is treated as part of the application data of the message.

The MQRFH2 message header is extensible, in that it allows arbitrary name/value data
to be held in the header. In addition to mandatory fields contained within the header, it
may also contain any number of ‘NameValue' sections, which in turn may contain
‘Folders. Each folder may only contain data of the form name=value. Since messages
are flattened structures, each of the associations between header, folder, and namevalue
data is ordered, in that a sequence of values and structures can be reproducibly built
from a message, though this ordering is not normally relied on to convey additional
information.

Table 12-1 WebSphere M Qmessage classes

Class name Parent class Stereotype Description

WMQ NA ContentFormat The WMQMessage is a specialization of the ContentFormat

Message stereotype. It is the base format used by all WebSphere MQ
applications. The message body is unconstrained.
The message header, known as MQMD s fully documented in the
WebSphere MQ “Programming Reference Manual.”

WMQCICS WMQMessage ContentFormat Used in communication with the WebSphere MQ CICS Bridge.

Bridge

Message

WMQIMS WMQMessage ContentFormat Used in communication with the WebSphere MQ IMS Bridge.

Bridge

Message

12-2 UML for EAI Draft Adopted Specification January 2002

12

Table 12-1 WebSphere M Qmessage classes

WMQI WMQMessage ContentFormat Many WMQI message processing nodes can take advantage of
Message information contained in an extended header, known as the
MQRFH2.
Full details of the MQRFH2 header are given in the WebSphere
MQ Integrator “Programming Reference Manual.”
WMQI WMQIMessage ContentFormat The WMQIControlMessage class is a subclass of WMQIMessage.
Control It allows control messages (such as add, cancel, and change a
Message subscription).
Full details of command messages are given in the WebSphere
MQ Integrator “Programming Reference Manual”
12.1.2 WebSphere MQ Message Queuing
WebSphere MQ queues are modeled as classes with the Queue stereotype. They can
only hold messages that are in the WM QMessage format. The attributes of each class
are not listed here, but are specified in the WebSphere MQ “Application Programming
Guide.”
Table 12-2 WebSphere MQ Queue Stereotypes
Class Parent Stereotype | Constraint Description
class
WM QQueue NA Queue WebSphere MQ message queue. Parent for
all WebSphere MQ queue classes
WMQLocal WMQQueue | Queue Holds messages of class A physical queue owned by a particular
Queue WMQMessage (or subclasses) | queue manager.
WM QRemote WMQQueue | Queue Must refer to a queue that is A remote queue definition. Specifies the
Queue owned by a different queue name and location of a queue owned by
manager another queue manager
WMQAlias WMQQueue | Queue Must refer to a queue that is An dlias for another queue (alocal queue)
Queue owned by the same queue owned by the same queue manager
manager
WebSphere MQ provides for two different indirection mechanisms, the queue Alias,
which simply alows a queue to be referred to by a different name, and a Remote
Queue definition, which identifies a queue managed by a different queue manager. The
class diagram for alias queue and remote queue is given in Figure 12-1.
<<Queue>> +remoteQueue <<Queue>>
WMQRemoteQueueDef WMQLocalQueue
<<derived>> 1
1
+localQueue
<<Queue>>
W MQAliasQueue <<derived>>
Figure 12-1 WMQRemoteQueue and WM QAliasQueue
January 2002 UML for EAI: WebSphere MQ Messaging 12-3

12

At runtime, the WebSphere MQ messaging infrastructure always resolves alias and
remote queue definitions to a single local queue by following their ‘ remoteQueue’ or
‘localQueue’ associations. Consequently, when specifying an EAI design that uses
WebSphere MQ queues, the queue names used by the sender and receiver of a message
need not match, but they must resolve to the same local queue.

12.2 WebSohere MQ Integrator Message Flows

12-4

12.2.1 Summary

Message routing and transformation is achieved within WMQI by constructing a
message flow. This is done using a graphical tool, which allows operators to be joined
together as nodes in a directed graph. A set of subclasses of WMQIPrimitiveNode is
provided to perform tasks such as a message format conversion, a computation or a
database operation; these are modeled as classes with the PrimitiveOperator stereotype.
Message flows are modeled in the profile as classes with the CompoundOperator
stereotype.

Top-level message flows are initiated via the receipt of a message on a message queue.
They may invoke primitive nodes and nested message flows, which appear as
CompoundNodes in the tool.

<<CompoundOperator>> <<CompoundOperator>>| |<<PrimitiveO perator>>
WMQIMessageFlow WMQICompoundNode W MQIPrimitiveNode

Figure 12-2 Summary of the main usage of operator stereotypes

12.2.2 WMQIMessageFlow

Description

WM QIMessageFlow models the outermost level of composition. At this outermost
level, processing is initiated by the receipt of a message on a queue, as represented by
WMQIInputNode. Consequently, an instance of WM QIMessageFlow must have at
least one WM QI InputNode. This (see Figure 12-3) has the QueuedSource stereotype.
Output may be produced by one of three different node classes: WM QIOutputNode,
WMQIPublish or WMQIReply. All of these nodes communicate externally using
message queues. Consequently, the terminals (the view from the outside) of a message
flow are required to be have the QueuedTerminal stereotype.

UML for EAI Draft Adopted Specification January 2002

12

<<CompoundOperator>>
MQIMessageFlow

1..n 0..n
<<QueuedSource>> <<QueuedSink>>
MQIInputNode WMQIOutputNode

Figure 12-3 WMQIM essageFlow

Constraints

All links between the nodes that are contained in the message flow are synchronous.
WM QIMessageFlow must have at least one WM QI I nputNode.
The external terminals of a WM QIMessageFlow have stereotype QueuedTerminal.

The external terminal that represents publication has, in addition, the stereotype
PublicationTerminal.

WM QIMessageFlow can contain only WM QI CompoundNode, WM QI PrimitiveNode
or its subtypes.

WM QIMessageFlow may not contain other WM QIMessageFlows (though a
WM QIMessageFlow may invoke another WM QI M essageFlow by sending a message to
the appropriate queue).

12.2.3 WMQICompoundNode

WM QICompoundNode models all levels of composition inside WM QI M essageF|ow,
exploiting the composition mechanism inherited from the FCM in the EAI Integration
metamodel. Processing is initiated by sending a message to one of its terminals. Inside
the compound node, this results in the emission of a message by a
WMQIInputTermina Node. Consegquently, a WM QICompoundNode must have at least
one WMOQIInputTerminalNode. The results of message processing are propagated via
WMQIOutputTerminals.

January 2002 UML for EAI: WebSphere MQ Integrator Message Flows 12-5

12

12-6

<<CompoundOperator>>
WMQICompoundNode
1..n 0..n
<<Source>> <<Sink>>
WMQIInputTerminalNode WMQIOutputTerminalNode

Figure 12-4 Compound and primitive nodes in WMQI

Constraints

A WMQICompoundNode can contain WMQIPrimitiveNodes (and subclasses) and
WM QI CompoundN odes.

WM QI CompoundNode may not contain a WM QI M essageF|ow.
WM QI CompoundNode does not have queued terminals.

All links between the nodes contained in a WM QIlCompoundNode have
synchronization=synchronous.

12.2.4 WMQIPrimitiveNode

Description

WMQIPrimitiveNode is the (abstract) parent class for all WebSphere MQ Integrator
message processing hodes.

Constraints

Primitive nodes all expect to receive and process messages that are of the
WMQM essage class.

12.2.5 Supplied WMQIPrimitiveNodes

The WMQIPrimitiveNodes are modeled as classes and are listed in the table below
with the appropriate stereotype from the UML Profile for EAL.

The table does not specify the attributes of these classes; the properties of these nodes
are specified in the IBM WebSphere MQ “Using the Control Center” manual (IBM
document number SC34-5602). Each of these properties may be represented as an
attribute of the appropriate type for each class.

The interface required to allow further message processing nodes to be constructed is
published by 1BM.!

UML for EAI Draft Adopted Specification January 2002

12

Table 12-3 Mapping of WMQI primitive nodes to classes with stereotypes from the UML profile for EAI

Class Parent
name Class Stereotype Constraint Description
WMQI WMQI Pubication Output terminal is a The Publication node filters and transmits the output
Publication PSService Operator QueuedPublication from a message flow to subscribers who have
Terminal. Input terminal | registered an interest in a particular set of topics.
is expect message type The Publication node must always be an output
WMQIMessage. node of a message flow and has no output terminals
of its own.
WMQI WMQI Primitive NA The PS Service node allows for the interception of publications after
PSService PrimitiveNode | Operator they have passed the subscription filters.
WMQIChec | WMQI Filter NA A Check node compares the format of a message arriving on its input
k PrimitiveNode terminal with its message-type specification.
WMQI WMQI Transformer NA The Compute node constructs an output message. The elements of the
Compute PrimitiveNode output message can be defined using an SQL expression, and can be
based on elements of both the input message and data from an
external database.
WMQI WMQI Primitive NA The Database node applies an SQL expression to an external database
Database PrimitiveNode | Operator table. Data from the message input to this node can be used in the
SQL expression.
WMQI WMQI Primitive NA A DataDelete node deletes one or more rows from atable in a
DataDelete DatabaseNode | Operator specified database. Data from the input message can be used as part of
the expression that determines which rows are deleted.
WMQI WMQI Primitive NA A Datalnsert node inserts a new row into a database table. Data from
Datal nsert Database Operator the input message can be included in the database insert expression.
WQMIData | WMQI Primitive NA A DataUpdate node updates one or more rows of data in a specified
Update Database Operator database. Data from the input message can be used as part of the
expression that determines which rows are updated.
WQMIWare | WMQI Primitive NA A Warehouse node saves a copy of the input message in a database
house Database Operator table by inserting it in a new row.
WQMI WMQI Transformer NA The Extract node derives an output message from an input message.
Extract Compute The output message comprises only those elements of the input
message that are specified for inclusion when configuring the Extract
node.
WQMIFilter | WMQI Filter NA A Filter node routes a message according to message content using a
PrimitiveNode filter expression specified in SQL. The filter expression can include
elements of the input message or message properties. It can also use
data held in an external database. The output terminal to which the
message is routed depends on whether the expression is evaluated to
true, false, or unknown.
WMQIInput | WMQI QueuedSource | NA Receives a WebSphere M Q message from a specified queue
PrimitiveNode

1. WebSphere M Q Programming Guide SC34-5603

January 2002

UML for EAI: WebSphere MQ Integrator Message Flows

12-7

12

Table 12-3 Mapping of WMQI primitive nodes to classes with stereotypes from the UML profile for EAI

WQMI WMQI QueuedSink NA Sends a WebSphere MQ message to the specified target queues
Output PrimitiveNode
WMQIReply | WMQIOutput | QueuedSource | NA Sends a reply message to the WebSphere MQ queue specified in the
message header.
WQMIFlow | WMQI Primitive NA The FlowOrder node enables you to specify the order in which each
Order PrimitiveNode | Operator message is propagated to each (of two) output terminals. The message
is only propagated to the second output terminal if propagation to the
first output terminal is successful.
WQMIReset | WMQI Transformer NA The ResetContentDescriptor node takes the bit stream of the input
Content PrimitiveNode message and reparses it using a different message template from the
Descriptor same or a different message dictionary. The node can reset any
combination of message domain, set, type, and format.
WMQITry WMQI Primitive NA The TryCatch node provides a special handler for exception
Catch PrimitiveNode | Operator processing. The input message is initially routed on the try terminal of
this node. If an exception is subsequently thrown by a downstream
node, it is caught by this node, which then routes the original message
to its catch terminal.
WMQI WMQI Primitive NA The Throw node provides a mechanism for throwing an exception
Throw PrimitiveNode | Operator within a message flow. The exception might be caught and processed
by a preceding TryCatch node within the message flow, or handled by
the M QInput node.
WMQI WMQI Aggregator NA The AggregateReply node holds related messages until either a
Aggregate PrimitiveNode complete set has arrived (according to a specified condition) or atime
Reply limit has elapsed.
12.2.6 The Role of the WMQI message-broker topology
A set of WMQI message brokers is interconnected and governed by the WMQI
Configuration Manager, which we represent by the class WMQIntegrator.
WMQIntegrator owns all executing WM QIMessageFlows, as shown in Figure 12-5.
The Configuration Manager deploys these to selected message brokers. The set of
WM QI message brokers also acts as a SubscriptionOperator, allowing subscriptions to
be added to, and removed from, the subscription table (see Table 12-4). The topology
is governed by the Configuration Manager. All WM QI Publication nodes that are owned
by message flows in the same broker topology share the same subscription table. (The
implementation optimizes the distribution of the subscription table.)
Table 12-4 WM QI ntegrator class definition table
Class Stereotype Constraint Description
WMQIntegrator | Subscription Input terminal is a The WMQI message broker topology when acting as a
Operator QueuedinputTerminal. Expects to | subscription operator.

receive messages in

WMQICommandM essage format.

Subscriptions are added, removed and updated on
WMQIntegrator by sending a message that conforms to
the WM QICommandMessage format to the WMQI
command queue.

12-8

UML for EAI Draft Adopted Specification

January 2002

12

<<SubscriptionOperator>>
WMQIntegrator

0..n., *fmessageFlows

<<CompoundOperator>>
WMQIMessageFlow

Figure 12-5 WMQIntegrator class diagram

January 2002 UML for EAI: WebSphere MQ Integrator Message Flows 12-9

12

12-10 UML for EAI Draft Adopted Specification January 2002

JavaMessage Service(JIMS) 13

The Java Message Service (IM S)1 is part of the 1.3 release of the J2EE™ platform
specification.? It specifies a point-to-point (PTP) domain and a publish-subscribe
(Pub/Sub) domain. The JMS entities of interest in modeling are destinations, message
producers and message consumers. These are summarized in the table:

JMS Parent PTP Domain Pub/Sub Domain
Destination Queue Topic

M essageProducer QueueSender TopicPublisher

M essageConsumer QueueReceiver, QueueBrowser TopicSubscriber

13.1 PTP Domain

January 2002

These entities are all defined in the EAI Integration metamodel, except that the
distinction between receivers and browsersis not made. A JMS QueueReceiver
receives a message destructively from a queue, whereas a IMS QueueBrowser leaves it
on the queue so that it may be read again.

A IMS client acting as a sender creates one or more JM'S QueueSender objects and
sends messages on them. These are modeled as a class IM SQueueSender with
stereotype QSource.

1.For the IM S 1.2 specification see http://java.sun.com/products/jms/
2.At the time of writing, J2EE 1.3 is il in draft. See http://java.sun.com/j2ee/

UML for EAI Draft Adopted Specification 13-1

13

13-2

<<QSource>>
JMS QueueSender

Figure 13-1 JMS QueueSender

A JMS client acting as a receiver creates one or more JM'S QueueReceiver or
QueueBrowser objects and listens on them. A JMS QueueReceiver or QueueBrowser
object may include a IMS message selector, which has the effect of alocal EAI filter.

In order to model this optional filtering behavior, QueueReceiver and QueueBrowser
are both modeled as <<CompoundOperator>> classes, each with a single queued input
terminal. The composition that defines them contains a class QDataln of stereotype
<<QSource>>. The class QDataln makes messages received at the input terminal
available to the IMS Message Selector (if there is one) but does not remove them from
the queue. The emit operation of the JM SMessageSel ector (a <<Stream>>) emits the
message from the stream, provided it passes the chosen filter condition, and passes it
on to the sink. The <<QSource>> QDataln and the stream both share the same queue
resource. This means that messages remain on the input queue unless they are
explicitly sent to the sink.

The difference between QueueReceiver and QueueBrowser lies in the behavior of the
stream. For QueueBrowser, the stream does not remove messages; it proceeds forward
through them, but they remain available for other receivers and browsers. For
QueueReceiver, the stream removes those messages that pass the filter condition of the
JM SM essageSel ector; the remaining messages are available for access by other
receivers and browsers.

UML for EAI Draft Adopted Specification January 2002

13

<<Qin>>
In

handle(content : IMSMessage)

January 2002

<<CompoundOperator>>
JMS QueueReceiver

¢

1
0.1
1 .
<<QSource>> <<Stream>> <<Sink>>
QDataln JMS Message Selector Sink
Figure 13-2 JMS QueueReceiver
<<Qin>>

n +in <<CompoundOperator>>

handle(content : IMSMessage)

JMS QueueBrowser

1

<<QSource>>
QDataln

¢

0.1

<<Stream>>

JMS Message Selector

Figure 13-3 JMS QueueBrowser

UML for EAI: PTP Domain

1

<<Sink>>
Sink

13-3

13

13.2 Pub/Sub Domain

A JMS client acting as a subscriber registers its interest in topics by creating one or
more JM'S TopicSubscriber objects and listening on them. To model this in the EAI
profile, we separate the creation of a IM S TopicSubscriber from the activity of

listening to the topic.

13-4

We model the ‘listener’ aspect as a class JM SSubscriberListener of stereotype Sink
that expects a IMSMessage as its input.

<<in>>
JMSInput

+in

handle(content : IMSMessage)

Figure 13-4 A JMSSubscriberListener expects incoming messages

<<Sink>>
JMSSubscriberListener

A JMS TopicSubscriber object refersto a IMS Topic object, and it may include aJMS

message selector. A JMS Topic may refer to several EAI topics.

<<SubscriptionTable>>
JMSinternalSubscriptionTable

0..n

JMS Topic Subscriber

<<in>>
JMSInput

Figure 13-5 Model for the content of the IM S subscription table

JMS Topic

<<Stream>>
JMS Message Selector

Creating a JMS subscriber object causes a subscription to be registered with the IMS

infrastructure. We model the element that registers the subscription as a

JM STopicSubscriberCreator of stereotype <<source>> that sends a subscription to the

JMS subscription infrastructure.

UML for EAI Draft Adopted Specification

January 2002

13

<<out>>

<<Source>>
+out JMS SubscriptionOut

JMSTopicSubscriberCreator

1
handle(content : IMSInternalSubscriptionFormat)

Figure 13-6 JM STopicSubscriberCreator

We model the subscription infrastructure via a class JM SSubscriptionl nfrastructure of
stereotype <<SubscriptionOperator>>. This expects a message of the arbitrary
‘M SInternal SubscriptionData’ format.

<<in>>

JMSSubscriptionin +in <<SubscriptionOperator>>

JMSSubscriptioninfrastructure

handle(content : JMSInternalSubscriptionData) | 1

1

+subscriptionTable

<<SubscriptionFormat>>

JMSiInternalSubscriptionData <<SubscriptionTable>>

JMSinternalSubscriptionTable

Figure 13-7 JM SSubscriptioninfrastructure

A JMS client acting as a publisher creates one or more JMS TopicPublisher objects
that identify topics via IMSTopic objects. The publisher produces messages and sends
them on one or more topics, using the associated JM S TopicPublisher object.

This has the effect of sending them to a PublicationOperator (Figure 13-9), which
forwards them to the appropriate EAl destinations; these can include JMS subscribers.

<<out>>
<<TopicPublisher>> +out JMSOutput
JMS TopicPublisher

handle(content : JIMSMessage)

(list of topics) ﬁ

Figure 13-8 A JMS TopicPublisher

January 2002 UML for EAI: Pub/Sub Domain 13-5

13

13-6

We model the existence of a publication mechanism via the class
JM SPublicationInfrastructure of stereotype <<PublicationOperator>>. Thisis not a

separable element of JMS, but is part of the IMS infrastructure. All

JM STopicPublishers for a given IMS environment should be connected to the same
JM SPublicationlnfrastructure.

<<in>>
JMSInput

<<PublicationOperator>>
JMSPublicationInfrastructure

—

<<out>>
JMSOutput

handle(content : JIM SMes sage)

+subscriptionTable 1

<<SubscriptionTable>>
JMSSubscriptionTable

handle(content : JIM SMessage)

Figure 13-9 JMSPublicationlnfrastructure

UML for EAI Draft Adopted Specification

January 2002

Language Metamodels 14

14.1 COBOL Metamodel

The COBOL metamodel is used by enterprise application programs to define data
structures (semantics), which represent connector interfaces.

The god of this COBOL model is to capture the information that would be found in
the Data Division. This model is intended to be used only as read-only to convert
COBOL datadivision into its XML equivalent. This model is not intended to be used
as a converter from XML code into a COBOL datadivision equivalent. The following
figures illustrate the classes that constitute the COBOL metamodel and show how the

classes relate to each other. Following the diagrams isa brief explanation of what each
class represents.

January 2002 UML for EAI Draft Adopted Specification 14-1

14

COBQLC assifier |, COBOLE! ement | ni tial Val ue
[t ypedef - Bool ean W nitval © Siring
[l nane : String +shar edTy pe [iival ueki nd : COBOLI ni tial Val uekind = string_val ue
[
0..*
0 .+ +initial
+t ypedEl enent tarray COBOLFi xedLengt hArr ay
.. = :
COBQ.Si npleType ‘ COBOLConposedType 0..1 maxtpper © I nteger
Bllusage : COBOLUsageVal ues +group
Bllpi ctureString : String 1..1
Blisynchroni zed : Bool ean = fal se 0. * L1 +arrayof
[I¥get Canoni cal Pi ct ur eSt ri ng() +el er‘mnt +el enent
COBOLE! enx;nt +dependi ngn +dependedUpon | COBOLVari abl eLengt hArr ay
COBOLAI phabeti cType +cont ai nedBy Wl cvel - Siring 11 0..% nlpper @ Int eger
T ustifyR ght : Bool ean = false o [

COBOLAI phaNuner i cType N /P 11 i
I ustifyR ght : Bool ean = fal se +r edefi nes 0..1 .
| 1.1 +source

COBQOL Sour ceText

[Psource : String
[fileNane : String

COBOLNunericType
[lsigned : Bool ean COBOLRedef i ni ngEl ement ‘
[signieading : Bool ean +contains |]
s i gnseparate : Bol ean 0..* |]
[iic ur rencySynbol : char

COBOL88E! enent
[inare : String 0..1 0..1
+endOf +startOf

Pdnumproc @ string
: Bool ean

1.1
+bel ongsTo

COBOL66H enent
PEnane : Sring

1
g
5
=
g
H
g
]
A
g
=
3
H

COBOLNuneri cEdi t edType

bl ankWhenZero : Bool ean
[currencySign @ String
[iideci mal : Bool ean

[
COBOLDBCSType
——————
1
COBOL(bj ect Ref erenceType

Tasshane : String

COBOLUni codeType

COBOLI nt er nal Fl oat Type ‘

i i
4‘ COBOLExt er nal Fl oat Type ‘
I]

]

COBOLAddr essi ngType
e ——

: string
: String
: Bool ean

Figure 14-1 COBOL Metamodel

14-2 UML for EAI Draft Adopted Specification January 2002

14

January 2002

TDLangd assi fier TDLangConposedType
(from TDLang) (from TDLang)

COBOLd assifier COBOLConposedType
(from cobol) (from cobol)

[t ypedef : Bool ean

[nane : String

TDLangH enent
(f rom TDLang)

s

COBOLE! erent

COBOLE! enent I ni ti al Val ue

(from cobol) (from cobol)

[@level : String [initval : string
[@redefined : Boolean = false| |[val uekind : COBOLInitial Val uekind = string_val ue

&/ nanme : String

Figure 14-2 TDLang to COBOL

<<enumeration>>
COBOLUsageVal ues

PEbinary
[Edbcs
[Zdoubl e
[2displ ay
loat
P&l ndex

Eobject Reference
[ElpackedDeci mal

PEpointer
PElprocedurePointer

<<enumer ati on>>
COBOLInitial Val ueKi nd

PEstring_value
P2l ow_val ue
fZhigh_value
[Ezero_value
[Equotes
fZnul |

fZall _literal

Figure 14-3 COBOL Stereotypes

UML for EAl: COBOL Metamodel

14-3

14

14.1.1 COBOL Metamodel Descriptions

14.1.1.1 COBOLG66Element
COBOL 66Element represents the COBOL 66 data level.

For example:

01 DATA-CGROUP PIC 9.

03 DATAl VALUE 1.

03 DATA2 VALUE 2.

03 DATA3 VALUE 3.
66 SUB- DATA RENAMES DATAl THROUGH DATAZ2.
66 AKA- DATA3 RENAMES DATA3.

In this example SUB-DATA refers to contents in DATA1 and DATA2.

14.1.1.2 COBOLS88Element

COBOL 88Element represents the COBOL 88 data level.

For example:

1 TESTX PIC .
88 TRUEX VALUE 'T" 't'. *(TRUEX has 2 val ues)
88 FALSEX VALUE 'F' 'f'. *(FALSEX has 2 val ues)

Where TRUEX and FALSEX are condition names for the TESTX variable if value
equals ('T" or 't") or ('F' or 'f"), respectively. So if TESTX = 'T' or 't' then TRUEX =
TRUE and FALSEX = FALSE; If TESTX ='F or 'f' then FALSEX = TRUE and
TRUEX = FALSE.

14.1.1.3 COBOLS88ElementValue

COBOL 88ElementValue represents the values specified by COBOL 88Element.

14.1.1.4 COBOLAddressingType

COBOLAddressingType is used for index values, pointer values, and procedure pointer
values.

14.1.1.5 COBOLAIphabeticType

COBOLAIphabeticType represents a picture string consisting of alphabetic characters.

14-4 UML for EAI Draft Adopted Specification January 2002

14

January 2002

14.1.1.6

14.1.1.7

14.1.1.8

14.1.1.9

14.1.1.10

141111

14.1.1.12

14.1.1.13

14.1.1.14

COBOLAIphaNumericEditedType

COBOLAIphaNumericEditedType represents a picture string consisting of either
alphabetic or alphanumeric type and at least one blank (B), zero (0), or slash (/).

COBOLAIphaNumericType

COBOLAlphaNumericType represents a picture string consisting of alphabetic and
numeric characters.

COBOLClassifier

COBOLClassifier represents all data types of the COBOL metamodel.
COBOLClassifier is the parent class of COBOL ComposedType and
COBOL SimpleType.

COBOLComposedType

COBOL ComposedType represents a nested declaration that contains additiona
elements. COBOL ComposedType has a single aggregation to include all the elements
that are part of this composition.

COBOLDBCSType

COBOLDBCSType represents double byte character strings whose code is represented
by 16 bits instead of 8 bits.

COBOLElement

COBOLElement represents data elements in the COBOL metamodel.

COBOLElementlnitial Value

COBOL Elementlnitial Value stores the value assigned to a COBOL Element at the time
storage is alocated for it.

COBOLExternalFloatType

COBOL External Float Type represents how COBOL floating points are displayed to the
user.

COBOLFixedLengthArray

COBOLFixedLengthArray represents an array declared as OCCURS N TIMES.

UML for EAI: COBOL Metamodel 14-5

14

14-6

14.1.1.15

14.1.1.16

14.1.1.17

14.1.1.18

14.1.1.19

14.1.1.20

14.1.1.21

14.1.1.22

14.1.1.23

COBOLInital ValueKind

COBOLInitalVValueKind is an enumeration of types supported in an initialized element.

COBOLInternal FloatType

COBOL Internal Float Type represents COBOL's internal float data type.

COBOLNumericEditedType

COBOL NumericEditedType represents formatted numeric values.
COBOLNumericEditedType values can be decorated with characters such as decimal
point (.), dollar sign ($), and arithmetic signs (+,-,* /).

COBOLNumericType

COBOLNumericType represents a numeric data number, including the implied decimal
point and operational sign. COBOLNumericType can represent binary, packed
decimal, and zoned decimal types.

COBOLODbjectReferenceType

COBOL ObjectReferenceType represents an object declared in COBOL as USAGE
OBJECT REFERENCE.

COBOL RedefiningElement

COBOL RedefiningElement represents an element declared with the REDEFINES
clause. COBOL RedefiningElement allows different data description entries to describe
the same computer storage area.

COBOLSmpleType

COBOLSimpleType is an abstract class that contains attributes shared by all simple
types in the COBOL metamodel.

COBOLSourceText

This class contains the entire source code (including comments) and its associated line
number.

COBOLUnicodeType

COBOLUnicodeType represents COBOL data declared in Unicode format.

UML for EAI Draft Adopted Specification January 2002

14

14.1.1.24 COBOLUsageValues

COBOLUsageValues is an enumeration of values supported in the USAGE clause.

14.1.1.25 COBOLVariableLengthArray

COBOLVariableL engthArray represents an array declared as OCCURS DEPENDING
ON.

14.2 PL/I Metamodel

The PL/I language metamodel is used by enterprise application programs to define data
structures (semantics), which represent connector interfaces.

This language model for PL/I attempts to describe PL/I declares that have the storage
class of either PARAMETER, STATIC or BASED. CONTROLLED, AUTOMATIC
and DEFINED are not supported.

In the PL/I languages, extents(that is string lengths, area sizes and array bounds) may,
in general, be declared as constants, as expressions to be evaluated at run-time, as
asterisks, or as defined via the REFER option; however, none of these choices are
valid for al storage classes.

Based variables whose extents are not constant and not defined via the REFER option
are excluded from this model, as are parameters whose extents are specified via
asterisks.

The INITIAL attribute (which is not valid for parameters in any case) will be ignored
by the model. The following figures illustrate the classes that constitute the PL/I
metamodel and show how the classes relate to each other. Following the diagramsis a
brief explanation of what each class represents.

January 2002 UML for EAI: PL/I Metamodel 14-7

14

PLI B enent I ni ti al Val ue

Wi nitialValue : String
Bval ueType : PLIIni tial Val ueType

PLI O assi fier 0.1 0..*

+sharedType +typedEl enent

| -

PLI Si npl eType ‘ ‘ PLI NanedType ‘ PLI ConposedType 11
| ! I | Jluni o : Boolean +gr oup +el ements +el ement
L1 A N PLIEl enent +arrayof 0..1 | PUATay
+type
L 0..1 +array ﬁﬁ
® PLIAas

|
+ref erredTo

0..
+initial
‘ +source

PLI Sour ceText

Wsource
i1 eNane

Sring
sring

+alias

‘ PLI Conput ati onal Type ‘ ‘ PLI NonConput ati onal Type ‘
I 1 I 1

PLI Fi xedBoundAr r ay

+contains | 1.

PLI Fi xedLboundAr ray

BB Bound : Integer
uBoundt oAl | ocate

+referredin

ModeVal ues

PLI Ari t hneti cType PLI StringType PLI Label Type
—

Sring

[PLI For mat Type |

i sSigned : Bool ean

PLI I nt eger Type PLI Ent ryType
preci sion © T nteger PLI PictureStringType W irited : @olean +referredin

Mlscale : Integer Mlpicturestring : String 0..
Bilisi gned : Bool ean 1.=

bi gEndian : Bool ean = true PLI Poi nter Type +‘c‘ont ai ns

PLI CodedSt ri ngType [——————1|[Puordinal val ue

PLI A oat Type [Stype : SringTypedl ves PLIFil eType Wnare : Siring
pase © Baseval Ues BBvarying : LengthType

Mval e : Integer
Mprecision : Integer

j eee : Bool ean = fal se
bi gEndian : Bool ean = true

PLI HboundAr r ay

I BoundtoAll ocate : String
uBound : Integer

+referredin
0..

PLI Var i abl eBoundAr r ay

[MBLboundToAl | ocate : Sring
lHboundToAl | ocate : Sring

PLI NamedSt ruct ur eType
Piluni on : Bool ean

PLI PackedType
[lprecision : Integer PLI Fi xedLengt hStri ng
Mscale : Integer Mlieng h : Integer

+struct

PLI Handl eType

[Mlstructure : PLINanedSt ruct ureType 11
PLI Pi ctureType
PLI Vari abl eLengt hSt ri n
ng 9 PLI O f set Type +referredin 1%
engthToAl ocate : Siring
Blbi gEndian : Bool ean = true

0..1

0..*
+referredin

PLI AreaType

PLI Fi xedLengt hAr ea
8 ength

Integer

+referredin

PLI Var i abl eLengt hAr ea
8! eng hToAll ocate

0..*

String

Figure 14-4 PL/I Metamodel

14-8 UML for EAI Draft Adopted Specification January 2002

14

January 2002

TDLangCl assi fi er
(from TDLang)

TDLangConposedType
(from TDLang)

TDLangEl ement

PLI O assifier
(fromPLI)

@/ nanme : String

PLI ConposedType
(fromPLI)

@union : Bool ean

(f rom TDLang)
PLI El enent PLI El enent I niti al Val ue
(fromPLI) (fromPLI)
ol evel : String @i nitialValue : String
o/ nanme : String||fgval ueType : PLIInitial Val ueType

Figure 14-5 TDLang to PL/I

<<enuner at i on>>

<<enuner at i on>>

<<enuner at i on>>

<<enuner at i on>>

ModeVal ues BaseVal ues Lengt hType StringTypeVal ues
o eal wbi nary wnonVarying i t
wconpl ex wdeci nal wvaryingz wichar acter
wvaryingBi gendi an =W dechar
wvaryinglittleEndi an =igr aphi c

<<enuner ati on>>
PLI I nitial Val ueType

2initial
ainitial Call
sinitialTo

Figure 14-6 PL/I Stereotypes

14.2.1 PL/I Metamodel Descriptions

142.1.1

14.2.1.2

PLIAlias

PLIAlias represents an alias defined for a collection of data attributes.

PLIAreaType

PL1AreaType represents an area variable that describes an area of storage reserved for
the allocation of a based variable.

UML for EAI: PL/I Metamodel

14-9

14

14-10

14.2.1.3

14.2.1.4

14.2.1.5

14.2.1.6

14.2.1.7

14.2.1.8

14.2.1.9

14.2.1.10

14.2.1.11

14.2.1.12

PLIArithmeticType

PL1ArithmeticType represents data types that can be represented as rational humbers.

PLIArray

PLIArray represents an n-dimensional collection of elements that have identical
attributes.

PLIBaseValues

Base Values is an enumeration of base values used by PLIFloatType.

PLIClassifier

PLIClassifier represents all data types of the PL/I metamodel.

PLICodedStringType

PL1CodedStringType represents a character string data item that can contain any of the
available set of characters.

PLIComposedType

PL1ComposedType is a collection of member elements that can be structure, unions, or
elementary variables and arrays. PLIComposedType has a single aggregation to
include all the elements that are a part of this composition.

PLIComputational Type

PL1Computational Type represents types used in computations to produce a desired
result. Arithmetic and string data types constitute computational data type.

PLIElement

PLI1Element represents data elements in the PL/I metamodel.

PLIElementInitial Value

PLIElementlnitial Value stores the value assigned to a PL1Element at the time storage is
allocated for it.

PLIENtryType

PLIEntryType represents an entry constant or the value of an entry variable.

UML for EAI Draft Adopted Specification January 2002

14

14.2.1.13 PLIFileType

PLIFileType represents the FILE attribute that specifies the associated file name or file
variable.

14.2.1.14 PLIFixedBoundArray

PLIFixedBoundArray represents a fixed size array.

14.2.1.15 PLIFixedLboundArray

PLIFixedLboundArray represents an array whose lower bound is fixed.

14.2.1.16 PLIFixedLengthArea

PLIFixedLengthArea represents a PLIAreaType whose area size is fixed.

14.2.1.17 PLIFixedLengthString

PLIFixedL engthString represents a PLICodedStringType whose string length is fixed.

14.2.1.18 PLIFloatType

PLIFloatType represents numbers stored in floating-point format.

14.2.1.19 PLIFormatType

PLIFormatType represents a format list is to be used in a FORMAT statement.

14.2.1.20 PLIHandleType

PLIHandleType represents a variable as a pointer to a structure type.

14.2.1.21 PLIHboundArray

PLIHboundArray represents an array whose upper bound is fixed.

14.2.1.22 PLlInitialValueType

PLIInitialValueType is an enumeration of initial value types used by
PLIElementlnitial Value.

January 2002 UML for EAI: PL/I Metamodel 14-11

14

14-12

14.2.1.23

14.2.1.24

14.2.1.25

14.2.1.26

14.2.1.27

14.2.1.28

14.2.1.29

14.2.1.30

14.2.1.31

14.2.1.32

PLIInteger Type

PL1IntegerType represents numbers stored in binary fixed-point format.

PLILabel Type

PLILabel Type represents a label constant or the value of a label variable.

PLILengthType

PLILengthType is an enumeration of length types supported by PLICodedStringType.

PLIModeValues

PLIModeValues is an enumeration specifying the mode used by PLIArithmeticType.

PLINamedStructureType

PLINamedStructureType represents a named structure. A structure is a collection of
member elements that can be structure, unions, or elementary variables and arrays.

PLINamedType

PLINamedType represents user-defined name types.

PLINonComputational Type

PLINonComputationa Type represents values used to control execution of a PL/I
program.

PLIOffsetType

PL10OffsetType represents an offset value relative to the locations of a base variable.

PLIOrdinal Type

PL1Ordinal Type represents a named set of ordered values. The values of
PLI1Ordinal Type are stored in PL1OrdinalValue.

PLIOrdinalValue

PL1OrdinalValue stores the values specified by PLI1Ordinal Type.

UML for EAI Draft Adopted Specification January 2002

14

January 2002

14.2.1.33

14.2.1.34

14.2.1.35

14.2.1.36

14.2.1.37

14.2.1.38

14.2.1.39

14.2.1.40

14.2.1.41

14.2.1.42

PLIPackedType

PL | PackedType represents numbers stored in packed-decimal format.

PLIPictureStringType

PLIPictureStringType represents a fixed-length character data item, with the additional
restriction that the data item can only contain characters from certain subsets of the
complete set of available characters.

PLIPictureType

PLIPictureType represents numeric data held in character form.

PLIPointer Type

PL | Pointer Type represents a pointer.

PLISmpleType

PLISimpleTypeis an abstract class that contains attributes shared by all ssimple typesin
the PL/I metamodel.

PLISourceText

This class contains the entire source code (including comments) and its associated line
number.

PLISringType

PL1StringType represents a sequence of contiguous characters, bit, widechars, or
graphics that are treated as a single data item.

PLIStringTypeValues

PLIStringTypeValues is an enumeration of types supported by PLICodedStringType.

PLIVariableBoundArray

PLIVariableBoundArray represents an array whose upper and lower bound are both
variable.

PLIVariableLengthArea

PL1VariableL engthArea represents a PLI AreaType whose area size is variable.

UML for EAI: PL/I Metamodel 14-13

14

14.2.1.43 PLIVariableLengthString

PLIVariablelL engthString represents a PL1CodedStringType whose string length is

variable.

14.3 C Metamodd

14-14

The C metamodel including C Main and User Types (i.e. user defined types) isa MOF
Class instance at the M2 level.

The C metamodel is used by enterprise application programs to define data structures,
that represent connector interfaces. The following figures illustrate the classes that

constitute the C metamodel and show how the classes relate to each other. Following
the diagrams is a brief explanation of what each class represents.

CSourceText

+S0Urce |source : String

1.1 |fileName : String

|
CPar anet er

0..* |paraneter

0.. 1. pehavi or al Feature

CBehavi or al Feature

CCl assifier |LYP® typedEl ement [crypedEl ement
1.1 0..~*
0..” I cstructureContents
/
cont ai ns
/\
cont ai ner
0..1
CDat at ype || CDeri ved CStructured Cstructural Feature
/\
CStruct CUni on CField

Figure 14-7 C Metamodel

UML for EAI Draft Adopted Specification

\
A\
/\
[\

CFuncti on

@ sVarArg : Bool ean

January 2002

14

January 2002

Figure 14-9 C Derivation

UML for EAI: C Metamodel

TDLangClassifier TDLangComposedType TDLangElement
(from TDLang) (from TDLang) (from TDLang)
CClassifier CStructured CTypedElement
(from C) (from C) (from C)
Figure 14-8 TDLang to C
CTypedEl enent
derives CDer i vabl eType
derives 1..1
0..1
0..1 CDerived CDat at ype CSt ruct ured CFuncti on
derived
CArray CPoi nt er CTypedef
di mension : |Integer

14-15

14

14-16

CNanedEl enent
nane : String

CCl assifier CStructural Feature CBehavi or al Feat ure

CPar anet er

Figure 14-10 C Names

<<dat at ype>>
String

<<dat at ype>>| <<enumeration>>
I nt eger Bool ean
ol rue
i al se

Figure 14-11 C Datatype - Model Types

UML for EAI Draft Adopted Specification

January 2002

14

(at at ype
(from Q)
7T A P\R
a ™~
/ A
AN
/ / \ “
l
‘ Cint egral ‘ ‘ CFl oat i ng ‘ ‘ CBitField ‘ ‘ Cvoi d ‘
1] I I 1
[ant | [ocnar | [coouble | | CFloat | | cLongDoubl e
I] I | I 1 | [|
[| [] [|] [|
‘ A

CUnsi gned! nt ‘ ‘ CLong ‘ ‘ CLonglLong ‘ ‘ Cshort ‘ ‘ CSi gnedChar ‘ ‘ CUnsi gnedChar ‘ ‘ CWhar
[
[

CUnsi gnedLong ‘ ‘ CUnsi gnedLonglLong ‘ ‘ CUnsi gnedShort
I

Figure 14-12 C User Types

14.3.1 C Metamodel Descriptions

14.3.1.1 CArray

CArray represents an ordered group of data objects. CArray refers to each object as an
element. All elements within an array have the same data type.

14.3.1.2 CBehavioralFeature

CBehavioral Feature represents dynamic characteristics of the ModelElement that
contains it. CBehavioralFeature is both a Feature and a Namespace.
CBehavioral Feature serves as the parent of CFunction.

January 2002 UML for EAI: C Metamodel 14-17

14

14-18

14.3.1.3

14.3.1.4

14.3.1.5

14.3.1.6

14.3.1.7

14.3.1.8

14.3.1.9

14.3.1.10

14.3.1.11

14.3.1.12

CClassifier

CClassifier represents al data types of the C metamodel. CClassifier is the parent
class of C Derived types.

CDatatype

CDatatype represents data types and native types.

CDerivableType

CDerivableType represents datatypes which can be derived from CDatatype.

CDerived

CDerived represents datatypes derived from CDatatypes.

CField

CField represents attributes defined in an instance of the C metamodel.

CFunction

CFunction represents functions defined in an instance of the C metamodel.

CParameter

CParameter provides a means of communication with operations and
CBehavioralFeature. A CParameter passes or communicates values of its defined type.

CPointer

CPointer represents a derived datatype declared as a pointer.

CSourceText

This class contains the entire source code (including comments) and its associated line
number.

CStruct

CsStruct represents a structure declared as type struct.

UML for EAI Draft Adopted Specification January 2002

14

14.3.1.13 CStructural Feature

CStructural Feature represents static characteristics of the ModelElement that contains
it. CStructuralFeature serves as the parent of CField.

14.3.1.14 CStructureContents

CStructureContents represent structured data types and structural features.

14.3.1.15 CStructured

CStructured is an abstract class that represents all structured data types of the C
metamodel.

14.3.1.16 CTypedef
CTypedef represents a derived datatype declared as type typedef.

14.3.1.17 CTypedElement

CTypedElement represents data elements in the C metamodel.

14.3.1.18 CUnion

CUnion represents a structure declared as type union.

14.4 C++ Metamodel

The C++ metamodel, based on the ANNOTATED C++ REFERENCE MANUAL book
(authors: Margaret A. Ellis, Bjarne Stoustrup), 1990, is a MOF Class instance at the
M2 level. The C++ metamodel consists of C++ Main, and Model Types. This
metamodel inherits from the C Main metamodel. The following figures illustrate the
classes that congtitute the C++ metamodel and show how the classes relate to each
other. Following the diagrams is a brief explanation of what each class represents.

January 2002 UML for EAI: C++ Metamodel 14-19

14

CDerived CStructured CBehavioralFeature CField CherivableType
(fomC) (fromC) (fromC) e e
class 0.r CPPClass S [-
wlisAbstract : Boolean Function
Supertype from)

wisVolatile : Boolean . -
1.1 | Eisibility : VisibilityKind| | “sVarArg : Boolean

[1.1 4\0__*

template subtype throws CStructureContents
|o.r (fomC) CPPMember
\wisStatic : Boolean
@isVolatile : Boolean
WisRegister : Boolean

CPPExtern
linkage : String CPPTemplate

specialization 9generalization thrownBy Blisibility : VisibilityKind
‘ 0. \Lo..* Lo
CPPReference CPPGeneralization CPPOperation
CPPConst P e PisStatic : Boolean
Bvisibility : VisibilityKind

wlisExtern : Boolean
wiisinline : Boolean
wiisVirtual : Boolean

SisVirtual : Boolean

wlisPure : Boolean CPPOperator
wvisibility : VisibilityKind [@isnline : Boolean
wlisCtor : Boolean Bvisibility : VisibilityKind
[BSisDtor : Boolean

Figure 14-13 CPP Metamodel

<<enumeration>>
VisibilityKind
E&public

EHprivate
BHprotected

Figure 14-14 CPP Model Types

14.4.1 C++ Metamodel Descriptions

14.4.1.1 CPPClass

CPPClass represents the C++ class. The only difference between a C structure and a
class is that structure members have public access by default and class members have
private access by default. Consequently, you can use the keywords class or struct to
define equivalent classes.

14-20 UML for EAI Draft Adopted Specification January 2002

14

January 2002

14.4.1.2

14.4.1.3

144.1.4

14.4.1.5

14.4.1.6

14.4.1.7

14.4.1.8

14.4.1.9

CPPConst

CPPConst represents data declared as a constant.

CPPExtern

CPPExtern represents a function declared in a C program that is called by the current
C++ program. Declaring a function with the keyword 'extern' flags the C++ compiler
not to generate an internal name for the function. As aresult, functions declared
extern may not be overloaded.

CPPGeneralization

CPPGeneralization represents the different types of generalizations available in a C++
class. Generalizations include associating a class with virtual inheritance.

CPPMember

CPPMember represents functions and variables that are prototyped and declared in a
class definition. CPPMember includes members that are declared with any of the
fundamental types, as well as other types, including pointer, reference, array types, and
user-defined types.

CPPOperation

CPPOperation represents C++ functions. CPPOperation is a specialization of
CFunction from the C Metamodel and provides additional features such as static
declaration.

CPPOperator

CPPOperator represents basic operators such as add, subtract, and equals. C++
programmers have the option to override CPPOperators.

CPPReference

CPPReference represents a reference to an object. References are denoted by an
ampersand (&) sign.

CPPTemplate

CPPTemplate represents a template which must define or declare one of the following:
A class
A function

A static member of atemplate class

UML for EAI: C++ Metamodel 14-21

14

14-22 UML for EAI Draft Adopted Specification January 2002

Non-normative Enterprise
Application InterfaceMetamodels A

The application-domain interface metamodel describes signatures for input and output
parameters and return types for enterprise application system domains. IBM's IMS
Transaction Message, IMS Message Format Service (MFS), and CICS Basic Mapping
Support (BMS) are examples of such metamodels. The payload of these interface
metamodels typically carries application data destined for a program of a specific
language. Therefore, it is important that these interface metamodels connect to the
language metamodels, as shown in Figure 7-7 on page 7-22 in Section 7.3.9, “Physical
Representation Model: Convergent Metamodel. The class in the interface metamodel
which represents the signature of a message, associates to a language-independent
interface class, TDLangElement, in order to be able to connect to any language
metamodel. From TDLangElement navigations can be done between the Type
Descriptor meta model and the language metamodel to perform type conversion, if
necessary.

A.1 IMSTransaction Message Metamodel

January 2002

IMS OTMA (Open Transaction Manager Access) is atransaction-based, connectionless
client/server protocol within an OS/390 sysplex environment. An IMS OTMA
transaction message consists of an OTMA prefix, plus message segments for input and
output requests. Both input and output message segments contain l1zz (i.e. length of the
segment and reserved field), and application data. Only the very first input message
segment will contain transaction code in front of the application data. IMS transaction
application programs can be written in a variety of languages, e.g. COBOL, PL/ I, C,
Java, etc. Therefore, the application data can be in any one of these languages.

IMS Transaction Message metamodel captures the metadata associated with sending
and receiving messages to and from IM S transaction applications. ApplicationData
class represents the payload message. Note that the payload message data can be both
input and output data parameters. The following figures illustrate the classes that

UML for EAI Draft Adopted Specification A-1

A-2

constitute the IMS Transaction Message metamodel and show how the classes relate to
each other. Following the diagrams is a brief explanation of what each class

represents.

| MBTr ansact i onMessage

<<enunerat i o>

OM¥ ef i xFor nat s

OMErefixFornat : M efixFornat s = ore nme
SandardFi d dsH ag : Bod ean nwo
L]
1.1
\) 1
+OIMAFr ef | Xt ai ner *S andar dF el dsGontai ner %Sagec‘bntalner
+OINAFY ef | xQponent . andiar o el dsConponent -HessageCnponent
$o..1 | 0.1 il..l
OMefix| | Sadardieds Applicati onlita HauecEkne
[ilength : TeBteridd (from Appl i cat i onDat a)
ERservecFidd : TvoBtefied . 1.1
mTrasaliafme: Variad elengt bR el d
1.1 \

{ The Transaction Qode field can be L5 o doytai ner
fromlto 8 bytesinlength. It's ‘
included only in input nessages. }

+Oont rol Dat aCont a

+Oont rol Cat aConponent

il..l

Gntro Data

Qntrol
Cata
appear s
inal
prefixes.

+H el dGnponent
‘ +3 at eDat aQnt ai ner | +User Dt ant ai ner ll..*
ner +Securi t yDat aGont al ner
Feld
+S at eCat aConponent +User Dit aQonponent
1 l+S«?3(:uri tyCat anpanent
. jo1 0.1
Satelata .
Securitybata WerData
{ Sate {
[D: ¥: . { WerData
appears in S@:;::rlty optionaly
the prefix {ondl appears In
preced ng Opti Y the prefix
the first tappea'he ;!” precedi ng
segnert of prefix the first
all Precedi ng segment of
messages the first al
} ;elgnent of nessages.
nessages. !
}
Figure A-1 IMS Transaction Message Metamodel

UML for EAI Draft Adopted Specification

TOLangH enent

January 2002

January 2002

[e i |

1.1
+Cont‘r ol Data +Secur i t‘ymt a +User I‘Data
+St at eDat a
+Cont r ol Dat a

+St at eDat a +SecurityData +User Dat a

1.1 1 J/O..l \LO..l
Cont rol Dat a S at eData Securi tyDat a User Data ‘
ArchitectureLevel : OneByteFiel d Length : TwoByteFiel d Length : TwoByteFiel d Length : TwoByteFiel d |

MessageType : TMessageType ServerState : TServerState SecurityFlag : TSecurityFl a UserData : Variabl eLengt hFi el d

ResponseFl ag : OneByt eFi el d

Cormi t Conf i rmati onFl ag : TCommi t Confi rmati onFla
CommandType : TCommandType

Processi ngFl ag : TProcessi ngFl ag

Tpi peNane : Ei ght Byt eFi el d

Chai nFlag : TChai nFl ag

PrefixFlag : TPrefixFlag

SendSequenceNunber : Four Byt eFi el d

SenseCode : TwoByt eFi el d
ReasonCode : TwoByteFi el d
Recover abl eSequenceNunber :
Segnent SequenceNunber
Reserved : TwoByt eFiel d

Four Byt eFi el d
TwoByt eFi el d

Synchr oni zat i onFl ag : TSynchr oni zat i onFl ag
Synchr oni zat i onLevel : TSynchroni zati onLevel
Reserved : OneByt eFi el d

MapName © Ei ght Byt eFi el d

Server Token : Si xt eenByt eFi el d

Correl ator Token : SixteenByteFi el d
ContextID: SixteenByteField
DestinationOverride : EightByteField

Server User Dat aLength : TwoByt eFi el d

Server User Data : Vari abl eLengt hFi el d

Lengt hOf Secur i tyFi el ds : CngeByleFl el
UtokenLength : OneByt eFi el d
UtokenType : eByteFi el d

Utoken : Vari abl eLengt hFiel d
User | DLength : OneByt eFi el d
User | DType : neByteFi el d

UserI D : Vari abl eLengt hFi el d
Profilelength : OneByteField
ProfileType : OneByteField

Profile : Variabl eLengt hFi el d

Figure A-2

IMS Transaction Message Prefix

<<enunerati on>>

<<enunerati on>>

<<enuner ati on>>

TMessageType TCommi tConfirmationFl ag TCommandType
BEData : String BEConmitted : String EEClientBid : String
BETransaction : String BEAborted : String E8server Avail able : String
EResponse String E5CBresynch String
EEConmand String E8suspendProcessi ngFor Al | Tpi pes String
E8Conmi t Confirmation String BEResuneProcessi ngFor Al | Tpi pes String

EEsuspendl nput For Tpi pe
BEResunel nput For Tpi pe

String
String

EBESRVresynch String
BEREQresynch String
BEREPr esynch String
EETBresynch @ String

<<enuner ati on>>
TProcessi ngFl ag

<<enuner ati on>>

TChai nFl ag

<<enuner ati on>>

TPrefi xFl ag

BESynchroni zedTpi pe String BEFi rstinChain String

BEAsynchr onousQut put String BEM ddl el nChain String

BEEr r or MessageFol | ows String BELast | nChai n String
BEDi scardChain : String

BEstateData : String
BESecurityData : String
BHUserData : String

BEApplicationData : String

Figure A-3

OTMA Prefix - Defined

Types

<<enumer ati on>>

TServerState

<<enumer ati on>>

TSynchr oni zati onFl ag

<<enumer ati on>>

TSynchr oni zati onLevel

Conversational State : String
ResponseMode : String

Commi t ThenSend :
SendThenCommi t

String
String

None : String
Confirm: String
SYNCPT : String

Figure A-4

OTMA Prefix - State Data Defined Types

UML for EAI: IMSTransaction Message Metamodel

A-3

<<enunerati on>>

TSecurityFl ag

NoSecurity : String
Check : String

Full : String

Figure A-5 OTMA Prefix - Security Data Defined Types

<<primtive>> <<primtive>>

OneByt eField Ei ght Byt eFi el d
<<primtive>> <<primtive>>

TwoByt eFi el d Si xt eenByt eFi el d
<<primtive>> <<primtive>>

Four Byt eFi el d Vari abl eLengt hFi el d

<<primtive>>

Si xByt eFi el d

Figure A-6 IMS Messages Primitive Types

A.1.2 IMS Transaction Message Metamodel Descriptions

ApplicationData

The application data class contains all the message data except for LL, ZZ, and the
transaction code. ApplicationData contains the signature of an IMS transaction
message, which can include inputs, output, and return types. ApplicationData
associates with TDLangElement, which provides the linkage to the language specific
physical representation of the data that an ApplicationData represents.

Note — This model does not capture the notion of message segments. When using this
model you have to bear in mind whether the system you are using has any limitations
such as a maximum segment size. IMS "gateway" (via OTMA or SNA) must support
the capability of breaking the "application data" into IMS message segments.

For instance, if you are sending this XML message directly to the IMS message queue
and if the message queue has a 32k limit, then you have to take your XML message
and break it up into 32k chunks. The application on IMS will then have to gather up
the 32k chunks one by one. IMS new applications that receive XML documents
directly, must be capable of receiving XML documents in multiple segments.

UML for EAI Draft Adopted Specification January 2002

January 2002

For ACK or NAK messages, there is no application data included in the message field.

Each datafield, defined in a copybook for the application data, will be associated with
type descriptor for data types.

ControlData

ControlData is message-control information. It includes the transaction-pipe name,
message type, sequence numbers, flags and indicators.

Control Data has the following private attributes:

UML for EAI: IMSTransaction Message Metamodel

ArchitectureLevel is an OneByteField.

Specifies the OTMA architecture level. The client specifies an architecture level,
and the server indicates in the response message which architecture level it is using.
The architecture levels used by a client and a server must match.

With IMS Version 6, the only valid value is X'01'. It is mandatory for all messages.
M essageType is TmessageType.

Specifies the message type. Every OTMA message must specify a value for the
message type. The vaues are not mutually exclusive. For example, when the
server sends an ACK message to a client-submitted transaction, both the transaction
and response flags are set.

ResponseFlag is OneByteField.

Specifies either that the message is a response message or that a response is
requested.

Acknowledgements to transactions include attributes (for that transaction) in the
application-data section of the message prefix only if the transaction specifies
Extended Response Requested.

CommitConfirmationFlag is TcommitConfirmationFlag.

Specifies the success of a commit request. Sent by the server to the client in a
commit-confirmation message. These messages are only applicable for send-then-
commit transactions, and are not affected by the synchronization-level flag in the
state-data section of the message prefix.

CommandType is TcommandType.

Specifies the OTMA protocol command type.

IMS commands are specified in the application-data section of the message.
ProcessingFlag is TprocessingFlag.

Specifies options by which a client or a server can control message processing.

TpipeName is EightByteField.

A-6

Specifies the transaction-pipe name. For IMS, this name is used to override the
LTERM name on the I/O PCB. Thisfield is applicable for al transaction, data, and
commit-confirmation message types. It is also applicable for certain response and
command message types.

ChainFlag is TchainFlag.

Specifies how many segments are in the message. This flag is applicable to
transaction and data message types, and it is mandatory for multi-segment

messages.
PrefixFlag is TprefixFlag.

Specifies the sections of the message prefix that are attached to the OTM A message.
Every message must have the message-control information section, but any
combination of other sections can be sent with an OTMA message.

SendSequenceNumber is FourByteField.

Specifies the sequence number for a transaction pipe. This sequence number is
updated by the client and server when sending message or transactions.

Recommendation: Increment the number separately for each transaction pipe.

This number can also be used to match an ACK or NAK message with the specific
message being acknowledged.

SenseCode is TwoByteField.
Specifies the sense code that accompanies a NAK message.

ReasonCode is TwoByteField.

Specifies the reason code that accompanies a NAK message. This code can further
qualify a sense code.

RecoverableSequenceNumber is FourByteField.

Specifies the recoverabl e sequence number for atransaction pipe. Incremented each
time arecoverable message is sent using a synchronized transaction pipe. Both the
client and the server increment their recoverable send-sequence humbers and
maintain them separately from the send-sequence number.

SegmentSequenceNumber is TwoByteField.

Specifies the sequence number for a segment of a multi-segment message. This
number must be updated for each segment, because messages are not necessarily
delivered sequentially by XCF.

This number must have a value of 0 (zero) if the message has only one segment.

Reserved is a TwoByteField.

UML for EAI Draft Adopted Specification January 2002

| MSTransactionMessage

IM STransactionMessage is the base class of the IMS transaction message metamodel
which includes the following IMS messages scenarios:

® |IMS OTMA messages with the OTMA prefix
® IMS OTMA messages without the OTMA prefix
® |MS basic messages to be sent to the application program directly

OTMAPTrefix

An IMS OTMA prefix can appear either before all message segments, or only before
the first segment of the message.

However, the OTMA prefix is optional. If it is not specified, the IMS gateway will
build a default one for the request.

OTMAPrefixFormats

OTMAPrefixFormats has the following two types:
® Format "one": a prefix appears before all message segments.
®* Format "two": a prefix appears only before the first message segment.

SecurityData
SecurityData includes the user 1D, user token, and security flags.

The security-data section is mandatory for every transaction, and can be present for
OTMA command messages.

SecurityData has the following private attributes:
® Length is TwoByteField.

Specifies the length of the security data section of the message prefix, including the
length field.

® SecurityFlag is TsecurityFlag.

Specifies the type of security checking to be performed. It is assumed that the user
ID and password are already verified.

® | engthOfSecurityFields is OneByteField.

Specifies the length of the security datafields: User ID, Profile, and Utoken. These
three fields can appear in any order, or they can be omitted. Each has the following
structure: Length field, then Field type, then Datafield. The actual length of the
User ID or Profile should not be less than the value specified for the length of each
field.

Length can be 0.

January 2002 UML for EAI: IMSTransaction Message Metamodel A-7

A-8

® UtokenLength is OneByteField.

Specifies the length of the user token. Length does not include length field itself.
® UtokenType is OneByteField.

Specifies that this field contains a user token. (Value X'00").
® Utoken is VariableLengthField.

Specifies the user token. The user ID and profile are used to create the user token.
The user token is passed along to the IMS dependent region.

If the client has already calledFACF, it should pass the Utoken with field type X'00'
so that RACF is not called again. Utoken is a variable length, from 1 to 80 bytes.

® UserlDLength is OneByteField.

Specifies the length of the user ID. Length does not include length field itself.
® UserlDType is OneByteField.

Specifies that this field contains a user ID. (Value X'02").
® UserID is VariableLengthField.

Specifies the actual user ID. UserID is a variable length, from 1 to 10 bytes.

® ProfileLength is OneByteField.

Specifies the length of the profile. Length does not include length field itself.
® ProfileType is OneByteField.

Specifies that this field contains a profile. (Value X'03).
* Profile is VariableLengthField.

Specifies the system authorization facility (SAF) profile. For RACF, this is the
group name. Profile is a variable length, from 1 to 10 bytes.

StandardFields

StandardFields consist of LL, ZZ and transaction code. Transaction code appears with
first segment of input messages only, and it comes after LL (length) and ZZ (reserved
field). The transaction code field can be from 1 to 8 bytes in length.

StandardFields are not included in the following scenarios:
® Sending XML documents directly to the IMS transaction application programs
® ACK or NAK messages to IMS applications

SateData

StateData includes a destination override, map name, synchronization level, commit
mode, tokens and server state.

UML for EAI Draft Adopted Specification January 2002

January 2002

StateData has the following private attributes:
® | ength is a of type TwoByteField.

® ServerState is of type ServerState. It specifies the mode in which the transaction is
running.

® SynchronizationFlag is of type TsynchronizationFlag. It specifies the commit mode
of the transaction. This flag controls and synchronizes the flow of data between the
client and server.

® SynchronizationLevel is of type TsynchronizationLevel. It specifies the transaction
synchronization level, the way in which the client and server transaction program
(for example, IMS application program) interacts with program output messages.

The default is Confirm. IMS always requests a response when sending commit-then-
send output to a client.

® Reserved is OneByteField.
®* MapName is EightByteField.

Specifies the formatting map used by the server to map output data streams (for
example, 3270 data streams). Although OTMA does not provide MFS support, you
can use the map name to define the output data stream. The name is an 8-byte
MOD name that is placed in the /O PCB. IMS replaces thisfield in the prefix with
the map name in the I/O PCB when the message is inserted. The map name is
optional.

® ServerToken is SixteenByteField.

Specifies the server name. The Server Token must be returned by the client to the
server on response messages (ACKsor NAKs). For conversational transactions, the
Server Token must also be returned by the client on subsequent conversational
input.

® CorrelatorToken is SixteenByteField.

Specifies a client token to correlate input with output. Thistoken isoptional and is
not used by the server.

Recommendation: Clients should use this token to help manage their transactions.
® ContextlD is SixteenByteField.

Specifies the RRS/MV S token that is used with SYNCLVL=02 and protected
conversations.

® DestinationOverride is EightByteField.

Specifies an LTERM name used to override the LTERM name in the IMS
application program's I/0O PCB. This override is used if the client does not want to
override the LTERM name in the 1/O PCB with the transaction-pipe name.

This optional override is not used if it begins with a blank.
® ServerUserDatal ength is TwoByteField.

UML for EAI: IMSTransaction Message Metamodel A-9

Specifies the length of the server user data, if any. The maximum length of the
server use data is 256 bytes.

® ServerUserDatais VariableLengthField.

Specifies any data needed by the server. If included in a transaction message by the
client, it is returned by the server in the output data messages.

TChainFlag

TchainFlag has the following private attributes:

® FirstinChain (value X'80") specifies the first segment in a chain of segments, which
comprise a multi-segment message. Subsequent segments of the message only need
the message-control information section of the message prefix. Other applicable
prefix segments (for example, those specified by the client on the transaction
message) are sent only with the first segment (with the first-in-chain flag set).

If the OTMA message has only one segment, the last-in-chain flag should also be
set.

® MiddlelnChain (value X'40") specifies a segment that is neither first nor last in a
chain of segments that comprise a multi-segment message. These segments only
need the message-control information section of the message prefix.

Restriction: Because the client and server tokens are in the state-data section of the
message prefix, they cannot be used to correlate and combine segmented messages.
The transaction-pipe name and send-sequence numbers can be used for this
purpose; they are in the message-control information section of the message prefix
for each segment.

® LastInChain (value X'20") specifies the last segment of a multi-segment message.

® DiscardChain (value X'10") specifies that the entire chain of a multi-segment
message is to be discarded. The last-in-chain flag must also be set.

TCommandType

TcommandType has the following private attributes:

® ClientBid (value X'04") specifies the first message a client sends to the OTMA
server. This command must also set the response-requested flag and the security
flag in the message-control information section of the message prefix. The
appropriate stat-data fields (for example, Member Name) must also be set.

® The security-data prefix must specify a Utoken field so the OTMA server can
validate the client's authority to act as an OTMA client.

Because the server can respond to the client-bid request, this message should not be
sent until the client is ready to start accepting data messages.

A-10 UML for EAI Draft Adopted Specification January 2002

January 2002

ServerAvailable (value X'08") specifiesthe first message the server sendsto aclient.
It is sent when the server has connected to the XCF group before the client has
connected. The client replies to the server Available message with a client-bid
reguest. The appropriate state data fields (for example, Member Name) must also be
set.

If the client connects first, it is notified by X CF when the server connects, and
begins processing with a client-bid request.

CBresynch (value X'0C") specifies a client-bid message with a request by the client
for resynchronization. This command is optional and causes the server to send an
SRVresynch message to the client. The CBresynch command is the first message
that aclient sends to the OTMA server when it attempts to resynchronize with IMS
and existing synchronized Tpipes exist for the client. Other than the CBresynch
message indicator in the message prefix, the information required for the message
prefix should be identical to the client-bid command.

If IMS receives a client-bid request for them client and IMS is aware of existing
synchronized Tpipes, IMS issues informational message DFS2394I to the MTO.
IMS resets the recoverable send- or receive- sequence numbers to 0 (zero) for all
the synchronized Tpipes.

SuspendProcessingForAllTpipes (value X'14") specifies that the server is suspending
all message activity with the client. All subsequent data input receives a NAK
message from the server. Similarly, the client should send a NAK message for any
subsequent server messages. If a client wishes to suspend processing for aparticular
transaction pipe, it must submit a /STOP TPIPE command as an OTMA message.

ResumeProcessingForAll Tpipes (value X'18") specifies that the server is resuming
message activity with the client. If a client wishes to resume processing for a
particular transaction pipe that has been stopped, it must submit a /START TPIPE
command as an OTMA message.

Suspendl nputForTpipe (value X'1C") specifies that the server is overloaded and is
temporarily suspending input for the transaction pipe. All subsequent client input
receive NAK messages for the transaction pipe specified in the message-control
information section of the message prefix. A response is not requested for this
command.

This architected command is also sent by IMS when the master terminal operator
enters a /STOP TPIPE command.

Resumel nputForTpipe (value X'20") specifies that the server is ready to resume
client input following an earlier Suspend Input for Tpipe command. A responseis
not requested for this command.

This command is also sent by IMS when the IMS master terminal operator issues a
/START TPIPE command.

SRVresynch (value X'2C") specifies the server's response to a client's CBresynch
command. This command specifies the states of synchronized transaction pipes
within the server (the send- and receive-sequence numbers).

UML for EAI: IMSTransaction Message Metamodel A-11

This command is sent as a single message (with single or multiple segments), and
an ACK is reguested.

® REQresynch (value X'30") specifies the send-sequence number and the receive
sequence for a particular Tpipe. REQresynch is send from IMS to a client.

® REPresynch (value X'34') specifiesthe client's desired state information for a Tpipe.
A client sends the REPresynch command to IMS in response to the REQresynch
command received from IMS.

® TBresynch (value X'38") specifies that the client is ready to receive the REQresynch
command from IMS.

TCommitConfirmationFlag

TcommitConfirmationFlag has the following private attributes:
® Committed (value X'80") specifies that the server committed successfully.
® Aborted (value X'40") specifies that the server aborted the commit.

TMessageType

TmessageType has the following private attributes:

® Data (value X'80") specifies server output data sent to the client. If the client
specifies synchronization level Confirm in the state-data section of the message
prefix, the server also sets Response Requested for the response flag. If the client
does not specify a synchronization level, the server uses the default, Confirm.

® Transaction (value X'40") specifies client input data to the server.

® Response (value X'20") specifiesthat the message is a response message, and is only
set if the message for which this message is the response specified Response
Requested for the response flag. If this flag is set, the response flag specifies either
ACK or NAK.

® The send-sequence numbers must match for the original data message and the
response message. Chained transaction input messages to the server must always
reguest a response before the next transaction (for a particular transaction pipe) is
sent.

® Command (value X'10") specifies an OTMA protocol command. OTMA commands
must always specify Response Requested for the Response flag.

® CommitConfirmation (value X'08'") specifies that commit is complete. This is sent
by the server when a sync point has completed, and is only applicable for send-
then-commit transactions. The commit-confirmation flag is also set.

TPrefixFlag

TPrefixFlag has the following attributes:

A-12 UML for EAI Draft Adopted Specification January 2002

January 2002

StateData (value X'80") specifies that the message includes the state-data section of
the message prefix.

SecurityData (value X'40") specifies that the message includes the security-data
section of the message prefix.

UserData (value X'20") specifies that the message includes the user-data section of
the message prefix.

ApplicationData (value X'10") specifies that the message includes the application-
data section of the message prefix.

TProcessingFlag

TprocessingFlag has the following private attributes:

SynchronizedTpipe (value X'40") specifies that the transaction pipe is to be
synchronized. Allows the client to resynchronize a transaction pipe if thereis a
failure. Only valid for commit-then-send transactions.

This flag causes input and output sequence numbers to be maintained for the
transaction pipe. All transactions routed through the transaction pipe must specify
this flag consistently (either on or off).

AsynchronousOutput (value X'20") specifies that the server is sending unsolicited
queued output to the client. This can occur when IMS inserts a message to an
alternate PCB. Certain IMS commands, when submitted as commit-then-send, can
cause IMS to send the output to a client with this flag set. In this case, the OTMA
prefixes contain no identifying information that the client can use to correlate the
output to the originating command message. These command output data messages
simply identify the transaction-pipe name. IMS can aso send some unsolicited
error messages with only the transaction-pipe name.

ErrorM essageFollows (value X'10") specifies that an error message follows this
message. This flag is set for NAK messages from the server. An additional error
message is then sent to the client.

The asynchronous-output flag is not set in the error data message, because the
output is not generated by an IMS application.

TResponseFlag

TResponseFlag has the following private attributes:

ACK (value X'80") specifies a positive acknowledgement.
NAK (value X'40") specifies a negative acknowledgement.

ResponseRequested (value X'20") specifies that a response is requested for this
message. This can be set for message types of Data, Transaction, or Command.

When sending send-then-commit IMS command output, IM S does not request an
ACK regardless of the synchronization level.

UML for EAI: IMSTransaction Message Metamodel A-13

A-14

ExtendedResponseRequested (value X'10") specifies that an extended response is
requested for this message. Can be set by a client only for transactions (or for
transactions that specify an IMS command instead of a transaction code).

If this flag is set for atransaction, IMS returns the architected attributes for that
transaction in the application-data section of the ACK message.

If this flag is set for a command, IMS returns the architected attributes in the
application-data section of the ACK message. This flag can be set for the IMS
commands /DISPLAY TRANSACTION and /DISPLAY TRANSACTION ALL.

TSecurityFlag

TSecurityFlag has the following attributes:

NoSecurity (value X'N") specifies that no security checking is to be done.

Check (value X'C') specifies that transaction and command security checking is to
be performed.

Full (value X'F") specifies that transaction, command, and MPP region security
checking is to be performed.

TServer Sate

TServerState has the following private attributes:

Conversational State (value X'80") specifies a conversational mode transaction. The
server sets this state when processing a conversational-mode transaction. This state
is also set by the client when sending subsequent IM S conversational data messages
to IMS.

ResponseM ode (value X'40") specifies a response-mode transaction. Set by the
server when processing a response-mode transaction.

This state has little significance for an OTMA server, because OTMA does not use
sessions or terminals.

TSynchronizationFlag

TSynchronizationFlag has the following private attributes:

CommitThenSend (value X'40") specifies a commit-then-send transaction. The
server commits output before sending it; for example, IMS inserts the output to the
IMS message queue.

SendThenCommit (value X'20") specifies a send-then-commit transaction. The
server sends output to the client before committing it.

TSynchronizationLevel

TSynchronizationLevel has the following private attributes:

UML for EAI Draft Adopted Specification January 2002

® None (value X'00") specifies that no synchronization is requested. The server
application program does not request an ACK message when it sends output to a
client.

® Noneisonly vaid for send-then-commit transactions.

® Confirm (value X'01") specifies that synchronization is requested. The server sends
transaction output with the response flag set to Response Requested in the message-
control information section of the message prefix.

Confirm can be used for either commit-then-send or send-then-commit transactions.

® SYNCPT (value X'02") specifies that the programs participate in coordinated
commit processing on resources updated during theconversion under the RRS/MV S
recovery platform. A conversation with this level is also called a protected
conversation.

UserData

UserData includes any specia information needed by the client. The user-data section
is variable length and follows the security-data section of the message prefix. It can
contain any data.

UserData has the following attributes:
® | ength is a TwoByteField.

Specifies the length of the user-data section of the message prefix, including the
length field. The maximum length of the user data is 1024 bytes.

® UserDatais a VariableLengthField.

Specifies the optional user data. This data is managed by the client, and can be
created and updated using the DFSYDRUO exit routine. The server returns this
section unchanged to the client as the first segment of any output messages.

A2 IMSMFSMetamodel

January 2002

Today there are many IMS application programs which run crucia business processes.
Many of these IMS programs are based on IMS's message format service (MFS). MFS
is afacility of the IMS Transaction Manager environment that formats messages to and
from terminal devices. As these business processes are updated to exploit new
business-to-business (B2B) technologies, there is a requirement for an easy and
effective method of upgrading MFS applications with e-business capabilities. What is
needed is the ability to send and receive IM S transaction messages, including MFS
messages, as XML documents.

The MFS language utility processes MFS source, generates IMS control blocks, in a
proprietary format, known as Message Input/Output Descriptors (MID/MOD) and
Device Input/Output Format (DIF/DOF), and places them in an IMS Format Library.
MFS supports several terminal types, including 3270s and VTAM LU1s using SCS, it
was designed so that the IM'S application programs using MFS do not themselves have
to deal with any device-specific characteristics in the input or output messages.

UML for EAI: IMSMFSMetamodel A-15

A-16

Because MFS provides headers, page humbers, operator instructions, and other literals
to the device, the application's input and output messages can be built without having
to pass these format literals. MFS identifies all fields in the message response and
formats these responses according to the specific device type that is the target for the
response. This allows application programmers to concentrate their efforts on the
business logic of the program.

Because the IM S application program I/O data structures do not fully describe the end
user interaction with these existing MFS applications, away is needed to deal with the
information that is buried within various MFS statements. Important examples of this
kind of information are 3270 screen attribute bytes and PFKey input data. PFKeys can
have significant semantic meaning for an application; it can even be used to initiate
transactions. Many IMS application programs are passed PFKey data in input
messages, but no application logic is required to recognize that a certain PFkey was
pressed and therefore must be inserted into the input message. This is because, at
runtime, it is the MFS online processing and not the application that places the literal
that corresponds to the PFKey pressed into the appropriate field in the input message.

The IMS MFS metamodel, modeled from the MFS source, captures certain services or
functions currently provided by MFS. Examples of such services or functions are PF
keys, logical pages, predefined literals, and attribute bytes.

Note that the MFS metamodel supports the following device types:
® 3270 and 3270-An

® 3270P

The following device types are not supported:

® 2740 or 2741

¢ 3600 or 4700

® FIN

®* FIDS, FIDS3, FID$4 or FIDS7

®* FIJP, FIPB or FIFP

® Scs1

® SCSs2

* DPM-An

* DPM-Bn

The MFS metamodel does not support the following MFS statements:
* EJCT

* PD

* PDB

* PDBEND

® PPAGE (partial support, see DFLD)

UML for EAI Draft Adopted Specification January 2002

® PRINT
* RCD

®* SPACE
®* TITLE

MFSM essageField identifies the signature of an IMS FM S message, which can include
both inputs and outputs. MFSM essageField associates with TDLangElement, which
provides the linkage to the language and platform specific representations of the data.
The following figuresillustrate the classes that constitute the IMS MFS metamodel and
show how the classes relate to each other. Following the diagrams is a brief
explanation of what each class represents.

MFSStatement

‘ MFSMessageDescriptor MFSDeviceDescriptor MFSTable MFSIfCondition

[]
|| MFSDeviceDivision
e ——{==]

Figure A-7 MFS Inheritance View

January 2002 UML for EAI: IMSMFSMetamodel A-17

A-18

0.1

0..1. | MFSMess ageDescriptor
+nextMessage ’

0..1+nextMessage

1..*| +logicalPages

MFSLogicalPage

+deviceDescriptor

MFS DeviceDescriptor

¢

+segments |, *

MFSSegment

+messageFields, |1..*

MFS Mess ageField

+passwordFields

+languageElement 1.1

TDLangElement
(from TDLang)

Figure A-8

MFSCursorType

MFS Relationship View

UML for EAI Draft Adopted Specification

+devices,|, 1..*
MFSDeviceType +division MFSDeviceDivision
’ 1.1
+devicePages |, 1..*
0.* MFSDevicePage
+devicePages ’
0..1 +pen
+card |0..1
MFSPassword
+systemMessage
0..*
+devceFields |1 *
0..* MES DeviceField +operatorControl MFSTable
+deviceFields 0.1
11 +deviceField
+prompt 0.1)
+conditions 1.*
+deviceField | 0..1 MFS HiCondition

MFSFunctionKey Type

January 2002

MFSExt endedAt tri but eType MFSAttri buteType MFSCondi ti onType
color : MFSCol or Type attributeBytes : Bool ean | eftOperand : String
extendedGr aphi cCharacterSet : String| |detectable : M-SDetectabilityType rightOperand : String
highlighting : MSHighlightingType intensity : MFSIntensityType operator : M-SOperator Type
m xed : Bool ean nodi fied : Bool ean
outlining : MSQutliningType numeric : Bool ean
progr amdsymol : St ri ng pr ott ected : Bool ean MFSMessageFi el d
validation : M-SvalidationType strip : Bool ean attributes - Bool ean

exit : MSExitType

MFSDevi ceFi el d MFSMessageDescr i pt or ?T: Ien:deg[A':; ::gbut es o it
attributes :-M:SAnributeType) fill : String justify : MFSJustifyType
ext endedAj(tributes : MFSExtendedAttributeType| |ignoreSource : Bool ean length : MFSLengt hType
length @ int option : int value : String
pen : String o pagi ng : Bool ean
position : !\/FSP05| tionType type : MFSDescriptor Type
value : String MFSSegment

MESCur sor Type exit : MFSExitType
i raphic : Bool ean

MFSFeat ur eType MFSDevi ceDi vi si on row: int grap
card : Bool ean type : MrSDescriptorType colum : int
dat aEntryKeyboard : Boolean| [conpression : M-SConpressionType <<enumer ationss
functionKeys : Bool ean - P
group : int MFSExi t Type fl\'/FSCdofTPr essi onType
ignore : Bool ean MFSFunct i onKeyType nunber : int I xe
pen : Bool ean <<0..*>> functionlist : String| |vector : int zlhlon
<<enuner at i on>> <<enuner ation>> MFSDevi ceType

MFSCol or Type MFSQOper at or Type dsca : String . MFSPageType
bl ue equal features : M-SFeatureType nunber 2 nj(.
red not Equal page : MFSPageType formatting : M-SPageFormattingType|
green gr eat er Than pfk : M-SFuncti onKeyType
pi nk gr eat er ThanOr Equal substitution : String T
turquoise | essThan type : String — MESI 7 Condi n-on-
yel | ow | essThanOr Equal width : int condi tion : MSConditionType
defaul t action : String
neutral
<<enuner at i on>> <<enuner at i on>> - N

" . N . . <<enuner at i on>> <<enuner ation>>
NFSOut 11 ni ngType d’\;isa'jﬂhl i ghtingType d’::Sa\:Jall,‘l dationType MESDet ect abi | i t yType MFSJusti fyType
box : Bool ean blink fill Fjef erred ! .ef :1'(
right : Bool ean rever sevi deo field i mmedi at e e
left : Bool ean under | i ne bot h nondet ect abl e
under : Bool ean
over : Boolean
value : String o

<<enuner at i on>> <<enuner at i on>> MFSSt at ement MFSPosi ti onType

MFSPageFor mat ti ngType || MFSDescri ptor Type | |l abel : String row: int
MFSLengt hType defi ned i nput comments : String||col um i nt -
length : int space out put physi cal Page : int
firstByte : int fl oat i nout
<<enuner at i on>>
MFSDevi cePage - MFSI nt ensi tyType

cursor : MFSCursor Type MFSLogi cal Page nor mal
fill : String condition : MFSConditionType hi gh
mul tipl ePages : Bool ean| |PronptValue : String nondi spl ayabl e

Figure A-9 MFS Attribute View

A.1.3 IMS MFS Metamodel Descriptions

MFSDeviceDescriptor

This class encapsulates the MFS "FMT" statement.

January 2002 UML for EAI: IMSMFSMetamodel A-19

A-20

The FMT statement initiates and names a format definition that includes one or more
device formats differing only in the device type and features specified in the DEV

statement. Each device format included in the format definition specifies the layout for
data sent to or received from a device or aremote program. All attributes are supported

MFSDeviceDivision
This class encapsulates the MFS "DIV" statement.

The DIV statement defines device formats within a DIF or DOF. The formats are
identified as input, output, or both input and output, and can consist of multiple
physical pages. Only one DIV statement per DEV is allowed.

The MFS metamodel does not support the following DIV attributes:
® RCDCTL

* HDRCTL

® OPTIONS

* OFTAB

* DPN

* PRN

* RDPN

* RPRN

type: MFSDescriptor Type
TY PE attribute.

Describes an input only format (INPUT), an output only format (OUTPUT), or both
(INOUT).

If DIV TYPE=OUTPUT or TYPE=INPUT is specified, certain DEV statement
keywords are applicable.

compression : MFSCompressionType
COMPR attribute.

Requests MFS to remove trailing blanks from short fields, fixed-length fields, or al
fields presented by the application program.

MFSDeviceField

This class encapsulates the MFS "DFLD" statement.

UML for EAI Draft Adopted Specification January 2002

January 2002

The DFLD statement defines a field within a device format, which is read from or
written to atermina or remote program. Only those areas, which are of interest to the
IMS or remote application program should be defined. Null space in the format does
not need to be defined. The SLD attribute is not supported.

attributes: MF SAttributeType
ATTR attribute.

extendedAttributes: MF SExtendedAttributeType
EATTR attribute.

length : int
LTH attribute.

Specifies the length of the field. This operand should be omitted if 'literal’ is specified
in the positional parameter, in which case the length of literal is used as the field
length. Unpredictable formatting output can occur if this operand is used in
conjunction with a'literal’ and the two lengths are different. The specified LTH=
cannot exceed the physical page size of the device.

The maximum allowable length for all devices except 3270, 3604 display, and DPM
with RCDCT=NOSPAN is 8000 characters. For 3270 displays, the maximum length is
one less than screen size. For example, for a 480-character display, the maximum
length is 479 characters. A length of 0 must not be specified. If SCA and LTH= are
both specified, LTH must be 2.

POS= and LTH= do not include the attribute character position reserved for a 3270
display device or aDFLD with ATTR=YES specified. The inclusion of this byte in the
design of display/printer formats is necessary because it occupies the screen/printed
page position preceding each displayed/printed field even though it is not accessible by
an application program.

When defining DFLDs for 3270 printers, a hardware ATTRIBUTE character is not
used. Therefore, fields must be defined with a juxtaposition that does not allow for the
attribute character unless ATTR=Y ES is specified. However, for printers defined as
3270P the last column of aprint line (based onFEAT=, WIDTH=, or the device default
width) cannot be used. The last column of the line is reserved for carriage control
operations performed by IMS. Thus, if the print line specifies 120 (FEAT=120) and the
DFLD specifies POS=(1,1),LTH=120 then 119 characters are printed on line 1 and one
character on line 2.

Detectable fields (DET or IDET) must include four positionsin POS and LTH for a 1-
byte detection designator character and 3 pad characters, unless the detectable field is
the last field on a display line, in which case only one position for the detection
designator character is required. The detection designator character must precede field
data, and pad characters (if required) follow field data. Detection designator and

UML for EAI: IMSMFSMetamodel A-21

A-22

required pad characters must be supplied by the application program or MFLD literal
with the field data. Pad characters can also be required in the preceding field on the
device.

pen : String
PEN attribute.

Specifies a literal to be selected or an operator control function to be performed when
this field is detected. If (1) 'literal’ is specified, (2) the field is defined as immediately
detectable (ATTR= operand), and (3) contains the null or space designator character,
the specified literal is placed in the field referred to by the PEN operand of the
preceding DEV statement when the field is detected (if no other device fields are
modified). If another field on the device is modified, a question mark (?) is provided
instead of the literal. Literal length must not exceed 256 bytes.

If (1) acontrol function is specified, (2) the field is defined as immediately detectable
(ATTR= operand), and (3) contains the null or space designator character, the specified
control function is performed when the field is detected and no other device fields are
modified. If another field on the device is modified, a question mark (?) is provided
and the function is not performed. Control functions that can be specified are:

® NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the
current output message. |If no output message is in progress, no explicit response is
made.

® NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output
message in progress (if any) and to send the next output message in the queue (if

any).

® NEXTMSGP--MESSAGE ADVANCE PROTECT specifies areguest to dequeue the
output message in progress (if any), and send the next output message or return an
information message indicating that no next message exists.

® NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of
the current message.

® ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of a multiple
physical page input message.

* ENDMPPI is valid only if data has been received and will not terminate multiple
page input (MPPI) in the absence of data entry.

position : MF SPositionType
POS attribute.

Defines the first data position of this field in terms of line (lll), column (ccc), and
physical page (pp) of the display format. If pp is omitted, 1 is assumed.

For DEV TYPE=3270, 3270-An, or 3270P:

® |ll,ccc,pp specifiestheline, column, and optionally, the physical page number for an
output field. Ill, ccc, and pp must be greater than or equal to 1.

UML for EAI Draft Adopted Specification January 2002

January 2002

® For 3270 displays, POS=(1,1) must not be specified. Fields must not be defined
such that they wrap from the bottom to the top.

Restriction: On some models of 3270s, the display screen cannot be copied when a
field starting on line 1, column 2, has both alphabetic and protect attributes.

value: String
The default value of the device field.

MFSDevicePage
This class encapsulates the MFS "DPAGE" statement.

The DPAGE statement defines a logical page of a device format. This statement can be
omitted if none of the message descriptors referring to this device format (FMT)
contains LPAGE statements and if no specific device option is required. It isimplied if
not present.

The MFS metamodel does not support the following DPAGE attributes:
* ACTVPID

® COND

* OFTAB

* ORIGIN

* PD

® SELECT

cursor : MFSCursor Type
CURSOR attribute.

Specifies the position of the cursor on a physical page. Multiple cursor positions may
be required if alogical page or message consists of multiple physical pages. The value
[l specifies line number, ccc specifies column; both Il and ccc must be greater than or
equal to 1. The cursor position must either be on a defined field or defaulted. The
default Ill,ccc value for 3270 displays is 1,2. For Finance display components, if no
cursor position is specified, MFS will not position the cursor--the cursor is normally
placed at the end of the output data on the device. For Finance display components, all
cursor positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program with
cursor information on input and allowing the application program to specify cursor
position on output.

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the MFLD
statement) for output cursor positioning.

UML for EAI: IMSMFSMetamodel A-23

A-24

The dfld parameter specifies the name of afield containing the cursor position. This
name may be referenced by an MFLD statement and must not be used as the label of a
DFLD statement in this DEV definition. The format of this field is two binary
halfwords containing line and column number, respectively. When thisfield is referred
to by a message input descriptor, it will contain the cursor position at message entry. If
referred to by a message output descriptor, the application program places the desired
cursor position into this field as two binary halfwords containing line and column,
respectively. Binary zeros in the named field cause the specified Ill,ccc to be used for
cursor positioning during output. During input, binary zerosin this field indicate that
the cursor position is not defined. The input MFLD referring to this dfld should be
defined within a segment with GRAPHIC=NO specified or should use EXIT=(0,2) to
convert the binary numbers to decimal.

fill : String
FILL attribute.

Specifies a fill character for output device fields. Default value for al device types
except the 3270 display is X'40'; default for the 3270 display is PT. For 3270 output
when EGCS fields are present, only FILL=PT or FILL=NULL should be specified. A
FILL=PT erases an output field (either a 1- or 2-byte field) only when data is sent to
the field, and thus does not erase the DFLD if the application program message omits
the MFLD.

®* NONE must be specified if the fill character from the message output descriptor is
to be used to fill the device fields.

¢ X'hh' character whose hexadecimal representation is 'hh' will be used to fill the
device fields.

® C'c' character 'c’ will be used to fill the device fields.

® NULL specifies that fields are not to be filled. For devices other than the 3270
display, ‘compacted lines' are produced when message data does not fill the device
fields.

® PT specifies that output fields that do not fill the device field (DFLD) are followed
by a program tab character to erase data previously in the field; otherwise, this
operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is changed to
X'00' for control characters or to X'40' for other non-graphic characters.

multiplePages: Boolean
MULT attribute.

Specifies that multiple physical page input messages will be allowed for this DPAGE.

MFSDeviceType

This class encapsulates the MFS "DEV" statement.

UML for EAI Draft Adopted Specification January 2002

January 2002

The DEV statement defines device characteristics for a specific device or data formats
for a specific device type. The DFLD statements following this DEV statement are
mapped using the characteristics specified until the next DEV or FMTEND statement
is encountered.

The MFS metamodel does not support the following DEV attributes:
* ERASE
* FTAB

* FORMS
* HT

* HTAB
* LDEL
* MODE
® SLD

* VERSID
* VT

* VTAB

card: 0..1 MFSDeviceField
CARD attribute.

Defines the input field name to receive operator identification card data when that data
is entered. This name can be referenced by an MFLD statement and must not be used
as the label of a DFLD statement within this DEV definition. This operand is valid
only if a 3270 display is specified. If FEAT=NOCD is specified for a 3270 display, it
is changed to CARD. All control characters are removed from magnetic card input
before the data is presented to the input MFLD that refers to this card field name.

For 3270 displays, an unprotected field large enough to contain the magnetic card data
and control characters must be defined through a DFLD statement. Position the cursor
to this field and insert the card in the reader to enter card information. The card datais
logically associated with the CARD= field name, not the name used in the DFLD
statement.

dsca: String
DSCA attribute.

Specifies a default system control area (DSCA) for output messages using this device
format. The DSCA supersedes any SCA specified in a message output descriptor if
there are conflicting specifications. Normdly, the functions specified in both SCAs are
performed. If the DSCA= operand is specified for 3270P, it is ignored, except for the
bit setting for "sound device alarm." If this bit is specified on the DSCA/SCA option,
it is sent to the device.

UML for EAI: IMSMFSMetamodel A-25

A-26

The value specified here must be a decimal number not exceeding 65535 or X'hhhh'. If
the number is specified, the number is internally converted to X'hhhh'.

If byte 1 bit 5 is set to B'1' (unprotect screen option) for a 3275 display, and both input
and output occur simultaneously (contention), the device is disconnected. For non-
3275 devices, the SCA option isignored. If byte 1 bit 5 is set to B'0', the application
program can request autopaged output by setting the SCA valueto B'1'. This request is
honored only if present in the first segment of the first LPAGE of the output message.

If anonzero value is specified for byte O, or for bit 6 or 7 in byte 1, MFS overrides the
specified value with zero.

features: MF SFeatureType
FEAT attribute.

Specifies features for this device or program group. Possible features are:
®* |IGNORE specifies that device features are to be ignored for this device.
® 120J126|132 specifies line length for 3284, and 3286 device types (TY PE=3270P).

® CARD specifies that the device has a 3270 operator identification card reader.
NOCD specifies the absence of the CARD feature.

®* DEKYBD specifies data entry keyboard feature. This feature implies PFK feature;
therefore, PFK isinvalid if DEKYBD is specified. NOPFK implies the absence of
PFK and DEKY BD features.

®* PFK specifies that the device has program function keys. NOPFK specifies the
absence of the PFK and DEKY BD features.

® PEN specifies the selector light pen detect feature. NOPEN specifies the absence of
the PEN feature.

® 1/2|3]415|6|7]8]9|10 specifies customer-defined features for the 3270P device type.

For 3270P devices, FEAT= allows grouping of devices with special device
characteristics. For example, FEAT=1 could group devices with a maximum of 80 print
positions and no VFC, and FEAT=2 could group devices with 132 print positions and
the VFC feature. FEAT=IGNORE should be specified to group together devices with a
minimum set of device capabilities. When WIDTH= is specified, FEAT=(1...10) must
also be specified. If FEAT=(1...10) is specified but WIDTH= is not specified, WIDTH=
defaults to 120.

When IGNORE is specified, no other values should be coded in the FEAT= operand.
When FEAT=IGNORE is not specified in the TERMINAL macro during system
definition, the MSG statement must specify IGNORE in the SOR= operand for the
device format with the IGNORE specification. Unless FEAT=IGNORE is used, FEAT=
must specify exactly what was specified in the TERMINAL macro during IMS system
definition. If it does not, the DFS057 error message is issued. When FEAT=IGNORE
or 1-10 is specified for 3270 devices, the operands PEN=, CARD=, and PFK = can till
be specified. When TYPE=3270P and FEAT=IGNORE, MFS allows a line width of
120 characters.

UML for EAI Draft Adopted Specification January 2002

January 2002

CARD, PFK, DEKYBD, and PEN feature values are valid only for 3270 displays. If
the FEAT= operand is omitted, the default features are CARD, PFK, and PEN for 3270
displays; the default line width is 120 for TYPE=3270P,

1,2,3,4,5,6,7,8,9, and 10 are vadid values only for 3270, 3270P and 3270-An. For
3270 displays, the FEAT= specifications of 1 to 5 can be used to group devices with
specific features or hardware data stream dependencies.

Restriction: This keyword is optional and cannot be used with any other feature
specification for 3270 displays.

Feature operand values can be specified in any order, and only those values desired
need be specified. The underlined values do not have to be specified because they are
defaults. Only one value in each vertical list can be specified.

page: MF SPageType
PAGE attribute.

Specifies output parameters as follows:

® number: For printer devices, number defines the number of print lines on a printed
page; for card devices, number defines the number of cards to be punched per
DPAGE or physical page (if pp parameter is used in the DFLD statements). This
value is used for validity checking. The number specified must be greater than or
equal to 1 and less than 256. The default is 55.

® DEFN specifies that lines/cards are to be printed/punched as defined by DFLD
statements (no lines/cards are to be removed or added to the output page).

® SPACE specifies that each output page contains the exact number of lines/cards
specified in the number parameter.

® FLOAT specifies that lines/cards with no data (all blank or NULL) after formatting
are to be deleted.

® For 3270P devices, some lines having no data (that is, al blank or null) must not be
deleted under the following circumstances:
« The line contains one or more set line density (SLDx=) specifications.
« A field specified as having extended attributes spans more than one line.

pen : 0..1 MFSDeviceField
PEN attribute.

Defines an input field name to contain literal data when an immediate light pen
detection of afield with a space or null designator character occurs. The literal datais
defined on the DFLD statement with the PEN= operand. (See PEN= operand on the
DFLD statement.) This name can be referred to by an MFLD statement and must not
be used as the label of a DFLD statement within this DEV definition. The PEN=
operand is valid only for 3270 displays. If FEAT=NOPEN is specified, it is changed to
PEN.

UML for EAI: IMSMFSMetamodel A-27

A-28

If an immediate detect occurs on a field defined with a space or null designator
character, and either another field has been selected or modified or has the MOD
attribute, or the PEN= operand is not defined for the DFLD, a question mark (?) is
inserted in the PEN= field name.

If no immediate detection occurs or the immediate detect occurs on afield defined with
an ampersand (&) designator character, the PEN= operand is padded with the fill
specified in the MFLD statement.

pfk : MFSFunctionKeyType
PFK attribute.

Defines an input field name to contain program function key litera or control function
data (first subparameter) and, in positional or keyword format, either the literal datato
be placed in the specified field, or the control function to be performed when the
corresponding function key is entered (remaining subparameters).

The name of the first subparameter (the input field name that will contain the program
function key literal or control function data) can be referred to by an MFLD statement
and must not be used asthe label of aDFLD statement within thisDEV definition. The
remaining subparameters can be specified in positional or keyword format. If the
subparameters are in keyword format, the integer specified must be from 1 to 36,
inclusive, and not duplicated. Only one PFK= operand format (positional or keyword)
can be specified on a DEV statement. This operand is valid only for 3270 displays. At
the time the actual format blocks are created, each literal is padded on the right with
blanks to the length of the largest literal in the list. The maximum litera length is 256
bytes.

If the device supports the IMS copy function, then PFK 12 invokes the copy function
and the definition of PFK12 in the DEV statement is ignored; otherwise, the definition
of PFK12 is honored.

If FEAT=NOPFK is specified, it is changed to PFK. The maximum number of user-
defined PFKs is 36.

Control functions that can be specified are:

® NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the
current output message. |If no output message is in progress, no explicit response is
made.

* NEXTMSG--MESSAGE ADVANCE specifies a request to degqueue the output
message in progress (if any) and to send the next output message in the queue (if
any).

® NEXTMSGP--MESSAGE ADVANCE PROTECT specifies areguest to dequeue the

output message in progress (if any), and send the next output message or return an
information message indicating that no next message exists.

® NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of
the current message.

UML for EAI Draft Adopted Specification January 2002

® ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of a multiple
physical page input message.

substitution : String
SUB attribute.

Specifies the character used by MFS to replace any X'3F' characters in the input data

stream. No trandation occurs if this parameter is specified as X'3F' or this parameter is
not specified, or the input received bypasses MFS editing. The specified SUB character
should not appear elsewhere in the data stream; therefore, it should be non-graphic.

¢ X'hh' character whose hexadecimal representation is 'hh' replaces all X'3F' in the
input data stream.

® C'c' character 'c' replaces all X'3F' in the input data stream.

systemMessage: 0..* MFSDeviceField
SYSMSG attribute.

Specifies the label of the DFLD statements that define the device field in which IMS
system messages are to be displayed. This operand is valid only if a 3270 display is
specified. A DFLD with this label should be defined for each physical page within
each DPAGE defined within this DEV definition. DFLDs for SY SMSG should be at
least LTH=79 to prevent message truncation. The referenced DFLD can also be
referenced by an MFLD statement.

type: String
TYPE attribute.

Specifies the device type and model number of a device using this format description.
The 3284-3 printer attached to a 3275 is supported only as TY PE=3270P. The model
number specified when defining a format for a 3284-3 is the model number of the
associated 3275.

TYPE=3270-An specifies a symbolic name for 3270 and SLU 2 displays with the
screen size defined during IMS system definition, feature numbers n=1-15. This
specification causes the MFS Language utility to read the MFS device characteristics
table (DFSUDTOx) to extract the screen size.

width : int
WIDTH attribute.

Specifies the maximum line width for this DEV type as one of:
« Number of print positions per line of input or output data
* Number of punch positions per card of input or output data
e Card width for card reader input data

January 2002 UML for EAI: IMSMFSMetamodel A-29

A-30

The default is 120 for 3270P output. Line width is specified relative to column 1,
regardless of whether a left margin value is specified in the HTAB= keyword. The
width specified must be greater than or equal to 1.

For 3270P devices, if WIDTH is specified, then FEAT=(1...10) must aso be specified.
If FEAT=(1...10) is specified, and WIDTH= is not specified, WIDTH= defaultsto 120.

MFSIfCondition

This class encapsulates the MFS "IF" statement.

The IF statement defines an entry in the table named by the previous TABLE
statement. Each |F statement defines a conditional operation and an associated control
or branching function to be performed if the condition is true. All attributes are
supported

condition : MFSConditionType
COND attribute.

condition has the following format:
IF (DATA | LENGTH) (=,<,>, ,X,%
(literal | data-length) function

® DATA specifies that the conditional operation is to be performed against the data
received from the device for the field.

® | ENGTH specifies that the conditional operation is testing the number of characters
entered for the field. The size limit for this field is the same as for DFLDs (see
"DFLD Statement" in topic 2.5.1.5.8).

* =< > ,x,x specify the conditional relationship that must be true to invoke the
specified control function.

® ‘literal' is aliteral string to which input datais to be compared. The compare is done
before the input is translated to upper case. If 'literal’ is specified, DATA must be
specified in the first operand. If the input data length is not equal to the literal string
length, the compare is performed with the smaller length, unless the conditional
relationship is and the data length is zero, in which case the control function is
performed. If the input isin lowercase, the ALPHA statement should be used and
the literal coded in lowercase.

® data-length specifies an integer value to which the number of characters of input
data for the field is compared.

®* NOFUNC specifies that conditional function testing is to be terminated.

® NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the
current output message. If no output message is in progress, no explicit response is
made.

UML for EAI Draft Adopted Specification January 2002

January 2002

® NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output
message in progress (if any) and to send the next output message in the queue (if
any).

® NEXTMSGP--MESSAGE ADVANCE PROTECT specifies areguest to dequeue the
output message in progress (if any), and either send the next output message or
return an information message indicating that no next message exists.

® NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of
the current message.

® PAGEREQ--LOGICAL PAGE REQUEST specifies that the second through last
characters of input data are to be considered as a logical page request.

® ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of multiple physical
page input (this input is the last for the message being created).

action : String
COND attribute.

Contains the 'function' described above.

MFSLogicalPage
This class encapsulates the MFS "LPAGE" statement.

The optional LPAGE statement defines a group of segments comprising alogical page.
It isimplied if not present. All attributes are supported.

condition : MFSConditionType
COND attribute.

Describes a conditional test that, if successful, specifies that the segment and field
definitions following this LPAGE are to be used for output editing of this logical page.
The specified portion of the first segment of alogical page is examined to determine if
it is greater than (>), less than (<), greater than or equal to (%), less than or equal to
(%), equal to (=), or not equal to (ne) the specified litera vaue to determine if this
LPAGE isto be used for editing. COND= is not required for the last LPAGE statement
in the MSG definition.

The area examined can be defined by a field name (mfldname), an offset in a field
(mfldname(pp) where pp is the offset in the named field), or an offset in the segment
(segoffset). If the mfldname(pp) form is used, pp must be greater than or equal to 1.
The length of the compare is the length of the specified literal. If OPT=3 is specified
on the previous MSG statement, the area to be examined must be within one field as
defined on an MFLD statement.

If segoffset is used, it isrelative to zero, and the specification of that offset must allow
for LLZZ of the segment (that is, the first data byte is at offset 4).

UML for EAI: IMSMFSMetamodel A-31

A-32

If pp is used, the offset is relative to 1 with respect to the named field (that is, the first
byte of datain the field is at offset 1, not zero).

If the mfldname specified is defined with ATTR=YES, the pp offset must be used. The
minimum offset specified must be 3. That is, the first byte of datain the field is at
offset 3, following the two bytes of attributes.

If ATTR=nn is specified, the minimum offset must be one plus twice nn. Thus, if
ATTR=2 is specified, pp must be at least 5, and, if ATTR=(YES,2) is specified, pp
must be at least 7.

If the conditional tests for all LPAGEs fail, the last LPAGE in this MSG definition is
used for editing.

If LPAGE selection isto be specified using the command datafield, that is, /[FORMAT
modname...(data), the MFLD specified in the LPAGE COND=mfldname parameter
should be within the first 8 bytes of the associated L PAGES of the MOD.

prompt : 0..1 MFSDeviceField
PROMPT attribute.

Specifies the name of the DFLD into which MFS should insert the specified literal
when formatting the last logical page of an output message. If FILL=NULL is
specified once the prompt literal is displayed, it can remain on the screen if your
response does not cause the screen to be reformatted.

MFSMessageDescriptor
This class encapsulates the MFS "M SG" statement.

The MSG statement initiates and names a message input or output definition. All
attributes are supported.

fill : String
FILL attribute.

Specifies a fill character for output device fields. This operand is valid only if
TYPE=OUTPUT. The default is C' '. The fill specification isignored unless
FILL=NONE is specified on the DPAGE statement in the FMT definition. For 3270
output when EGCS fields are present, only FILL=PT or FILL=NULL should be
specified. A FILL=PT erases an output field (either a 1- or 2-bytefield) only when data
is sent to the field, and thus does not erase the DFLD if the application program
message omits the MFLD.

® Character 'c' is used to fill device fields. For 3270 display devices, any specification
with avalue less than X'3F' is changed to X'00' for control characters or to X'40' for
other non-graphic characters. For al other devices, any FILL=C'c' specification with
avalue less than X'3F" is ignored and defaulted to X'3F' (which is equivalent to a
specification of FILL=NULL).

® NULL specifies that fields are not to be filled.

UML for EAI Draft Adopted Specification January 2002

January 2002

® PTisidentical to NULL except for 3270 display. For 3270 display, PT specifies that
output fields that do not fill the device field (DFLD) are followed by a program tab
character to erase data previously in the field.

ignoreSource : Boolean
SOR attribute.

Specifies the source name of the FMT statement, which, with the DEV statement,
defines the terminal or remote program data fields processed by this message
descriptor. Specifying IGNORE for TYPE=OUTPUT causes MFS to use data fields
specified for the device whose FEAT= operand specifies IGNORE in the device format
definition. For TYPE=INPUT, IGNORE should be specified only if the corresponding
message output descriptor specified IGNORE. If you use SOR=IGNORE, you must
specify IGNORE on both the message input descriptor and the message output
descriptor.

option : int

OPT attribute.

Specifies the message formatting option used by MFS to edit messages. The default is
1.

paging: Boolean

PAGE attribute.

Specifies whether (YES) or not (NO) operator logical paging (forward and backward
paging) is to be provided for messages edited using this control block. This operand is
valid only if TYPE=OUTPUT. The default is NO, which means that only forward
paging of physical pages is provided.

type: MFSDescriptor Type

TYPE attribute.

Defines this definition as a message INPUT or OUTPUT control block. The default is
INPUT.

MFSMessageField

This class encapsulates the MFS "MFLD" statement.

The MFLD statement defines a message field as it will be presented to an application
program as part of a message output segment. At least one MFLD statement must be
specified for each MSG definition. All attributes are supported.

attributes: Boolean
ATTR attribute.

UML for EAI: IMSMFSMetamodel A-33

A-34

Specifies whether (YES) or not (NO) the application program can modify the 3270
attributes and the extended attributes (nn).

If YES, 2 bytes must be reserved for the 3270 attribute data to be filled in by the
application program on output and to be initialized to blanks on input. These 2 bytes
must be included in the LTH=specification.

The value supplied for nn is the number of extended attributes that can be dynamically
modified. The value of nn can be a number from 1 to 6. An invalid specification will
default to 1. Two additional bytes per attribute must be reserved for the extended
attribute data to be filled in by the application program on output and to be initialized
to blanks on input. These attribute bytes must be included in the MFLD LTH=
specification.

Example: Shown below are valid specifications for ATTR= and the number of bytes
that must be reserved for each different specification:

Specifications Number of Bytes

MFLD ,ATTR=(YES,nn) 2+ (2bnn)

MFLD ,ATTR=(NO,nn) 2bnn
MFLD ,ATTR=(nn) 2bnn
MFLD ,ATTR=YES 2
MFLD ,ATTR=NO 0

ATTR=YES and nn are invalid if aliteral value has been specified through the
positional parameter in an output message.

The attributes in afield sent to another IMS 1SC subsystem are treated as input data by
MFS regardless of any ATTR= specifications in the format of the receiving subsystem.
For example, a message field (MFLD) defined as ATTR=(Y ES,1),LTH=5 would
contain the following:

00OAOC2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=9 and without ATTR=, the
application program receives:

00OAOC2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=13 and ATTR=(YES,1), the
application program receives:

4040404000A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=5 and ATTR=(YES,1), the
application program receives:

4040404000A0C2F1C8

The input SEG statement should be specified as GRAPHIC=NO to prevent translation
of the attribute data to uppercase.

UML for EAI Draft Adopted Specification January 2002

January 2002

exit: MFSExitType
EXIT attribute.

Describes the field edit exit routine interface for this message field. The exit routine
number is specified in exitnum, and exitvect is avalue to be passed to the exit routine
when it isinvoked for this field. The value of exitnum can range from 0 to 127. The
value of exitvect can range from 0 to 255. The address of the field as it exists after
MFS editing, (but before NULL compression for option 1 and 2), is passed to the edit
exit routine, along with the vector defined for the field. (If NOFLDEXIT is specified
for a DPM device, the exit routine will not be invoked.) The exit routine can return a
code with a value from 0 to 255. MFS maintains the highest such code returned for
each segment for use by the segment edit routine. EXIT=is invalid if 'literal' is
specified on the same MFLD statement.

extendedAttributes: Boolean
ATTR attribute.

See attributes documentation above.

fill : String
FILL attribute.

Specifies a character to be used to pad this field when the length of the data received
from the device is less than the length of this field. This character is also used to pad
when no data is received for this field (except when MSG statement specifies option
3.) This operand is only valid if TYPE=INPUT. The default is X'40'.

® X'hh' - Character whose hexadecimal representation is hh is used to fill fields.
FILL=X'3F' isthe same as FILL=NULL.

® C'c' - Character cis used to fill fields.

® NULL causes compression of the message segment to the left by the amount of
missing data in the field.

justify : MFSJustifyType
JUST attribute.

Specifies that the data field is to be left-justified (L) or right-justified (R) and right- or
left- truncated as required, depending upon the amount of data expected or presented
by the device format control block. The default is L.

length : MFSLengthType
LTH attribute.

Length can be omitted if aliteral is specified in the positional operand
(TYPE=INPUT), in which case, length specified for literal is used. If LTH=is
specified for aliteral field, the specified literal is either truncated or padded with

UML for EAI: IMSMFSMetamodel A-35

A-36

blanks to the specified length. If the MFLD statement appears between a DO and an
ENDDO statement, a length value is printed on the generated MFLD statement,
regardless of whether LTH= is specified in the MFLD source statement.

value: String

Corresponds to the 'literal’ field in the following description.
The device field name is specified via the 'deviceFields relationship.

Specifies the device field name (defined viathe DEV or DFLD statement) from which
input data is extracted or into which output data is placed. If this parameter is omitted
when defining a message output control block, the data supplied by the application
program is not displayed on the output device. If the repetitive generation function of
MFS is used (DO and ENDDO statements), dfldname should be restricted to 6
characters maximum length. When each repetition of the statement is generated, a 2-
character sequence number (01 to 99) is appended to dfldname. If the dfldname
specified here is greater than 6 bytes and repetitive generation is used, dfldname is
truncated at 6 characters and a 2-character sequence number is appended to form an 8-
character name. No error message is provided if this occurs. This parameter can be
specified in one of the following formats:

¢ dfldname identifies the device field name from which input datais extracted or into
which output data is placed.

® ‘literal' can be specified if aliteral value is to be inserted in an input message.
(dfldname,'literal’)

If TYPE=OUTPUT, this describes the literal data to be placed in the named
DFLD. When this form is specified, space for the literal must not be allocated in
the output message segment supplied by the

application program.

If TYPE=INPUT, this describes the literal datato be placed in the message field
when no data for this field is received from the device. If this dfldname is used
in the PFK parameter of a DEV statement, this literal is always replaced by the
PF key literal or control function. However, when this dfldname is specified in
the PFK parameter, but the PF key is not used, the literal specified in the MFLD
statement is moved into the message field. When physical paging is used, the
literal isinserted in the field but is not processed until after the last physical
page of the logical page has been displayed.

In both cases, if the LTH= operand is specified, the length of the literal is truncated
or padded as necessary to the length of the LTH= specification. If the length of the
specified literal is less than the defined field length, the literal is padded with blanks
if TYPE=OUTPUT and with the specified fill character (FILL=) if TYPE=INPUT.
If no fill character is specified for input, the literal is padded with blanks (the
default). The length of the literal value cannot exceed 256 bytes.

UML for EAI Draft Adopted Specification January 2002

January 2002

(dfldname,system-literal) specifies a name from a list of system literals. A system
literal functions like a normal literal except that the literal value is created during
formatting prior to transmission to the device. The LTH=, ATTR=, and JUST=
operands cannot be specified. When this form is specified, space for the literal must
not be allocated in the output message segment supplied by the application program.

(,SCA) defines this output field as the system control area, which is not displayed on

the output device. There can be only one such field in a logical page (LPAGE) and it

must be in the first message segment of that page. If no logical pages are defined, only
one SCA field can be defined and it must be in thefirst segment of the output message.
This specification is valid only if TYPE=OUTPUT was specified on the previous MSG
statement.

MF SPassword
This class encapsulates the MFS "PASSWORD" statement.

The PASSWORD statement identifies one or more fields to be used as an IMS
password. When used, the PASSWORD statement and its associated MFLDs must
precede the first SEG statement in an input LPAGE or MSG definition. Up to 8 MFLD
statements can be specified after the PASSWORD statement but the total password
length must not exceed 8 characters. Thefill character must be X'40'. For option 1 and
2 messages, the first 8 characters of data after editing are used for the IMS password.
For option 3 messages, the data content of the first field after editing is used for the
IMS password.

A password for 3270 input can aso be defined in aDFLD statement. If both password
methods are used, the password specified in the MSG definition is used. All attributes
are supported.

MF SSegment

This class encapsulates the MFS "SEG" statement.

The SEG statement delineates message segments and is required only if multisegment
message processing is required by the application program. Output message segments
cannot exceed your specified queue buffer length. Only one segment should be defined
for TYPE=INPUT MSGs when the input message destination is defined as a single
segment command or transaction. If more than one segment is defined, and the
definition is used to input a single segment command or transaction, care must be used
to ensure that your input produces only one segment after editing. It isimplied if not
present. All attributes are supported.

exit: MFSExitType
EXIT attribute.

Describes the segment edit exit routine interface for this message segment. exitnum is
the exit routine number and exitvect is a value to be passed to the exit routine when it
isinvoked for this segment. exitnum can range from 0 to 127. exitvect can range from
0 to 255. The SEG exit is invoked when processing completes for the input segment.

UML for EAI: IMSMFSMetamodel A-37

A-38

graphic: Boolean
GRAPHIC attribute.

Specifies for MSG TY PE=INPUT whether (YES) or not (NO) IMS should perform
upper case translation on this segment if the destination definition requests it (see the
EDIT= parameter of the TRANSACT or NAME macro). The default is YES. If input
segment data is in non-graphic format (packed decimal, EGCS, binary, and so forth),
GRAPHIC=NO should be specified. When GRAPHIC=NO is specified, FILL=NULL
isinvalid for MFLDs within this segment.

The list below shows the translation that occurs when GRAPHIC=YES is specified and
the input message destination is defined as requesting upper case translation:

Before Translation After Translation
athrough z A through Z

X'81' through X'89 'X'C1' through X'C9'
X'91" through X'99 'X'D1' through X'D9'
X'A2' through X'A9 'X'E2' through X'E9'

If FILL=NULL is specified for any MFLD in a segment defined as GRAPHIC=YES,
the hexadecimal character X'3F' is compressed out of the segment. If GRAPHIC=NO
and FILL=NULL are specified in the SEG statement, any X'3F" in the non-graphic data
stream is compressed out of the segment and undesirable results might be produced.
Non-graphic data should be sent on output as fixed length output fields and the use of
FILL=NULL is not recommended in this case.

For MSG TYPE=OUTPUT, the GRAPHIC= keyword applies only for DPM. It
specifies whether (Y ES) or not (NO) non-graphic control characters (X'00' to X'3F') in
the data from the IMS application program are to be replaced by blanks. The default
valueis YES. If NO is specified, MFS alows any bit string received from an IMS
application program to flow unmodified through MFS to the remote program.

Restriction: When GRAPHIC=NO is specified, IMS application programs using
Options 1 and 2 cannot omit segments in the middle of an LPAGE, or truncate or omit
fields in the segment using the null character (X'3F").

MFSTable

This class encapsulates the MFS "TABLE" statement.
The TABLE statement initiates and names an operator control table that can be referred
to by the OPCTL keyword of the DFLD statement. The TABLE statement, and the | F

and TABLEEND statements that follow, must be outside of aMSG or FMT definition.
All attributes are supported.

UML for EAI Draft Adopted Specification January 2002

A.3 CICSBMSMetamodel

January 2002

CICS applications are able to use a logical abstraction of a terminal datastream using
CICS Basic Mapping Support (BMS) function. Its highest use is with the IBM 3270
family of alphanumeric displays and associated printers but does support other devices
and MQ queues. The programmer creates an input file containing the variable data
from the application to be displayed on output or formatted on input plus the constant
'boilerplate’ that should appear on the screen. Each field can have attributes added to it,
for example, color, protection so that it cannot be overwritten by the operator and
various productivity options such as cursor positioning and auto-skipping to the next
input field. These field are aggregated together into a MAP. MAPs may also be
aggregated into MAPSETS.

The input file is pre-processed to provide an application structure which will be
included with the CICS application program giving the programmer fields in which to
place the variable data, and secondly produces a file which contains all the constant
data and the attributes of each field. A simple view of thisis that the BM S input file
has the same attributes as an HTTP data, formatting commands are mixed with the
data, the output of the BM S processor is amost a parallel with XML and XSL, the data
structure holding the data items and the file holding all the style information.
Unfortunately there are two pieces of state data held in the BMS 'style' sheet, namely
the initial cursor position and an attribute declaration which will force the terminal to
return the data on the screen whether or not the operator has changed it. When an
EXEC CICS SEND MAP is performed, BMS will interpret the map file and merge in
the data from the application structure and any overridden attributes, and build the
device dependent data stream required for the terminal. Conversely on an EXEC CICS
RECEIVE MAP the inbound datastream is mapped into the application structure with
whatever filling or conversion that is required.

The CICS BMS metamodel captures the meta data associated with screen formatting
for CICS applications. BM SField identifies the signature of a CICS BM S message,
which can include inputs, outputs, and return types. BM SField associates with
TDLangElement, which provides the linkage to the language specific and physical
representations of the datathat a BM SField represents. The following figuresillustrate
the classes that constitute the CICS BM S metamodel and show how the classes relate
to each other. Following the diagrams is a brief explanation of what each class
represents.

UML for EAI: CICSBMSMetamodel A-39

A-40

TDLangElement

+languageElement

BMSMapset

+tmaps 0..*

BMSMap

+fields | 0..*

BMSField

1.1

Figure A-10 CICS BMS Relationship View

BMSStatement

BMSField

BMSMap BMSMapset

Figure A-11 CICS BMS Inheritance View

UML for EAI Draft Adopted Specification

January 2002

January 2002

mapAttributes : BVMSMapAttribut esType nofields : Bool ean programed Symbol : String

mode : BMSMbdeType out boardFormatti ng : Bool ean shif tOutshiftin : String

out boardFormatti ng : Bool ean outlining : BMSQutliningType transparent : Bool ean

outlining : BMSCutliningType partition : String vali dation : BMSVal idationType

partition : String pr ogramedSynbol : String

programedSynbol : String shiftoutShiftin : Bool ean

shiftoutsShiftin : Bool ean size : BMSSi zeType

storage : Bool ean termnal : String

suffix : String tioaPrefix : Bool ean

termnal : String trailer : Bool ean

tioaPrefix : Bool ean transparent : Bool ean

transparent : Bool ean validation : BMBValidationType BMS) usti fyType BMSQut | i ni ngType

trigraph : Bool ean | eft : Bool ean box : Bool ean

type : BMSMapset Type right : Bool ean left : Bool ean

val idation : BMSValidationType first : Bool ean right : Bool ean

vertical Tabs : int | ast : Bool ean over : Bool ean
bottom : Bool ean| junder : Bool ean

BMSMapset BMSMap BMSFi el d
base : String colum : String attributes : BMVSAttri butesType
col or : BMSCol or Type color : BMSCol or Type case @ Bool ean
control : BMSControl Type control BMBContr ol Type color : BMSCol or Type
cursor Location : Bool ean cursor Location : Bool ean group : Sring
data : BMSDat aType data : BMSDat aType highlighti ng : BMSH ghli ghtingType
descripti onAttributes : BVBMapAttri but esType descriptionAttributes : BVBMapAttri butesType initialVal ue : String
extendedAttri butes : BMSExt endedAttributesType extendedAttri butes : BMSExt endedAttributesType | |justify : BMBJustifyType
fieldSeparator : String fieldSeparator : String length @ int
fold : BMSFol dType header : Bool ean occurs : int
hi ghli ahting : BMSH ghl i ghtingType hi ghli ghting : BMSHi ghli ghtingType outl ining : BMOutlin ngType
hori zontal Tabs : int justify : BMBJustifyType picturelnput : String
| anguage : BMSLanguageType line : String pict ureQut put : String
| oqi cal Devi ceCode : int mapAttributes : BMSMapAttributesType posi tion : BMSPositionType

<<enunerati on>>

BMSExt endedAt tri but esType
no
yes
maponl y

BMSMapAt t ri but esType
color : Bool ean
hi ghli ghting : Bool ean
outline : Bool ean
pr ogrammedSynbol : Bool ean
sosi : Bool ean
transparent : Bool ean
validation : Bool ean

<<enumer ati on>> <<enumer ati on>> <<enumer at i on>> BMSSt at ement
BMSLanguageType BMSHi ghl i ghti ngType BMSCol or Type | abel : S§r| ng
assenbl er of f defaul t comrents : String
c bl i nk bl ue
red
BMSAtt ri butesType Eggg: 2 Lﬁ‘ég: |S,ene areen
skip : Bool ean pli pi nk <<enumer ati on>>
bright : Bool ean turquoi se BMSMapset Type
detect abl e : Bool ean yel | ow dsect
dark : Bool ean neutral mep
modi fied : Bool ean <<enumeration>> fi nal
cursor : Bool ean <<enumnerati on>> BMSVal i dati onType
nor mal s Bool ean BMSMbdeTy pe mustFill
nuneric : Bool ean out nust Ent er
protected : Bool ean in trigger
i nout userExit
<<enumer ati on>>
BMSCont rol Type
print
<<enuner ation>>| | BMSPosi ti onType <<enuner ati on>> length
BVBDat aType | [line : int BVSFol dType BNSSI zeType | |1} S6kP
colum : int alarm
field : | over line : int frset
bl ock number : int up per colum : int

Figure A-12 CICS BMS Attributes

A.1.4 CICSBMS Metamodel Descriptions

BMSAttributesType

BM SAttributesType is the ATTRB statement. This operand applies only to 3270 data
stream devices; it is ignored for other devices, except thatATTRB=DRK is honored for
the SCS Printer Logical Unit. It is also ignored (except for ATTRB=DRK) if the
NLEOM option is specified on the SEND MAP command for transmission to a 3270
printer. In particular, ATTRB=DRK should not be used as a method of protecting
secure data on output on non-3270, non-SCS printer terminals.

If ATTRB is specified within a group of fields, it must be specified in the first field
entry. A group of fields appears as onefield to the 3270. Therefore, theATTRB
specification refers to all of the fieldsin a group as onefield rather than as individua
fields. It specifies device-dependent characteristics and attributes, such as the

UML for EAI: CICSBMSMetamodel A-41

capability of afield to recelve data, or theintensity to be used whenthefield isoutput.
It could however, be used for making an input field non-display for secure entry of a
password from a screen.

For input map fields, DET and NUM are the only valid options; all others are ignored.

ASKIP is the default and specifies that data cannot be keyed into the field and causes
the cursor to skip over the field.

BRT specifies that a high-intensity display of the field is required. Because of the
3270 attribute character bit assignments, a field specified as BRT is also potentially
light pen detectable. However, for the field to be recognized as detectable by BMS,
DET must also be specified.

® DET specifies that the field is potentially detectable. The first character of a 3270
detectable field must be one of the following:

? > & blank

If ? or >, thefield is a selection field; if & or blank, the field is an attention field.
(See An Introduction to the IBM 3270 Information Display System for further
details about detectable fields.)

A field for which BRT is specified is potentially detectable to the 3270, because of
the 3270 attribute character bit assignments, but is not recognized as such by BMS
unless DET is also specified.

DET and DRK are mutually exclusive. If DET is specified for afield on a map
with MODE=IN, only one data byte isreserved for each input field. Thisbyteis set
to X'00', and remains unchanged if the field is not selected. If thefield is selected,
the byte is set to X'FF'.

No other data is supplied, even if the field is a selection field and the ENTER key
has been pressed.

If the data in a detectable field is required, al of the following conditions must be
fulfilled:

1. The field must begin with one of the following

characters:
? > & blank
and DET must be specified in the output map.

2. The ENTER key (or some other attention key) must be
pressed after the field has been selected, although the
ENTER key is not required for detectable fields

beginning with & or a blank.
3. DET must not be specified for the field in the input

A-42 UML for EAI Draft Adopted Specification January 2002

January 2002

map. DET must, however, be specified in the output map.
For more information about BM S support of the light pen,

see the CICS Application Programming Guide.

® DRK specifies that the field is non-print/non-display. DRK cannot be specified if
DET is specified.

FSET specifies that the modified datatag (MDT) for thisfield should be set when
the field is sent to aterminal. Specification of FSET causes the 3270 to treat the
field as though it has been modified. On a subsequent read from the terminal, this
field is read, whether or not it has been modified. The MDT remains set until the
field is rewritten without ATTRB=FSET, or until an output mapping request causes
the MDT to be reset.

Either of two sets of defaults may apply when afield to be displayed on a 3270 is
being defined but not all parameters are specified. If no ATTRB parameters are

specified, ASKIP and NORM are assumed. If any parameter is specified, UNPROT
and NORM are assumed for that field unless overridden by a specified parameter.

® |C specifies that the cursor is to be placed in the first position of thefield. ThelC
attribute for the last field for which it is specified in a map is the one that takes
effect. If not specified for any fields in a map, the default location is zero.
Specifying IC with ASKIP or PROT causes the cursor to be placed in an un-keyable
field.

This option can be overridden by the CURSOR option of the SEND MAP command
that causes the write operation.

®* NORM specifies that the field intensity is to be normal.

® NUM ensures that the data entry keyboard is set to numeric shift for this field
unless the operator presses the alpha shift key, and prevents entry of nonnumeric
data if the Keyboard Numeric Lock feature is installed.

® PROT specifies that data cannot be keyed into the field. If datais to be copied from
one device to another attached to the same 3270 control unit, the first position
(address 0) in the buffer of the device to be copied from must not contain an
attribute byte for a protected field. Therefore, when preparing maps for 3270s,
ensure that the first map of any page does not contain a protected field starting at
position 0.

® UNPROT specifies that data can be keyed into the field.

BMSColor Type

BM SColorType indicates the individual color, or the default color for the mapset
(where applicable). The valid colors are blue, red, pink, green, turquoise, yellow, and
neutral. The COLOR operand is ignored unless the terminal supports color.

UML for EAI: CICSBMSMetamodel A-43

A-44

BMSControl Type

BMSControl Type is the CTRL statement. It defines characteristics of IBM 3270
terminals. Use of any of the control options in the SEND MAP command overrides all
control options in the DFHM DI macro, which in turn overrides all control options in
the DFHM SD macro.

If CTRL is used with cumulative BM S paging (that is, the ACCUM option is used on
the BMS SEND MAP commands), it must be specified on the last (or only) map of a
page, unless it is overridden by the ALARM, FREEKB and so on, options on the
SEND MAP or accumulated SEND CONTROL command.

PRINT must be specified if the printer is to be started; if omitted, the data is sent to the
printer buffer but is not printed. This operand is ignored if the mapset is used with
3270 displays without the Printer Adapter feature.

LENGTH indicates the line length on the printer; length can be specified as L40, L64,
L80, or HONEOM. L40, L64, and L80 force anew line after 40, 64, or 80 characters,
respectively. HONEOM causes the default printer line length to be used. If thisoption
is omitted, BMS sets the line length from the termina definition page size.

FREEKB causes the keyboard to be unlocked after the map is written. If FREEKB is
not specified, the keyboard remains locked; data entry from the keyboard is inhibited
until this status is changed.

ALARM activates the 3270 audible alarm if available.

FRSET specifies that the modified data tags (MDTs) of all fields currently in the 3270
buffer are to be reset to an unmodified condition (that is, field reset) before map datais
written to the buffer. This alows the DFHMDF macro with the ATTRB operand to
control the final status of any fields written or rewritten in response to a BMS
command.

Note: CTRL cannot be specified in the DFHMDI and DFHM SD macros in the same
mapset.

BMSDataType

BMSDataType can be either "field" or "block".

BMSExtendedAttributesType

BM SExtendedAttributesType can be "ng", "yes', or "maponly".

BMSField

BMSField is implemented by the DFHMDF macro. BM SField has the following
attributes:

UML for EAI Draft Adopted Specification January 2002

January 2002

® GRPNAME is the name used to generate symbolic storage definitions and to

combine specific fields under one group name. The same group name must be
specified for each field that is to belong to the group. The length of the nameis up
to 30 characters though you should refer to the compiler manual to make sure that
there are no other restrictions on the length. If this operand is specified, the
OCCURS operand cannot be specified.

Thefields in a group must follow on; there can be gaps between them, but not other
fields from outside the group. A field name must be specified for every field that
belongs to the group, and the POS operand must also be specified to ensure that the
fields follow each other. All the DFHMDF macros defining the fields of a group
must be placed together, and in the correct order (ascending numeric order of the
POS value).

For example, the first 20 columns of the first six lines of a map can be defined as a
group of six fields, as long as the remaining columns on the first five lines are not
defined as fields.

attributes is the ATTRB operand specified on the first field of the group applies to
all of the fields within the group.

length is the LENGTH operand. It specifies the length (1-256 bytes) of the field or
group of fields. This length should be the maximum length required for application
program data to be entered into thefield; it should not include the one-byte attribute
indicator appended to the field by CICS for use in subsequent processing. The
length of each individual subfield within a group must not exceed 256 bytes.
LENGTH can be omitted if PICIN or PICOUT is specified, but is required
otherwise. You can specify a length of zero only if you omit the label (field name)
from the DFHMDF macro. That is, the field is not part of the application data
structure and the application program cannot modify the attributes of the field. You
can use a field with zero length to delimit an input field on a map.

The map dimensions specified in the SIZE operand of the DFHMDI macro defining
a map can be smaller than the actual page size or screen size defined for the
terminal.

If the LENGTH specification in a DFHMDF macro causes the map-defined
boundary on the same line to be exceeded, the field on the output screen is
continued by wrapping.

occurs is the OCCURS operand. It specifies that the indicated number of entries for
the field are to be generated in a map, and that the map definition is to be generated
in such away that the fields are addressable asentries in a matrix or an array. This
permits several data fields to be addressed by the same name (subscripted) without
generating a unique name for each field.

OCCURS and GRPNAME are mutually exclusive; that is, OCCURS cannot be used
when fields have been defined under a group name. If this operand is omitted, a
value of OCCURS=1 is assumed.

UML for EAI: CICSBMSMetamodel A-45

A-46

® picturelnput isthe PICIN operand (COBOL and PL/I only). It specifies a picture to

be applied to an input field in an IN or INOUT map; this picture serves as an
editing specification that is passed to the application program, thus permitting the
user to exploit the editing capabilities of COBOL or PL/I. BMS checks that the
specified characters are valid picture specifications for the language of the map.

However, the validity of the input data is not checked by BMS or the high-level
language when the map is used, so any desired checking must be performed by the
application program. The length of the data associated with "value" should be the
same as that specified in the LENGTH operand if LENGTH is specified. If both
PICIN and PICOUT are used, an error message is produced if their calculated
lengths do not agree; the shorter of the two lengthsis used. If PICIN or PICOUT is
not coded for the field definition, a character definition of the field is automatically
generated regardless of other operands that are coded, such as ATTRB=NUM.
Note: The valid picture values for COBOL input maps are:

APSV X 9/and(

The valid picture values for PL/I input maps are:

ABEFGHIKMPRSTV XY andZ

1236789/+-,.*$and(

For PL/I, acurrency symbol can be used as a picture character. The symbol can be
any sequence of characters enclosed in < and >, for example <DM>.

Refer to the appropriate language reference manual for the correct syntax of the
PICTURE attribute.

pictureQutput is the PICOUT operand (COBOL and PL/I only). It is similar to
PICIN, except that a picture to be applied to an output field in the OUT or INOUT
map is generated.

The valid picture values for COBOL output maps are:
ABEPSVXZ09,.+-$CRDB/and(

The valid picture values for PL/I output maps are:
ABEFGHIKMPRSTV XY andZ
1236789/+-,.*$CRDB and (

For PL/I, a currency symbol can be used as a picture character. The symbol can
be any sequence of characters enclosed in < and >, for example <DM>.

Refer to the appropriate language reference manual for the correct syntax of the
PICTURE attribute.

Note: COBOL supports multiple currency signs and multi-character currency
signs in PICTURE specifications.

The default currency picture symbol is the dollar sign ($),which represents the
national currency symbol; for example the dollar ($), the pound (£), or the yen

)

UML for EAI Draft Adopted Specification January 2002

January 2002

The default currency picture symbol may be replaced by a different currency
picture symbol that is defined in the SPECIAL NAMES clause. The currency
sign represented by the picture symbol is defined in the same clause. For
example:

SPECIAL NAMES.
CURRENCY SIGN IS'$' WITH PICTURE SYMBOL '$.
CURRENCY SIGN IS'E' WITH PICTURE SYMBOL '£'.
CURRENCY SIGN IS 'EUR' WITH PICTURE SYMBOL '#.
WORKING STORAGE SECTION.
01 USPRICE PIC $99.99.
01 UKPRICE PIC £99.99.
01 ECPRICE PIC #99.99.

LENGTH must be specified when PICOUT specifies a COBOL picture
containing a currency symbol that will be replaced by a currency sign of length
greater than 1.

® position is the POS operand. It specifies the location of afield. This operand

specifies the individually addressable character location in a map at which the
attribute byte that precedes the field is positioned.

Position is a BM SPositionType which has the following attributes:

» number specifies the displacement (relative to zero) from the beginning of the
map being defined.

¢ (line, column) specify lines and columns (relative to one) within the map being
defined.

Thelocation of dataon the output mediumisal so dependent on DFHM DI operands.
The first position of afield is reserved for an attribute byte. When supplying data
for input mapping from non-3270 devices, the input data must allow space for this
attribute byte. Input data must not start in column 1 but may start in column 2.

The POS operand always contains the location of the first position in afield, which
is normally the attribute byte when communicating with the 3270. For the second
and subsequent fields of a group, the POS operand points to an assumed attribute-
byte position, ahead of the start of the data, even though no actual attribute byte is
necessary. If the fields follow on immediately from one another, the POS operand
should point to the last character position in the previous field in the group.

When a position number is specified that represents the last character position in the

3270, two specia rules apply:

e ATTRIB=IC should not be coded. The cursor can be set to location zero by using
the CURSOR option of a SEND MAP, SEND CONTROL, or SEND TEXT
command.

« |f the field is to be used in an output mapping operation with MAP=DATAONLY
on the SEND MAP command, an attribute byte for that field must be supplied in
the symbolic map data structure by the application program.

UML for EAI: CICSBMSMetamodel A-47

A-48

® ProgrammedSymbol is the PS operand. It specifies that programmed symbols are to
be used. This overrides any PS operand set by the DFHMDI macro or the
DFHMSD macro.

BASE is the default and specifies that the base symbol set is to be used.

psid specifies a single EBCDIC character, or a hexadecimal code of the form X'nn',
that identifies the set of programmed symbols to be used.

The PS operand is ignored unless the terminal supports programmed symbols.

SOSI indicates that the field may contain a mixture of EBCDIC and DBCS data.
The DBCS subfields within an EBCDIC field are delimited by SO (shift out) and Sl
(shift in) characters. SO and SI both occupy a single screen position (normally
displayed as a blank). They can be included in any non-DBCS field on output, if
they are correctly paired. The terminal user can transmit them inbound if they are
already present in the field, but can add them to an EBCDIC field only if the field
has the SOSI attribute.

TRANSP determines whether the background of an alphanumeric field is
transparent or opaque, that is, whether an underlying (graphic) presentation spaceis
visible between the characters.

BMSFoldType

BM SFoldType specifies whether to generate lowercase or uppercase characters only in
C language programs in the appropriate data structure.

BMSHighlightingType

BM SHighlightingType specifies the default highlighting attribute for al fieldsin all
mapsin amapset. This is overridden by the HILIGHT operand of the DFHMDI, which
isin turn overridden by the HILIGHT operand of the DFHMDF. The HILIGHT
operand is ignored unless the terminal supports it.

BM SHighlightingType has the following attributes:
® OFF is the default and indicates that no highlighting is used.
® BLINK specifies that the field must blink.

® REVERSE specifies that the character or field is displayed in reverse video, for
example, on a 3278, black characters on a green background.

® UNDERLINE specifies that afield is underlined.

BMSJustifyType

BMSJustifyType can be "left", "right", "first”", "last", or "bottom".

UML for EAI Draft Adopted Specification January 2002

BMSLanguageType

BM SL anguageType specifies language types:

Assembler
C

COBOL
COBOL2
PL/I

BMSMap

BMSMap is implemented by DFHMDI macro. BMSMap has the following attributes:

MAPNAME is the name of the map and consists of 1-7 characters.

COLUMN specifies the column in a line at which the map is to be placed, that is, it
establishes the left or right map margin.

JUSTIFY controls whether map and page margin selection and column counting are
to be from the left or right side of the page. The columns between the specified map
margin and the page margin are not available for subsequent use on the page for any
lines included in the map.

NUMBER is the column from the left or right page margin where the left or right
map margin is to be established.

NEXT indicates that the left or right map margin is to be placed in the next
available column from the left or right on the current line.

SAME indicates that the left or right map margin is to be established in the same
column as the last non-header or

nontrailer map used that specified COLUMN=number and the same JUSTIFY
operands as this macro. For input operations, the map is positioned at the extreme
left-hand or right-hand side, depending on whether JUSTIFY =LEFT or
JUSTIFY=RIGHT has been specified.

Lineisthe LINE operand. It specifies the starting line on a page in which data for a

map is to be formatted.

* NUMBER is avalue in the range 1-240, specifying a starting line number. A
reguest to map, on aline and column, data that has been formatted in response to
a preceding BM'S command, causes the current page to be treated as though
complete. The new data is formatted at the requested line and column on a new
page.

o NEXT specifies that formatting of data is to begin on the next available
completely empty line. If LINE=NEXT is specified in the DFHMDI macro, it is
ignored for input operations and LINE=1 is assumed.

January 2002 UML for EAI: CICSBMSMetamodel A-49

A-50

* SAME specifies that formatting of data is to begin on the same line as that used
for a preceding BMS command. If COLUMN=NEXT is specified, it is ignored
for input operations and COLUMN=L1 is assumed. If the data does not fit on the
same line, it is placed on the next available line that is completely empty.

SIZE(argl,arg2) specifies the size of amap. arg2 = line is a value in the range 1-
240, specifying the depth of a map asa number of lines. argl = columnisavaluein
the range 1-240, specifying the width of a map as a number of columns. This
operand is required in the following cases:

¢ An associated DFHMDF macro with the POS operand is used.

* The map isto bereferred to in a SEND MAP command with the ACCUM option.

e The map is to be used when referring to input data from other than a 3270
terminal in a RECEIVE MAP command.

ShiftOutShiftin is the SOSI operand. It indicates that the field may contain a
mixture of EBCDIC and DBCS data. The DBCS subfields within an EBCDIC field
are delimited by SO (shift out) and Sl (shift in) characters. SO and S| both occupy
a single screen position (normally displayed as a blank). They can be included in
any non-DBCS field on output, if they are correctly paired. The termina user can
transmit them inbound if they are already present in the field, but can add them to
an EBCDIC field only if the field has the SOSI attribute.

TioaPrefix is a Boolean type for the TIOAPFX operand. It specifies whether BMS
should include afiller in the symbolic description maps to allow for the unused
TIOA prefix. This operand overrides the TIOAPFX operand specified for the
DFHMSD macro.

« YES specifies that the filler should be included in the symbolic description maps
and should always be used for command-level application programs. If
TIOAPFX=YES is specified, al maps within the mapset have the filler.
TIOAPFX=YES

* NO is the default and specifies that the filler is not to be included.

BMSMapAttributesType

BM SMapAttributesType has the following attributes:

color : Boolean

highlighting : Boolean
outline : Boolean
programmedSymbol : Boolean
sosi : Boolean

transparent : Boolean

validation : Boolean

UML for EAI Draft Adopted Specification January 2002

BMSMapset

BMSMapset is implemented by the DFHMSD macro. BMSMapset has the following
attributes:

® type=DSECT { MAP § FINAL. Mandatory, this generates the two bits of aBMS
entity.

® mode=OUT T IN T INOUT. OUT is default. INOUT says do both IN and OUT
processing. With IN, | is appended to mapname, with OUT, O is appended to
mapname.

® |ang=ASMY COBOL § COBOL2 JPL/l C. ASM is default.

* fold=LOWER UPPER. LOWER is default. Only applies to C.
® dsect=ADS 1 ADSL. ADS is default. ADSL requires lang = C.
® trigraph = YES only applies to lang = C.

® BASE specifies that the same storage base is used for the symbolic description
maps from more than one mapset. The same name is specified for each mapset that
is to share the same storage base. Because all mapsets with the same base describe
the same storage, data related to a previously used mapset may be overwritten when
anew mapset is used. Different maps within the same mapset also overlay one
another.

This operand is not valid for assembler-language programs, and cannot be used
when STORAGE=AUTO has been specified.

® term = type. Each terminal type is represented by a character. 3270 is default and is
a blank. Added to MAPSET name, or, suffix = numchar which is also added to
mapset name.

® CURSLOC indicates that for all RECEIVE MAP operations using this map on 3270
terminals, BMS sets a flag in the application data structure element for the field
where the cursor is located.

® STORAGE depends upon the language in which application programs are written,
as follows:

For a COBOL program, STORAGE=AUTO specifies that the symbolic description
maps in the mapset are to occupy separate (that is, not redefined) areas of storage.
This operand is used when the symbolic description maps are copied into the
working-storage section and the storage for the separate maps in the mapset is to be
used concurrently.

For a C program, STORAGE=AUTO specifies that the symbolic description maps
are to be defined as having the automatic storage class. If STORAGE=AUTO is not
specified, they are declared as pointers. You cannot specify both BASE=name and
STORAGE=AUTO for the same mapset. If STORAGE=AUTO is specified and
TIOAPFX is not, TIOAPFX=YES is assumed.

January 2002 UML for EAI: CICSBMSMetamodel A-51

A-52

For a PL/I program, STORAGE=AUTO specifies that the symbolic description
maps are to be declared as having the AUTOMATIC storage class. If
STORAGE=AUTO is not specified, they are declared as BASED. You cannot
specify both BASE=name and STORAGE=AUTO for the same mapset. If
STORAGE=AUTO is specified and TIOAPFX is not, TIOAPFX=YES is assumed.

For an assembler-language program, STORAGE=AUTO specifies that individual
maps within a mapset are to occupy separate areas of storage instead of overlaying
one another.

This is derived from BM SStatement.

BMSMapsetType

BM SMapsetType specifies the type of map to be generated using the definition. Both
types of map must be generated before the mapset can be used by an application
program. If aligned symbolic description maps are required, you should ensure that
you specify SYSPARM=ADSECT and SY SPARM=AMAP when you assemble the
symbolic and physical maps respectively.

BM SMapsetType has the following attributes:

DSECT specifies that a symbolic description map is to be generated. Symbolic
description maps must be copied into the source program before it is translated and
compiled.

MAP specifies that a physical map is to be generated. Physical maps must be
assembled or compiled, link-edited, and cataloged in the CICS program library
before an application program can use them.

FINAL denotes the end of a mapset.

BMSModeType

BM SModeType specifies whether the mapset is to be used for input, output, or both
(i.e., input and output).

BMSOutliningType

BMSOutliningType is the OUTLINE statement. It allows lines to be included above,
below, to the left, or to theright of afield. You can use these linesin any combination
to construct boxes around fields or groups of fields.

BMSPositionType

BM SPositionType specifies where on the presentation space the field is to be placed.

BMSS zeType

BM SSizeType has the following attributes:

UML for EAI Draft Adopted Specification January 2002

® lineis an integer.

® column is an integer.

BMS\validationType

BMSValidationType is the VALIDN statement. It specifies that validation is to be used
if the terminal supports it or this field can be processed by the BMS global user exits

This overrides any VALIDN operand on the DFHMDI macro or the DFHMSD macro.

BM SValidationType has the following attributes:

® MUSTFILL specifies that thefield must be filled completely with data. An attempt
to move the cursor from the field before it has been filled, or to transmit data from
an incomplete field, raises the INHIBIT INPUT condition

® MUSTENTER specifiesthat data must be entered into thefield, though need not fill
it. An attempt to move the cursor from an empty field raises the INHIBIT INPUT
condition

®* TRIGGER specifies that this field is a trigger field. Trigger fields are discussed in
the CICS Application Programming Guide.

® USEREXIT specifies that thisfield is to be processed by the BMS global user exits,
XBMIN and XBMOUT, if thisfield is received or transmitted in a 3270 datastream
when the respective exit is enabled. The USEREXIT specification applies to all
3270 devices.

The MUSTFILL, MUSTENTER, and TRIGGER specifications are valid only for
terminals that support the field validation extended attribute, otherwise they are
ignored.

January 2002 UML for EAI: CICSBMSMetamodel A-53

A-54 UML for EAI Draft Adopted Specification January 2002

	Part 1 - Introduction
	Introduction and Guide
	1.1 Introduction
	1.2 Attachments

	Scope
	2.1 Scenario 1: Connectivity
	2.2 Scenario 2: Information Sharing
	2.3 Scenario 3: Process Collaboration

	Modeling Approach
	3.1 Metamodel
	3.2 UML Profile
	3.3 Four-layered Architecture
	3.4 Semantics

	Compliance
	4.1 Overview
	4.2 Compliance with the UML Collaboration Profile
	4.2.1 General Compliance
	4.2.2 Visualization

	4.3 Compliance with the UML Activity Profile
	4.3.1 General Compliance
	4.3.2 Visualization

	4.4 Compliance with the MOF-based EAI Metamodel
	4.5 Compliance Statement Examples

	Requirements and Areas for Discussion
	5.1 Mandatory Requirements
	5.1.1 Event-Based Architecture
	5.1.2 Heterogeneous Environment
	5.1.3 XML
	5.1.4 XMI
	5.1.5 UML Profile for EDOC
	5.1.6 MOF alignment
	5.1.7 Proof of Concept of Profile
	5.1.8 Demonstration that Models are Implementable

	5.2 Discussion issues
	5.2.1 Development and Management Aid
	5.2.2 Tool Support

	5.3 Relationship to Envisioned OMG Technology
	5.3.1 Real-time

	5.4 Relationship to Existing Standards
	5.4.1 UML
	5.4.2 Meta Object Facility (MOF)
	5.4.3 Common Warehouse Metamodel (CWM)

	5.5 Other Related Activities

	Part 2 - Metamodel
	EAI Integration Metamodel
	6.1 EAI Integration Specializes FCM
	6.2 FCM Derived Associations
	6.2.1 Motivation
	6.2.2 FCM Diagrams
	6.2.3 Composite Nodes
	6.2.4 Composite Nodes and Their Contents
	6.2.5 Relationship between the Interface of a Composite Node and its Contents

	6.3 EAI Specializations of the FCM
	6.3.1 Motivation
	6.3.2 EAILink
	6.3.3 EAITerminal
	6.3.4 EAIMessageContent
	6.3.5 EAIMessageOperation
	6.3.6 EAISource and EAISink
	6.3.7 EAIQueue
	6.3.8 EAIQueuedInputTerminal and EAIQueuedOutputTerminal
	6.3.9 EAIQueuedSource and EAIQueuedSink
	6.3.10 Operators
	6.3.11 Adapters

	6.4 Kinds of Operator
	6.4.1 Operators
	6.4.2 Topic-based publish/subscribe

	6.5 CCA Component Library for EAI
	6.5.1 Operators
	6.5.2 Adapters
	6.5.3 CCA and EAI Metamodel Mapping Tables

	EAI Common Application Metamodel
	7.1 Business Requirements and Value
	7.2 Common Application Metamodel for Applications Interfaces
	7.2.1 End-to-End Connector Usage Using EAI Common Application Metamodel

	7.3 Common Application Metamodel
	7.3.1 Enterprise Application Interface Metamodels
	7.3.2 Language Metamodels
	7.3.3 Physical Representation Model: Type Descriptor Metamodel
	7.3.4 Type Descriptor Metamodel Descriptions
	7.3.5 Type Descriptor Formulas
	7.3.6 Type Descriptor Formula Examples
	7.3.7 Physical Representation Model: TDLang Metamodel
	7.3.8 TDLang Metamodel Descriptions
	7.3.9 Physical Representation Model: Convergent Metamodel
	7.3.10 Convergent Metamodel Descriptions
	7.3.11 Sample Serialization of Convergent Metamodel

	Part 3 - Profile Definition
	Collaboration Modeling
	8.1 Overview
	8.1.1 General Approach
	8.1.2 Use of UML operations
	8.1.3 Concrete Notation
	8.1.4 Chapter structure

	8.2 Terminals
	8.3 Operators
	8.3.1 Primitive Operator
	8.3.2 Transformers and Database Transformers
	8.3.3 Filters
	8.3.4 Streams
	8.3.5 Post Daters
	8.3.6 Source Adapters
	8.3.7 Target Adapters
	8.3.8 Call Adapters
	8.3.9 Request/Reply Adapters
	8.3.10 Sources and Queued Sources
	8.3.11 Sinks and Queued Sinks
	8.3.12 Aggregators
	8.3.13 Timers
	8.3.14 Routers
	8.3.15 Subscription Operators
	8.3.16 Publication Operators
	8.3.17 Topic Publishers
	8.3.18 Compound Operators

	8.4 Resources
	8.5 Message Formats
	8.5.1 MessageContent Core
	8.5.2 Basic MOM Message Structure

	8.6 Mapping with Metamodel
	8.6.1 Terminals
	8.6.2 Operators
	8.6.3 Resources
	8.6.4 Message Formats

	Activity Modeling
	9.1 Modeling Integration Processes
	9.2 An Integration Process Scenario
	9.2.1 The Exchange Process
	9.2.2 Modeling message flow explicitly
	9.2.3 Modeling control flow
	9.2.4 Abstracting detail by decomposition
	9.2.5 Further fragmentary examples

	9.3 Profile Element Summary
	9.3.1 Stereotypes
	9.3.2 Tagged Values
	9.3.3 Mapping to EAI Metamodel

	Part 4- Proof of Concept
	Example: Connectivity and Information Sharing
	10.1 The Brokerage Business
	10.2 Connection of Enterprises to the Online Brokerage System
	10.3 The On-line Brokerage System
	10.4 International Brokerage Server
	10.4.1 Orders
	10.4.2 Notifications

	10.5 Investment Manager Server
	10.5.1 Orders
	10.5.2 Notifications

	10.6 Middleware Server and Back-End Brokerage System
	10.7 Publication

	Example Using the EDOC CCA
	11.1 Example

	Part 5- Implementation Mappings
	Mapping to WebSphere MQ Integrator
	12.1 WebSphere MQ Messaging
	12.1.1 WebSphere MQ Messages
	12.1.2 WebSphere MQ Message Queuing

	12.2 WebSphere MQ Integrator Message Flows
	12.2.1 Summary
	12.2.2 WMQIMessageFlow
	12.2.3 WMQICompoundNode
	12.2.4 WMQIPrimitiveNode
	12.2.5 Supplied WMQIPrimitiveNodes
	12.2.6 The Role of the WMQI message-broker topology

	Java Message Service (JMS)
	13.1 PTP Domain
	13.2 Pub/Sub Domain

	Language Metamodels
	14.1 COBOL Metamodel
	14.1.1 COBOL Metamodel Descriptions

	14.2 PL/I Metamodel
	14.2.1 PL/I Metamodel Descriptions

	14.3 C Metamodel
	14.3.1 C Metamodel Descriptions

	14.4 C++ Metamodel
	14.4.1 C++ Metamodel Descriptions

	A. Non-normative Enterprise Application Interface Metamodels

